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Digital soil modelling and mapping is reliant on the availability and utility of easily derived and accessible co-variates. In this paper, the value of covariates 

derived from a time-series of remotely-sensed ASTER satellite imagery and digital elevation models were evaluated for modelling two soil attributes — soil 

depth and watertable depth. Modelling was performed at two resolutions: a fine resolution (15 m pixels) that relates to the resolution of the ASTER Visible-NIR 

bands, and a larger resolution (90 m pixels) that relates to the res-olution of the thermal bands of the ASTER imagery. Upscaling to a larger pixel size and 

downscaling to a smaller pixel size were performed to adjust the covariates where necessary. A regression tree approach was used to model soil depth and 

watertable depth, recorded as a binary ‘deep’ or ‘shallow’ response, using the ASTER imagery-derived covariates and digital terrain attributes (DTAs). Modelling 

was performed at a single spatial resolution (15 or 90 m pixels) using the imagery-derived covariates only, the DTAs only, or a mixture of both. A multi-

resolution model was also generated, by using both imagery-derived covariates and DTAs at both resolutions. When mixed with the DTAs, the imagery-derived 

covariates helped explain the uncertainty (variance) in the soil depth data but not in the watertable depth. The ASTER-derived down-scaled 

evapotranspiration-based covariates were of particular significance in the soil depth modelling. Watertable depth was best explained by models that used DTAs 

at a smaller pixel size. Information on veg-etative growth was neither superior nor complementary to information on terrain for modelling watertable depth. 

Using a multi-resolution model significantly improved the modelling of soil depth but not of watertable depth. The effect of covariate and modelling resolution 

on model performance is discussed within the context of the GlobalSoilMap.net project.

1. Introduction

The prediction of subsoil attributes is generally more difficult than
topsoil attributes because many of the environmental covariates used
in digital soil modelling andmapping (DSMM) only generate a topsoil
or surface response (e.g. Visible and Near-infrared (Vis-NIR) imagery
and gamma radiometry). Meanwhile, sensors that are capable of sub-
soil penetration (e.g. electro-magnetic induction (EMI) and ground-
penetrating radar (GPR) sensors) often produce a signal that is diffi-
cult to interpret or to deconstruct into individual subsoil attributes
and/or different subsoil layer responses. However, in agricultural pro-
duction situations, mapping subsoil properties, particularly subsoil
constraints, is as important if not more so, thanmapping topsoil prop-
erties. Indeed, information relating to soil depth, depth to an imped-
ing layer or depth to a watertable is critical as this, together with

texture, determines the potential available soil moisture that drives
crop yield potential and run-off/infiltration partitioning.

In this article, the issue of identifying relevant covariates and
spatial resolution for modelling soil depth and watertable depth is
investigated. There are several possible approaches to modelling
and mapping soil depth and watertable depth. Most commonly,
both are modelled directly from elevation and digital terrain attri-
butes (DTAs) (e.g. Finke et al., 2004). Several geophysical sensors
(e.g. EMI, GPR) are able to generate subsoil responses that can be
related to soil depth under certain conditions (Bramley et al., 2000).
Such sensing technologies have been used for subsoil modelling/
mapping, either with or without terrain information (see Grunwald,
2009 for examples). An alternate solution to deriving a direct subsoil
response is to map the topsoil response(s) and then use a soil
inference system to predict subsoil properties from the topsoil re-
sponse(s). However, to the authors' knowledge, this has not been
done for soil depth or watertable depth. Another alternative, and a
focus of this work, is to incorporate a vegetation–soil inference sys-
tem into the modelling/mapping. The type and vigour of vegetation
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growth at a given site will be driven, amongst others, by the soil prop-
erties, and predominantly subsurface soil properties, at the site. It
should therefore be possible to infer subsoil information from the
plant response, particularly in monocultures.

