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Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal
transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for
the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent
and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge of graft
recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures
similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the
assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig
models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation
and marginal donor models facilitating data extrapolation to human conditions.

1. Introduction

Experimental models have accelerated our understanding
of diseases’ pathophysiology and played a major role in
the search for adequate therapeutic interventions. Ischemia
reperfusion injury (IRI) remains a leading cause of acute
kidney injury (AKI) in both native and transplanted
kidneys [1]. IRI is a choreographed process leading to
delayed graft function (DGF) and reduced long-term organ
survival in transplantation. Cold-storage-induced injury
is a pivotal contributing factor to early graft dysfunction
in organ recipients. The success of organ transplantation
is also critically dependent on the quality of the donor
organ which, in turn, is determined by a variety of factors,
including donor age, donor management prior to organ
procurement, hypothermic storage time, and the quality
of organ preservation. Organ preservation is a critical link

in the chain of donation-transplantation, having a significant
effect on posttransplant graft function and graft survival.

Animal experimental models are also crucial in renal
IRI research, as there are only a limited number of in vitro
models. Although animal experimentation is contentious
and subject to legal and ethical restrictions, large animal
models are still extensively used and are necessary to
develop safe preclinical protocols directly transferable to
human. Indeed, preclinical studies using pig or nonhuman
primate play an important role in the evaluation of new
medical devices and pharmacological therapy efficacy before
their use in clinical studies. The first renal transplantation
was performed by Emerich Ullmann in 1902 in dog, and
the first porcine kidney transplantation was published in
1965 [2]. The similarity in size, physiology, and in organ
development and disease progression make the swine an
ideal model for human disease research [3]. Nowadays, the
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porcine model is crucial to adapt surgical procedures and
to develop models mimicking for instance deceased after
cardiac arrest donors or to test novel preservation solutions
in transplantation. This paper provides an overview of
porcine models commonly used to evaluate organ transplant
protocols and analyzes new surgical models of marginal
donors, establishing the pig as a gold standard in renal
transplantation research.

2. Renal Transplantation and
Ischemia-Reperfusion Injury Models

Different models can be considered for renal transplantation
and IRI. The cellular models are interesting to focus on
specific pathways or large-scale screening for drug evalu-
ations. It is possible to use different cell lines originating
from different organs. However, the absence of integrative
studies, which are only possible at the organ or whole-
animal levels, limits their interest. In fact, in vitro IRI studies
cannot mimic the global situation observed in vivo because
there are many local, systemic, cellular and humoral factors
involved during IRI in vivo. Such models are more adapted to
study cold storage conditions with hypoxia and hypothermia
mimicking the cold-preservation stage [4–11]. Other models
are also useful such as isolated blood vessel models [12].
Indeed, these models are of interest to evaluate signalling
pathways and to test hypotheses with preliminary studies [7,
9]. Perfusion of isolated organs are another group of models
interesting for an early evaluation of IRI [13–16]. Animal
models are an obvious step needed to confirm the most
relevant pathways identified at the in vitro in well-controlled
systems and to provide a definitive proof of concept [4].

An intermediate step has to be considered with rodent
models. There is an extensive literature on renal IRI using
rodent models and focusing on the early times of reperfusion
with different protocols. A recent paper analysed animal
models of chronic allograft injury in kidney, heart, aorta,
liver and lung transplantation [17]. This review focused
on rodent and nonhuman primate models while the swine
model was restricted to lung transplantation. This situation
will be changed with the development of mini- or micro-
pigs. In addition, transplantation models in rodents are not
easy to perform and are not systematically reproducible
mainly because they depend on the operator’s skills.

Three large animal models have been used extensively in
transplantation: dogs, pigs and nonhuman primates. Each
species closely approximates human physiology, and the
general anatomical similarity has provided a relevant back-
ground for preclinical experiments. In renal transplantation,
canine models were used for development of blood vessel
anastomosis technique and the first autograft and allograft
were performed in dogs. The pig has two major advantages: it
is generally accepted for human consumption and the public
harbours relatively little resentment for porcine research
inducing less legal and ethical restrictions conversely to
nonhuman primate or dog models [4]. In addition, pigs
are easily bred and are now recognized as being genetically
modifiable [18]. Pig has also the advantages of large animal

model: it is possible, to collect repeated peripheral blood
samples or renal tissue biopsy during experiments, to obtain
detailed tissue samples at euthanasia and to use technologies
adapted to human conditions such as CTscan or NMR [3].
In terms of genomics, it is an asset that the pig genome has
high sequence and chromosome structure homology with
humans, making possible the use in pigs of human genetic
and proteomic tools [3].

In transplantation research, histology of allograft rejec-
tion is similar to humans. Immune responses are predicated
on a similar network of T cells responding to a similarly
organized major histocompatibility complex [18]. Although
some issues affect the use of immunosuppressors in non-
human primates and dogs inducing ulcerative bowel lesions
and diarrhea due to poor absorption. In these conditions,
the pig tolerates high doses of calcineurin inhibitors such as
cyclosporine without apparent toxicity.

3. Description of the Pig As Biomedical Model

3.1. Anatomy. Many animals have been used in experimental
models of renal transplantation but the porcine model is
more consistent because of the existence of close analogies
between structural features of human and porcine kidneys
[19]. Although pig renal and intrarenal anatomy could not
be completely transposed to human, many similarities in
porcine and human intrarenal arteries have been described
[20] as well as anatomical relationships between intrarenal
arteries and the kidney collecting system (Figure 1). Using
kidney resin perfusions, it was found in 91 pigs that there was
only one artery per kidney divided into cranial and caudal
branches in 93.4%, or dorsal and ventral branch in 6.6%
of cases [20]. The high occurrence of single renal artery in
swine is quite different from the human situation, in which
multiple renal arteries are reported in 27 to 30% of cases
[21]. In addition, in the human single artery condition, the
primary division occurs into an anterior and a posterior
branch [20]. In the renal superior pole, Pereira-Sampaio et
al. described two main arteries in pigs (ventral and dorsal)
originating from the cranial branch of the renal artery,
similar to the human segmental arteries with an apical artery
found in human and absents in 67% of the cases in pigs
[20, 22]. In addition, the dorsal artery, always observed in
human, is only described in 47% of the pig population
[20, 22] in contrast to the horizontal branch in the ventral
mid zone of the kidney, which is always described in both
species [20, 22]. In the inferior pole, the caudal artery divides
into ventral and dorsal branches in 85% of cases in pigs and
62% in human kidneys. In the remaining cases, the ventral
branch arises from the caudal artery and the dorsal branch
arises from the dorsal artery [20, 22].

As in the human kidney, there are free anastomosis
between the intrarenal veins in the pig [23, 24]. The interlo-
bar veins merge to produce large venous trunks which form
the renal vein [24]. Bagetti Filho et al. described two major
trunks: cranial and caudal and in few cases, three trunks
(cranial, middle and caudal). However, only the ventral
surfaces of the cranial and caudal poles were drained by large
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Figure 1: Renal human and pig vasculature. (a, b) are representative angiography pictures, respectively, in human and pig, (c, d) are
representative pictures of kidney vasculature obtained with CTscan, respectively, in human and pig. (1) segmental arteries aera; (2) interlobar
arteries aera; (3) arcuate arteries aera.

veins while the dorsal surfaces emptied by anastomoses into
the ventral interlobar veins [24]. The arterial and venous
architectures in each species vary significantly and have
evolved to optimise O2 transport based on each unique
anatomical configuration. In dogs and rodents, segmental
arteries are bypassed due to the lack of multiple medullary
pyramids, while in humans and pigs an elaborate system of
interlobar and segmental arteries is present to supply the
numerous kidney lobes [25]. There is thus a high degree of
proximity between human and pig kidneys [20] (Figure 2),
with multilobular, multipapillary architecture, while mice,
rats, dogs and rabbits have unilobular, unipapillary kidneys
[25].