Vegetation type and vigour can be determined from remotely-
sensed multi- and hyper-spectral imagery. Whilst the use of vegeta-
tive information in soil mapping is not new (McBratney et al.,
2003), the use of vegetative covariates, such as vegetative indices
derived from imagery band information, in quantitative digital ap-
proaches has been somewhat limited to date. Vegetative covariates
have generally only been derived from the visible and near-infrared
regions of the electro-magnetic spectrum (EMS) and are usually
only used empirically within models. A survey of recent DSMM pa-
pers (Grunwald, 2009) found that 16.7% used a vegetation response
from remotely sensed imagery in the digital soil model. However
none of these approaches tried to model or map either soil depth or
soil moisture content. The recent review of Mulder et al. (2011) also
found no direct application of Vis-NIR imagery to the mapping of soil
depth or moisture. Mulder et al. (2011) observed that ‘in regional stud-
iesNDVI (normalised difference vegetation index) data have been relat-
ed to soil type patterns rather than to specific soil properties’.

Since 1999, high-resolution (b100 mpixels) images in the Thermal-IR
(TIR) section of the EMS have been available to researchers via the ASTER
and LANDSAT 7 satellite sensors. These TIR bands have been used to
directly map surface properties over bare soils (Goosens et al., 1999;
Martínez-Montoya et al., 2010). However there have been no reports of
the use of these TIR bands in a vegetation–soil inference system in the
DSMM literature to our knowledge. TIR imagery is able to provide infor-
mation regarding the temperature of a vegetation canopy. If crop and
climatic conditions are known, then the image TIR band observation(s)
can be translated into a measure of crop water stress at the time
of image acquisition. Recent works have explored the possibilities of
combining thermal infrared measurement with surface energy balance
modelling to retrieve plant water stress and relate it to soil moisture or
soil hydrodynamic properties (Boulet et al., 2009; Crow et al., 2008;
Olioso et al., 2005).Meanwhile, Galleguillos et al. (2011a,b) demonstrated
itwas possible, overMediterranean vineyards, tomap evapotranspiration
(ET) fromASTER Thermal-IR observations by using simplified energy bal-
ance models.

In this study, vegetative covariates derived from a time-series of
images will be used. Previous DSMM studies have generally focused
on single images or interpreting images within a time-series on an
individual image basis (Carre and Girard, 2002; Liu et al., 2008;
Meirik et al., 2010; Rivero et al., 2007). This is problematic for devel-
opment of a digital soil model as the observations from an individual
image can only be considered as a snap shot in time. It does not indi-
cate how conditions evolve in a dynamic environment. Modelling and
mapping with these ‘snapshots’ makes repeatability difficult over
time or in a different spatial context. Using covariates derived from
a standardised time-series captures trends in the imagery rather
than focusing on the actual observation values, which should produce
more robust covariates for both temporal and spatial extrapolation of
the results. Further, a time-series of remotely-sensed ET images
throughout the season is expected to provide information on soil
moisture that in turn relates to soil depth and watertable access.
The same applies for vegetative indices that relate to canopy exten-
sion and vegetation growth, although their relationship with soil
moisture is not as direct as ET.

The primary intention of this study is to explore how well differ-
ent combinations of covariates at two distinct spatial resolutions ex-
plain the variability in soil and watertable depth in a catchment.
The objective is not to generate digital soil maps of the catchment,
but to gain a better understanding of the utility of potential covariates
in DSMM. This will be initially undertaken by modelling soil depth
and watertable depth with only imagery-derived covariates or only
DTAs. Subsequently, models with both imagery-derived covariates

and DTAs will be generated to identify if there is an advantage to
selecting amongst the two sets of covariates. Since the original
imagery used was obtained at two different pixel sizes (15 m and
90 m square pixels), the models will be run at these two different
scales, with the relevant imagery either upscaled to a larger pixel
size or downscaled to a smaller pixel size where required. Two digital
elevationmodels (DEMs)were also available at approximately the same
resolution as the imagery (10 m and 80 m pixels) so that the DTAs can
be calculated at the relevant scalewithout the need for up/downscaling.
Since one of the models will be performed at the same scale (90 m) as
the current GlobalSoilMap.net initiative (www.globalsoilmap.net), this
investigation will also provide some information on the implications
for DSMM at this scale and a smaller pixel size.

2. Methods

2.1. Site description

The study area is the Peyne watershed (43.49°N, 3.37°E) located
near Pezenas in the Languedoc-Roussillon region, southern France.
This 65 km2 watershed is mainly under vineyards (~70% of the
watershed area), which are predominantly non-irrigated (~90% of
vineyards). The remaining area includes other crops, forest, native
scrubland and urban zones.