In term of body size, pig is also close to human,
particularly for the mini-pig which reaches body weights of

60–70 kg in adulthood. The large blood volume in pigs allows
repeated blood sampling. The use of males greatly facilitates
24h-urine collection in metabolic cages which is a crucial
parameter to monitor in renal transplantation.

3.2. Physiology. The mechanisms of IRI, depend on the
anatomic and metabolic properties of the kidney [27]. In
association with the multilobular, multipapillary kidney and
the vascular architecture, renal parenchyma oxygenation is
graded with the highest O2 levels in the cortical zone,
medium levels in the outer medulla and the lowest levels in
the papillae [25]. Cells in each kidney region are adapted
to function optimally at the oxygenation levels in their
respective microenvironments [27]. Cortical cells mainly use
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Figure 2: Renal anatomical comparisons between human, pig and rodent [26]. Multilobular and multipapillary kidneys observed in human
and pig contrast with unilobular and unipapillary kidney in rodent (http://www.jeremyswan.com/).

O2-dependent metabolism linked to oxidative phosphory-
lation. These cells are living in an oxygenated area making
them more sensitive to ischemia. Cells in the outer medulla
can shift to O2 independent metabolism, making them less
sensitive to an hypoxic environment. Inner medulla and
papillae cells predominantly use glucose to generate ATP via
anaerobic glycolysis. These last regions reside in a permanent
hypoxic environment and consequently are less affected by
ischemia [25]. Physiological differences among species limit
the clinical translation of animal studies. Criteria related
to renal embryology, anatomy, architecture and lymphatic
pattern, ability to concentrate urine, and sensitivity to
ischemia suggest that the pig kidney may be more similar to
the human kidney than dog’s or rodent’s and may be a better
model to study human ischemia/reperfusion consequences
[25, 28–30].

3.3. Biochemistry. Human reference values for blood bio-
chemical parameters, such as creatinine and Blood Urea
Nitrogen (BUN) are identical in pigs [31]. A previous study
analysed over 100 physiological variables in pigs in basal
conditions, concluded that most porcine values were similar
to those collected under comparable conditions in humans
[31].

3.4. Genome. Major advances in the understanding of the
porcine transcriptome have occurred over the past decade,
and especially in the past few years [32]. The pig genome was
sequenced and characterised under the auspices of the Swine
Genome Sequencing Consortium [33, 34]. Microarray and
macroarray from Sus Scrofa cDNA have been used since 2005
[35] and chips for immune system are now well established
[36–41]. This new technology has been used to characterize
a preclinical model of chronic ischemic wound [42] and to
study hypoxia effects on stem cells [43]. The important cross-
species of gene expression between human and porcine tissue
supports the concept of using human GeneChip microarray
platform to compare gene expression profiles between pig
and human tissues in the absence of a porcine microarray
platform [44].

3.5. Immune System. The porcine immune system is better
characterized than the canine one, making the pig an
interesting alternative model to the nonhuman primate for
immunosuppressive therapeutic approaches. The porcine
immune system has been studied to elucidate the role of
the lymphoid organs during infectious diseases, in order to
characterize immune function in transplantation research
and to generate a model for various aspects of human
immunology [45]. Immunosuppressive drugs have been
evaluated in dogs, pigs and nonhuman primates leading to
reproducible prolongations of graft survival [4]. The pig
is also important to investigate the development of the
adaptative immune response in neonates [46, 47]. Studies
on laboratory rodents or primates have been ambiguous
because neither the effect of environmental nor maternal
factors on the newborn can be controlled in mammals such
as transmission of potential maternal immunoregulatory
factors in utero.

Workshop and literature on immune marker identifica-
tions report important similarities between human and pig
antigens as well as immune response [6, 48–51]. Through
these workshops, the available antibodies used in pig studies
have increased drastically [6, 50, 52–58].

3.6. Immunosuppressive Therapies in Large Animal Models. A
recent review has presented the different aspects and showed
that large animal model could be useful for therapeutic
protein fused to monoclonal antibodies, depletion strategies,
mixed chimerism or donor antigen infusion [4].

4. Limits of the Large Pig Model

Although the porcine model is herein described as a
gold standard, it presents several disadvantages. The major
inconvenient resides in its fast growth and subsequent large
size, complicating handling. In terms of reproduction, a
female pig has a gestation period of 114 days, with an average
of 2.4 litters per year and 12 piglets per litter, requiring a
large kennel. Pigs are often considered noisy and aggressive
causing researchers to consider more amenable species to
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perform their experiments [59]. In fact, male pigs usually
require castration to limit their aggressive behavior at the end
of puberty.

Pigs need to be used at a reasonable weight in order
to easily perform transplantation surgeries in laboratories
under sterile conditions. Therefore the age of the animals
used for transplantation is restricted to very young adults
rather than adults [4]. Their relatively rapid growth impairs
the setting up of long-term studies [60]. In fact, the Large
White pigs commonly used in our laboratory, weigh around
1.5 kg at birth, 35 kg at 3 months, 125 kg at 6 months,
200 kg at 1 year and 280 kg at 2 years. At 3 months, the
pig needs a large amount (estimated at 1 kg per day) of
relatively expensive food: commonly diet prices range from
0.2 euros/kg for standard diet to 3.5 euros/kg for hyperlipi-
demic diet. Studies in pigs are expensive and consequently
include a smaller number of animals. A Large White pig costs
around 120 euros at 30 kg and requires important handling,
surgical material, such as a pen, a metabolic cage for urine
collection (around 2500 euros/unit), a surgical room similar
to the ones used for humans, and a large area to stock food.
Their large size and the necessity to induce general anesthesia
require larger amounts of anesthetics and more human
manipulators than for small animal models. A second major
limiting point is the adaptation of the material required for
biological analysis. In fact, porcine specific antibodies and
kits for biological marker detection are rare and expensive;
however new tools are emerging due to the expansion of the
use of pig as a common experimental model. In addition,
human protein analysis kits can be used with porcine samples
due to the biological proximity between pig and human.
Another point is the limited number of references available
in the literature for pig biological data. In summary, the
most significant disadvantages of the Large White pig include
difficulties in handling, maintenance and high costs.

5. Minipig Model:
An Alternative of Large Pig Model

5.1. Rational for Minipig Models. In porcine experimenta-
tion, the animal’s size is crucial. Indeed, smaller animals are
easier to breed and handle than larger ones. The large weight
of fully grown farm pigs (up to 250 kg) impairs their routine
laboratory use [4]. Thus, several types of miniature pigs also
termed “minipigs”, have been developed. The predominant
breeds are the Yucatan, Hanford, Göttingen and Sinclair.
These breeds and dozens of others have been used as
experimental models for various clinical situations [61]: (i)
the Hanford minipig breed has been used for urological
studies [62, 63], (ii) the Yucatan breed, the only natural
occurring miniature pig, is one of the predominant models
used for cardiovascular physiology and congestive heart
failure studies [64, 65], and (iii) the Gottingen minipig is
used for comparative drug distribution and pharmacokinetic
studies [66–68].

For instance, the Hanford minipig is sociable, trainable,
and weighs only 25 to 35 kg at 4 to 6 months old [62]. The
average kidney size in a 25 kg Hanford minipig is 120 g and

measures 11 × 6 × 3 cm, similar to the kidney of a 70 kg
human [62]. The sexual maturity of minipig is reached at
around 4-5 months old corresponding to a body weight of
15–20 kg for Sinclair pigs, 20–25 kg for Yucatan pigs and 20–
30 kg for the Hanford breed.