The watershed is very variable in lithology and pedology. The
Peyne watershed is underlain by heterogeneous Miocene marine
and lacustrine sediments, i.e. marl, limestones and calcareous sand-
stones, which were partly overlain by successive alluvial deposits
ranging from Pliocene to Holocene. Recent volcanic activity and the
localised transport of colluvial material along slopes add to the pedo-
logical complexity of the region. Elevation in the watershed ranges
from 20 to 230 m above sea level (Guix-Hébrard et al., 2007).

2.2. Soil and watertable depth data

Information on soil depth and depth to the watertable during the
2003–04 seasons was available at 41 sites from a previous study
(Guix-Hébrard et al., 2007). The depth of interrogation for soil was
limited to 2.5 m with 20 sites having profiles deeper than the depth
of interrogation. Of the other 21 sites, the soil depth was b2 m
(range [0.6–1.8 m]). Therefore there was a distinct separation be-
tween the two groups and the soil depth was divided into a binary
categorical variable of ‘deep’ (>2.5 m) and ‘shallow’ (b2 m). Similar-
ly, the watertable depth data was converted into a binary categorical
variable of either ‘deep’ or ‘shallow’ watertables. Since the depth to
watertable is temporally variable (Finke et al., 2004), the depth at
the start of the growing season (April/May) and at veraison (end of
July) were consider in segregating the watertable depths. ‘Deep’
watertables were considered to have a depth >3 m at the start of
the growing season and a depth >3.9 m at veraison. All other sites
were characterised as having a ‘shallow’ watertable. The agreement
between the categorical soil and watertable depths, as obtained by
using a contingency table analysis (JMP 8.0.1, SAS Institute Inc.,
Cary, NC, USA), was not strong (κ=0.36, n=41).

2.3. Imagery

A time-series of ASTER images was collected over the catchment
throughout 2007 and 2008. However, due to both the revisit frequen-
cy of the TERRA satellite and the weather conditions (i.e. cloud
cover); this was an irregular time-series. The available imagery was
subset into two groups. The 2007 analysis was confined to a May
10th and September 15th image that represented vine status at the
start and end of the growing season. In 2008, the analysis was limited
to five images acquired over a six week period from June 22 to July 31.
This period covers the key phenological stage of veraison, and is a period
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where water stress in vines is increasing as the hot dry Mediterranean
summer takes effect (Taylor et al., 2010). The ASTER images contain
bands in the Visible (Vis), Near-Infrared (NIR) and Thermal-Infrared
(TIR) sections of the EMS. The Vis-NIR imagery were obtained at 15 m
pixels whilst the TIR where collected at 90 m pixels. All images were
assessed for accuracy of geo-location and geo-rectified if necessary.

2.3.1. NDVI

Normalised Difference Vegetation Index (Eq. (1)) (Rouse et al.,
1973; Tucker, 1979) was calculated using the ASTER Red and NIR
bands on the original pixel resolution (15 m). The individual red
and NIR bands from the imagery were upscaled to 90 m pixels (the
same resolution as the TIR imagery) by applying an averaging filter
over a 6∗6 pixel window. The upscaled NDVI was then calculated
from the upscaled bands.

NDVI ¼ NIR−Rð Þ= NIRþ Rð Þ: ð1Þ

2.3.2. Evapotranspiration

The ASTER TIR imagery was converted into evapotranspiration
(ET) estimations following the process outlined in Galleguillos et al.
(2011a,b). The S-SEBI model (Roerink et al., 2000) permitted the der-
ivation of daily ET (ETd) from the ASTER imagery, where the latter
captures contrasts driven by evaporation processes. The approach is
twofold. Evaporative fraction (Λ), the ratio of latent heat flux to avail-
able energy, is computed from the differences between pixel temper-
ature (TS) and maximum (Tmax) and minimum (Tmin) temperatures
within the corresponding albedo class. Next, assuming the instanta-
neous Λ at satellite overpass is equal to the daily Λ, and neglecting
daily soil heat flux, ETd is derived by extrapolating, at the daily scale,
instantaneous net radiation at satellite overpass Rni, through the
ratio Cdi=Rnd /Rni, where Rnd is daily net radiation. This process is
expressed in Eq. (2) (L is the latent heat of evaporation) and further
details are available in Galleguillos et al. (2011a).