The major advantage of using minipigs is their relative
low maintenance costs in comparison to large pigs [69].
Indeed, minipigs require less housing surfaces, food (divided
by two or more) and less drug amounts. The latter point is
particularly appreciated when the drug is under evaluation
and only produced on a small expensive scale.

5.2. Minipig Inconveniences. Minipig’s smaller body size
could be a disadvantage to perform experiments in clinical
conditions. Indeed, human surgical protocols or instruments
can sometimes not be used in minipigs. Small size makes this
type of pigs unsuitable for the modelling of the normothermic
extracorporeal circulation used for transplantation of kidneys
obtained from deceased after cardiac arrest donors [70,
71], mainly because of a smaller vascular size in minipigs
in comparison to human, [72–75]. Taken together, the
basic knowledge of Large White models acquired during
the last twenty years for kidney transplantation studies,
contrasts with minipig studies mainly limited to noninvasive
surgical experiments. Despite these inconvenients, the use of
minipigs as a kidney transplantation model may be one of the
few available animal model for the study of extended criteria
donors such as older or diabetic donors.

6. Different Models for Renal Transplantation
and Ischemia-Reperfusion Injury

6.1. Anaesthesia and Surgical Aspects. Most experiments in
the transplantation area are carried out on rodents, but
crucial prerequisites for the development of safe preclinical
protocols in biomedical research are needed through the
use of suitable large animal models needing anaesthesia and
surgery similar to human.

6.1.1. Anesthesia Procedure. Pig is a valuable animal for
anesthesia experimental studies. This procedure needs to
ensure optimal perioperative analgesic control with motor
blockade during surgery associated with a rapid postopera-
tive recovery. In our laboratory, we have developed epidural
anesthesia techniques in pigs [76] which allow us to conduct
pharmacological and pathophysiological studies [77, 78].

6.1.2. Surgical Procedures. Surgical procedures, postopera-
tive course, peri- and postoperative monitoring are necessary
in large animal models to provide an optimal tool for surgeon
training and resident teaching. Indeed, pigs could be used as
preclinical models mimicking true clinical situations which
are sometimes complex [79, 80]. Pig models have also been
used to develop new surgical aspects [81–84] with a possible
rapid translation to the clinical situation mainly because of
the pig’s body size.
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Figure 3: Major processes induced by ischemia-reperfusion injury in renal transplantation.

6.2. Ischemia-Reperfusion Sequences. IRI is known as one of
the central nonimmunologic process involved in renal allo-
graft dysfunction implicating vascular and tubular injuries
[85]. More than ever, research into the mechanisms of
warm ischemia (WI), cold storage (CS), and IRI is needed
to maximize the use of the available donor pool and to
minimize primary nonfunction (PNF) and delayed graft
function (DGF). Although advances in organ preservation
solutions and techniques allowed prolongation of hypother-
mic storage [86], the effects of CS after a period of WI
are still incompletely understood. The use of preclinical
model in a large animal such as the pig is necessary to
adapt transplantation processes closely related to the human
condition and clarify the mechanisms involved. Well-known
in rodent, renal WI has been scarcely investigated in clinical
situations such as transplantation.

Several porcine models have been used to study the
mechanisms of WI and the effects of a variety of drugs, and
some of them are moving on to clinical evaluation [87–89].
Because the porcine renal anatomy and vascular bed are very
similar with human kidneys, these models are very relevant
to evaluate the renal response following injury, such as renal
tubular inflammation and repair processes [90]. The choice
of animal model is crucial to validate proper markers. We
and others have validated several precious markers in pigs for
pivotal pathways that mediate injury responses and recovery
after renal ischemia [75, 88, 89, 91–93].

6.3. Kidney Transplantation. Kidney transplantation and
particularly preservation time characterized WI and CS
combination leading to IRI (Figure 3). In this setting, trans-
lation of experimental findings into effective interventions in
human situation requires preclinical studies using an adapted
model of large animal. The pig is highly useful to reach this
goal because of important similarity between human and pig
kidney [19].

6.3.1. Renal Failure and Transplantation. Kidney transplan-
tation is the treatment of choice for end-stage renal failure.

The growing demand of kidney graft for transplantation
leads transplantation centres to consider others sources of

donor organs. The use of expanded criteria donors, deceased
after cardiac arrest donors or donors with acute renal failure
has been proposed to limit the organ shortage, especially
for kidney [94]. Kidneys from donors with acute renal
failure are exposed to additional time of WI followed by the
conventional CS period. The grafts from such donors exhibit
higher rates of DGF and PNF which are the main barriers
to use safely these grafts [95]. The ideal transplant model
should replicate these clinical conditions mimicking human
surgery, graft rejection, response to immunosuppressors, and
functional recovery.

6.3.2. Autotransplantation. Fifteen years ago, we have devel-
oped an auto-transplant model using Large White male
pigs weighing 30–35 kg, which were prepared as described
previously in accordance with the French guidelines of the
Ethical Committee for Human and Animal Studies [91,
96, 97]. Briefly, the right kidney is harvested, cold flushed
with approximately 400 mL of preservation solution, and
preserved for 24 h at 4◦C immersed in the solution. The
left kidney is removed during the transplantation surgery
to mimic the nephron mass in the clinical transplanted
situation.

We have validated several markers in the pig model of
renal autotransplantation using histological tools, 1H-NMR
spectroscopy and different biochemical analyses [98–100].
This model is interesting for relevant evaluations of IRI,
inflammation and preservation solution effect [100]. From
this preclinical model, we developed a new preservation
solution now routinely used in clinic [101]. In addition,
different drugs were tested with interesting results and
clinical studies will be launched [91, 101–105]. This model
was used also to assess the interstitial fibrosis and tubular
atrophy development after 3- to 4-month followups and
protocol biopsies offer new possibilities to predict kidney
graft outcome [106]. For ten years, we have developed
this approach to study fibrosis development (using red
Sirius staining) and inflammatory cells infiltration [97, 107].
We have outlined, in this autotransplantation model, the
role of CD4 positive cells, monocytes/macrophages and the
proper effect of cold preservation. Such animal model is
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interesting because renal biopsy data bring information on
the pathophysiology development. This clinically relevant
model of autotransplantation offers the possibility to study
various aspects related to kidney preservation without
the interference of an allogenic immune response. Several
authors have used such model in renal transplantation.
Other groups have reported the utility of these models and
confirm their interests in preclinical testing of novel surgical
procedures that mitigate harmful effect of renal ischemia
[74, 93, 108–113].

6.3.3. Allotransplantation. In this model, we have adapted
the auto-transplantation condition to allograft matching.
Analysis of preoperative blood samples ensure compatibility
for swine leucocyte antigen (SLA) class I. The microsatel-
lite technique was used to ensure less than 10 per cent
recombination for the class II SLA, permitting graft survival
with low-grade acute rejection without immunosuppression
[114–116]. For this model, recipients’ right kidneys were
removed and the donor graft was implanted by end-to-side
anastomosis on the aorta and inferior vena cava. The left
kidney was removed to mimic the nephron mass in the trans-
planted situation. Using this model, we have determined
the effect of polyethylene glycol polymers on graft recovery
[117]. In addition, we have completed inflammatory studies
with an evaluation of cell infiltration and tubulo-interstitial
fibrosis.

6.3.4. Impact of Immature versus Mature Animals on Kidney
Function. Nephrology studies, using human markers of renal
function such as 24-h diuresis, creatinemia, or proteinuria,
are performed either in young large pigs weighing between
20 to 35 kg [118–122] or in more mature animals: >35 kg [72,
73, 97, 123, 124].