ETd ¼ ∧
Rnd

L
¼

T max−TS

T max−T min

CdiRni

L
: ð2Þ

2.4. Downscaling of ET data

Due to the small-scale of vineyard size in the study area (mean size
is ~1 ha), many of the 90 m pixels are mixed pixels that incorporate
urban and other agricultural effects. To better isolate the vine response,
the ET layers were processed using a linear downscaling technique to
the same resolution as the original NDVI layers (15 m pixels). A statisti-
cal linear downscaling approach was selected as this is simpler and
shown to be as effective as a scale-invariant physical modelling ap-
proach for downscaling of thermal imagery (Liu and Pu, 2008).

A high quality vector (polygon) landuse map exists for the catch-
ment and was updated for the survey period. The landuse map was
simplified into 6 classes (vines, urban, bare soil, cultivated fields, or-
chards and forest), converted into a 5 m raster layer and intersected
with the desired output raster (15 m pixels). Each 15 m pixel there-
fore contained information on the percentage of each landuse type
within the pixel (with nine 5 m pixels per 15 m pixel).The linear
downscaling method outlined in Liu and Pu (2008), which uses an
initialisation and iteration process, was then adapted and applied to
the ET layers.

2.4.1. Linear downscaling theory

The ET of the 90 m pixel is a function of the landuse within the
pixel. If fk(i) is the fraction of landuse k within pixel i then the ET of
the 90 m pixel is defined as

ET ið Þ ¼
XK

k¼1

f k ið ÞETk ið Þ ð3Þ

where ETk(i) is the ET of landuse k in pixel i.

Each 90 m pixel i is composed of 36 15 m subpixels. Each of these
subpixels (j) has a unique evapotranspiration ET(ij) that depends on
the percentage of each landuse type (derived previously) within the
15 m subpixel. Therefore, ET(ij) can be expressed as:

ET ij

� �
¼

XK

k¼1

f k ij

� �
ETk ið Þ ð4Þ

where fk(ij) is the fraction of landuse k in subpixel ij such that

1
j

Xj

j¼1

ET ij

� �
¼ ET ið Þ for pixel i.

The ET of landuse k in the original pixel i, ETk(i), can be estimated
using an iterative process (Liu and Pu, 2008; Malone et al., 2012).

2.4.2. Initiation stage

At the initialization stage, the ET of each subpixel ij (cET l ij
� �

) is set
equal to the ET of its corresponding larger pixel i (ET(i)) (i=1,…,n
and j=1,…,36).

2.4.3. Iteration stage

At the l-th iteration, a linear regression model between the ET

estimate ( cET l−1 ij
� �

), obtained from the previous iteration (l−1),

and the land cover fractions (fk(ij)) is fitted across the 36 subpixels.
Note that an intercept term is not used in the regression model in
order to avoid co-linearity as the land cover factions sum to one.
The model estimate of the ET is obtained as

cET l−1
ij

� �
¼ dET1f 1 ij

� �
þ ⋯þ dETkf k ij

� �
ð5Þ

where dET1,…, dETk are estimates of regression coefficients for the
landuse types.

Given the constraint in Eq. (4), cET l−1 ij
� �

is updated to cET l ij
� �

using
the following equation.

cET l
ij

� �
¼ cET l−1

ij

� �
þ ET ið Þ−

1

36

X36

j¼1

cET
l−1

ij

� �
: ð6Þ

The iteration procedure proceeds until a stop point is reached, in this
case when the regression coefficient of determination between two
continuous iterations is less than a pre-defined threshold (0.01). At
this point, ETk is returned for each landuse class within the original
mixed pixel (i). If landuse k is absent from the original mixed pixel
then ETk=0. The important point is that the downscaling extracts the
vine (and other landuse) response within the 90 m pixel. Therefore
the vine response can be mapped from mixed pixels as well as pure
(100% vineyard) pixels. See Liu and Pu (2008) for further details.

2.5. Temporal imagery covariates

The process described in §2.4 yielded layers of ET and NDVI in
2007 and 2008 at both 15 and 90 m pixel resolutions. A numeric
subscript is used to differentiate between the layers i.e. ET15 and
ET90 for ET at 15 and 90 m pixels respectively.The ET15 corresponds
to the landuse coefficient derived for vines in §2.4 whilst the ET90 is
the 90 m ‘mixed’ pixel value.

In 2007 a difference was calculated between the early season
(May 10th) and late season (September 15th) layers for both covari-
ates at both resolutions. This yielded 4 covariates; ΔET15, ΔET90,
ΔNDVI15 and ΔNDVI90. These difference covariates provide informa-
tion on the change in the vines photosynthetically active biomass
(NDVI) and in the plant water status/functioning (ET) over the season.
Vines with access to subsurface moisture (watertables) should expe-
rience relatively little change compared to vines that lack watertable
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access at the end of the season (whether or not the watertable is
absent or intermittent during the season) (Guix-Hébrard et al., 2007).

For the 2008 time-series, the temporal mean (μ) and standard
deviation (σ) of ET and NDVI were calculated across the 5 seasonal
layers at both resolutions (μET15, μET90, μNDVI15, μNDVI90, σET15,
σET90, σNDVI15 and σNDVI90). This provided some general statistics
on the ET and NDVI observation at each pixel, i.e. whether the obser-
vation at a location was high or low, variable or constant over time
etc. In addition, information on the temporal trend in the ET and
NDVI responses were derived. Since ET may be affected by short
term climatic variations, the data was scaled before the temporal
trend analysis was performed. In this way the temporal change of a
pixel was assessed relative to other pixels. For each layer (at both
15 and 90 m), the observations (ET or NDVI) were scaled within the
layer by subtracting the mean of all the observations across the
layer from each pixel observation and dividing by the standard devi-
ation of the observations across all layer pixels. For each pixel, the
temporal trend in the scaled ET and NDVI observations was then char-
acterized using linear regression against time (the day of the year
when the imagery was collected). The gradient (m) of the linear fit
was recorded for each pixel. Similar to the difference covariates
(ΔET15, ΔET90, ΔNDVI15 and ΔNDVI90) from the 2007 data, these
covariates (μ, σ and m) provide information on how the vines are
coping as evaporative demand increases. The μ covariates give an
overall picture of vine performance (vigorous, well watered or not)
and should identify locations with constant access to soil moisture
(via very deep soils or watertable access). The σ and m covariates
indicate how the vine situation is changing during this crucial pheno-
logical period relative to the other vines in the study area. This
may help distinguish vines on shallow soils (with no watertable
access), which are already exhibiting stress leading into this period
(veraison), and deeper soils with good water holding capacity (but
no watertable access) that become depleted over this period and
reveal a significant change in vegetative vigour and plant water
status.

Ideally it would be preferable to have all the imagery-derived
covariates in the same year. However, the analysis was constrained
by the available ASTER imagery. In 2007, a mid-season time-series
was not available and similarly, in 2008, it was not possible to obtain
both an early and late season image to compute the difference. Previ-
ous work has shown that the vegetative response (pattern) in peren-
nial vineyards is temporally stable in this region (Kazmierski et al.,
2011), which permits the mixing of covariates derived from different
years.

By convention, the vector of covariates associated with a layer is
denoted in bold. Thus all the covariates derived from the ET15 layer
(Δ, μ, σ, m) are denoted as ET15, to distinguish it from the original
layer (denoted as ET15).

2.6. Digital terrain attributes

There were two digital elevation models available for the survey
area. A larger pixel size DEM captured at 3″ (~80 m pixel1) by the
Shuttle Radar Topographic Mission (SRTM) (obtained from http://
srtm.csi.cgiar.org) and a smaller (10 m) pixel size DEM obtained
from an aerial LIDAR survey (Bailly et al., 2008). The DEMs were
analysed using CLASS Spatial Analyst 2.0.1 (Teng et al., 2005; Teng
et al., 2008) to extract primary, secondary and tertiary digital terrain
attributes. The CLASS Spatial Analyst software is designed as a hy-
drological tool to operate on catchment areas. Defining catchment
boundaries helps to eliminate some of the boundary effect issues in
secondary and tertiary terrain analysis. The programme also calcu-
lates Multi-resolution Valley Bottom Flatness (MrVBF) (Gallant and