As mentioned before, the large size of pigs implies that
young adults are mostly used for kidney transplantation
experiments. The use of young animal could impact the
results obtained and their extrapolation to the human situa-
tion. Indeed, immature kidney could have better regenerative
capacities in response to injury. This hypothesis underlines
a potential low rate of PNF and DGF in young pigs in
contrast to mature animals and supports the young pig
model to investigate the renal reparation processes. In term
of immunity function, young animals are usually protected
from immune challenge [4]. For these reasons the data
obtained in young animals have to be confirmed in mature
pigs [4]. For instance, in our laboratory, porcine kidney graft
is performed in 3-month-old pigs and the followup is around
3 to 6 months. On the other hand, for long-term studies,
mature animals allow to investigate the real impact of injury
in adult kidneys [4].

The limit of large pig model is mainly due to the large
animal size compensated by the use of young animals with
immature kidneys. Minipig will be the model of choice to
evaluate the influence of kidney maturity.

6.3.5. Renal Chronic Damage and Ischemia-Reperfusion
Injury. The majority of research in this field has been

performed in small animal models, but extrapolation of data
obtained in rodents to humans is difficult [28]. Large animal
models are useful for long-term studies of IRI particularly
in the context of transplantation. Preferably, the response
of the kidney to IRI needs to be also studied in a model
closer to humans. The pig is the ideal species to serve this
purpose [28]. In different renal ischemic conditions, in pig
we have analyzed the role of IRI in tubule interstitial fibrosis
development at three months post-transplantation [87, 88,
92, 96, 101, 102, 105, 125–130].

6.4. Marginal Donor Models and Donation after Cardiac
Death Models. The demand for kidney transplantation has
increased dramatically in the past few years. The critical
shortage of organs has led to alternative strategies to expand
the donor pool. The use of kidneys from expanded criteria
or marginal donors (ECDs) represents an option to reduce
the disparity between organ supply and demand. All donors
aged over 60, and donors aged 50–59 with at least two of
three additional risk factors were considered marginal. The
three additional risk factors identified were cerebrovascular
accident as a cause of death, history of hypertension, and
serum creatinine above 1.5 mg/dL prior to transplantation.
This definition of ECD has now been validated by a con-
sensus meeting organized by the American Society of Trans-
plantation in Crystal City which has developed guidelines for
the management of marginal kidneys [131]. In addition, to
improve the stratification and the identification of deceased
donor kidneys with an increased risk of early graft dysfunc-
tion and graft loss, Nyberg et al. designed another scoring
system, the Deceased Donor Score (DDS) [132]. There are
seven donor variables significantly influencing the creatinine
clearance of recipients at 6 months: age, creatinine clearance,
history of hypertension, Human Leucocyte Antigen (HLA)
mismatch, cause of death, ethnicity and cold ischemia time
(for review see [133]).

Organ donation after cessation of cardiac pump activity
is referred to as nonheart-beating organ donation (NHBOD)
or donation after cardiac death (DCD). This condition is one
of the strategies that have been implemented in order to face
organ shortage. DCD is internationally considered to be an
encouraging source of organs for transplantation. However,
physicians are reluctant to use such organs because they have
a high risk of DGF and PNF.

There is room for experimental studies in these fields and
particularly for large animal models. Several recent studies
have shown that promising protocols could be used in the
clinical situation [92, 102, 103, 120, 126]. More recently, new
protocols have been evaluated and the use of normothermic
venoarterial extracorporeal membrane oxygenation support
seems an interesting alternative [80]. Further experimental
studies are warranted to clarify the effect of such protocols.