Dowling, 2003). This has been shown to be related to watertable
depths in Australian conditions (Ransley et al., 2007). The CLASS
Spatial Analyst was run according to the user guide (Teng et al.,
2005) for both DEMs to derive slope (S), aspect (A), curvature (C),
planar curvature (PlanC), profile curvature (ProfC), flow derivatives,
the compound topographic wetness index (CTI) and MrVBF covari-
ates at both 10 and 80 m resolutions. For the calculation of flow
derivatives and the CTI, the D∞ option of the software was used.
Recent work has shown that the effectiveness of DTAs depends on
the neighbourhood size used in the calculation as well as on the
DEM pixel size (Roecker and Thompson, 2010). However, the effect
of neighbourhood size is not included in this analysis to avoid too
many effects in the analysis. The neighbourhood used is the default
settings from within the CLASS Spatial Analyst.

As for the imagery-derived covariates, a numeric subscript is
used to differentiate between the same terrain covariate at different
resolutions e.g. MrVBF10 and MrVBF80. Again, the vector of covariates
associated with a particular DEM are denoted in bold i.e. DEM10 and
DEM80.

There were several DTAs generated by the CLASS software that
were not included for subsequent analysis. The flow direction and
accumulation were omitted as they are strongly correlated to the
CTI, which is derived from the flow attributes. Elevation was also
omitted. As a covariate, elevation is an absolute value. However, it is
the relative location, not the absolute value, of the elevation in the
landscape that is important for understanding the pedology and
hydrology at a site. The MrVBF DTA is a surrogate for relative eleva-
tion. Aspect was also omitted as this does not contribute directly to
soil formation. Before omission, modelling was performed with the
omitted covariates to verify that they were either not selected or,
when selected, they were correlated but not causative and nonsensi-
cal in pedological terms in explaining soil or watertable depth.

The schematic diagram in Fig. 3 provides an overview of the steps
taken in pre-processing the imagery, deriving the temporal image
covariates and generating the digital terrain.

2.7. Statistical analysis

The ASTER imagery-derived covariates and DTA-derived covari-
ates were extracted at the 41 survey points. In total there were 14
covariates; 8 imagery-derived covariates (μET, σET, μNDVI, σNDVI,
mET, mNDVI, ΔET and ΔNDVI) and 6 DTAs, (S, C, ProfC, PlanC, CTI
and MrVBF) at both resolutions. This gave a total of 28 different
covariates. To investigate how these covariates related to the two
dependent variables (soil depth and water table depth), a binary
recursive partition algorithm (regression tree)was used. The partitioning
was unsupervised and the point of splitting was determined by selecting
the split that maximised the likelihood ratio chi-square statistic (SAS
Institute Inc., 2007). Splitting was halted when all individuals had been
assigned to a group (node) that was either homogeneous or contained
insufficient individuals to form an effective split. The minimum number
of individuals in a node was set at 5, which corresponded to 12% of the
dataset. Considering a lower number for minimum individuals may
produce unrepresentative nodes. Covariates remained within the algo-
rithm at all times, thus the same covariate could be selected at several
splitting iterations within the regression tree.

For categorical analyses, the negative loglikelihood (− lnLLH) can
be used in a similar manner to the sum of squares for continuous
covariates to determine a goodness of fit for a model (denoted as
r2). This is a measure of the amount of total uncertainty that can be
attributed to the model and is calculated as 1− [(− lnLLH Model)/
(− lnLLH for Corrected Total)] (SAS Institute Inc., 2007). The −lnLLH
for Corrected Total is derived by fitting a model where the probabilities
are estimated by fixed rates for each response level. This provides the
background uncertainty for a model with no effects and is
analogous to the Total Sum of Squares (Model SS+Residual SS)

1 In general 3″ relates to a 90 m pixel, however, at the latitude of this study the

resulting image obtained from CGIAR (SRTM_37_4) had a pixel size of 80.1 m.
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in ANOVA with continuous data. A leave-one-out cross validation
(LOOCV) was performed for each model. The LOOCV was also assessed
using an r2 value based on the − lnLLHs. All analysis was performed
using the Partition platform in JMP 8.0.1 (SAS Institute Inc., Cary, NC,
USA).