7. Metabolic Diseases Models

It could be of great interest to develop marginal donor
models with experimental situation mimicking human
pathologies. Several experimental models have enhanced
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understanding of atherothrombosis pathophysiology and
have played a major role in the search for adequate thera-
peutic interventions [134, 135]. Various animal models have
been developed to simulate thrombosis and to study in vivo
parameters related to hemodynamics and rheology changes
that lead to thrombogenesis [136–140]. Other models could
be also associated with metabolic situations such as reduced
nephronic mass model [141]. Disease progression in pigs
share similarities with the human aspect such as obesity,
diabetes, dyslipidemia or atherosclerosis and hypertension
[142–148]. The swine can be used in studies of renal
hypertension such as a model of deoxycorticosterone salt-
induced hypertension or renin-induced hypertension [149].

8. Other Models

Large animal models have been also used to study the effects
of brain death [150, 151]. Such models are of interest to
characterize and clarify a major stage before organ collection
associated with the inflammatory and cytokines “storm”
which has deleterious effects on organ quality.

9. Future Approachs

The swine have served as an important model for human
biology [3]. This model requires a greater international inter-
est and new tools are rapidly developing.

9.1. Genetically Modified Pig. Genetically modified pigs are
now available in experimentation. Production of transgenic
pigs for xenotransplantation started 15 years ago [152]. The
first reported transgenic modifications of swine involved
introduction of human complement-regulatory proteins
(CRPs) as transgenes into outbred swine. The most human
CRPs transgenic pig models have been hDAF [153], hCD46
[154] and hCD59 [155].

In addition, another pig model was isolated at the end
of the nineties. This model presents a spontaneous mutation
of the low density lipoprotein receptor gene associated with
recessive familial hypercholesterolemia in swine (FHD pig)
[156]. Because anti-Gal antibodies were considered to be
the major cause of humoral rejection in pig-to-primate kid-
ney Xenotransplantation, an alpha1,3 galactosyltransferase
knockout (GalT-KO) pig was developed [157, 158].

9.2. Xenotransplantation. Xenotransplantation represents an
immense potential to solve the critical graft shortage and
could be a new source of organs, tissues and cells for clinical
transplantation [152, 158–162]. Pigs are considered the
ideal donor for kidney transplantation to human recipients
[44]. In order to generate the necessary data to allow
xenotransplantation to progress towards its initial clinical
phase, the European Union has created XENOME, a Euro-
pean Commission-funded multidisciplinary effort. Xenome
is an integrated project in the European Sixth Framework
Programme (Life Sciences, Genomics and Biotechnology for
Health).

9.3. Stem Cells. Embryonic stem cells (ESCs) represent a
promising tool for cell therapy, regenerative medicine and
tissue repair. Assessment of ESC capacities in species other
than the mouse is an ongoing topic of interest and is crucial
to allow a rapid transfer to clinical applications. A recent
review place the pig among the best models for preclinical
development [163]. Pig is a particularly desirable species
to create pluripotent cell lines because of its value as a
biomedical model in transplantation at a time when the
safety of ESC use needs to be evaluated in large animal
models before human application [164–166].

10. Conclusion

Although the major part of studies in the field of ischemia-
reperfusion has been performed in rodent models, but the
pig is becoming the model of choice for preclinical studies
[28]. The rodent model is cheaper and easier to manage in
the laboratory, however, the studies are limited because of a
difficult data extrapolation to human mainly due to kidney
anatomical differences between these two species. The large
swine model is a valuable model for renal transplantation,
with anesthesia and surgical processes very similar to the
human conditions offering a good training model for
surgery students. In addition, surgery team can evaluate
new potential of kidney donor models like DCD and assess
new preservation techniques adapted to human like kidney
machine perfusion. Pig is one of the rare species which is
characterized by a human-like renal anatomic structure with
multipapillary and multilobular kidneys. However, the pig
size is the main limit of this model, requiring adapted area,
expensive food, drugs and surgical materials. Minipigs could
be used in parallel for long-term studies with an adult weight
around 60 kg. The advantages of rodent models like gene
knockout or genetic manipulations is now applicable in pigs
offering new perspectives for preclinical studies. Embryonic
stem cells therapy already investigated in rodents will soon
be tested in pigs to show its clinical interest for kidney graft
injuries therapy.
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