2.8. Models

The intention of the analysis is to investigate the utility of both
ASTER imagery-derived covariates and DTA-derived covariates in
modelling soil and watertable depth, and to investigate if there is an
effect of pixel size (associated with the different pixel sizes of the

ASTER imagery bands) in the modelling. To achieve this, the following
combinations of independent covariates were used as inputs to the
regression tree algorithm.

Model 1 Only terrain covariates at 10 m pixel size.
Model 2 Only terrain covariates at 80 m pixel size.
Model 3 Only image covariates at 15 m pixel size.
Model 4 Only image covariates at 90 m pixel size.
Model 5 Terrain and Image covariates at the smallest pixel size

(10/15 m).
Model 6 Terrain and Image covariates at the largest pixel size

(80/90 m).
Model 7 All available covariates.

Fig. 1. Maps of the derived imagery-based covariates. Covariates at different pixel sizes are paired and presented on a common legend. Labels are provided on the legend. In each

pairing the smaller pixel layer (15 m) is on the left and larger pixel layer (90 m) is on the right. Gaps in the ET15 layers are due to areas where there were no vines according to the

landuse map i.e. the vine coefficient after downscaling=0. The white area in the lower centre of all layers masks a cloud artefact.
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For the discussion, the subscript s or w is appended to the model
number to specify when the model being discussed relates to a specific
dependent variable (s—soil depth and w—watertable depth).

3. Results and discussion

3.1. Effect of pixel size on the imagery and terrain covariate maps

Maps of the various imagery-derived covariates and DTAs are
presented in Figs. 1 and 2 respectively. Each covariate is presented at
both a small and large pixel size on a common legend for comparison.
As expected, the NDVI15 maps have more fine detail than the NDVI90

maps. The filtered ET15 maps do not show more detail than the ET90

maps but do showa spatial smoothing of the response due to the down-
scaling. The terrain maps also show similar patterns between DEM10

andDEM80 covariateswithmuch greater detail in theDEM10 covariates
e.g. Curve10 vs. Curve80. The exception is the tertiary CTI covariate. At a
large pixel size, the CTI80 follows the general stream flow pattern in the
catchment. However the lower connectivity in the CTI10 map means
that the stream order is not as clear.

3.2. Overall modelling results

A summary of the results of running Models 1–7 on the soil and
watertable depth responses is given in Table 1. Fits (r2) are given

for both the overall model (fitted with all the data and no validation)
and the LOOCV. Also recorded are the number of splits in the regres-
sion tree and the covariates selected by the algorithm. In general
the selected covariates are arranged in the order selected by the
partitioning algorithm; however repetitions of covariate selections
are not indicated. Given that a covariate could be selected at multiple
splits in the regression tree, the number of selected covariates does
not always equal the number of splits. For example, Model 1s of soil
depth has 5 splits but only 3 covariates as Curve10 and Slope10 are
repeated.

Model fitness was assessed primarily from the LOOCV fits. For soil
depth, the best result was obtained from Model 7s, which included all
available covariates at all scales. The models that used only DTAs
(Models 1 and 2) or only imagery (Models 3 and 4) at a single scale
generally performed poorly compared to models that incorporated
both DTAs and imagery-derived covariates.

For the watertable depth modelling, the best result was obtained
from Models 5w and 7w, which were identical and used the small
pixel imagery-derived covariates and small pixel DTAs. Using only
imagery-derived covariates, at either resolution (Models 3w and 4w),
produced the worst results. The larger pixel-size DTA80 covariates
(Model 2w) also performed poorly. The best models all utilised the
MrVBF10 covariate in the primary split (Models 1w, 5w and 7w).

The best regression tree models were able to explain more of
the uncertainty in soil depth (LOOCV r2=0.89) than watertable

Fig. 2. Maps of the DTAs used as covariates. Covariates at different pixel sizes are paired and presented on a common legend. Labels are provided on the legend. In each pairing the

smaller pixel layer (10 m) is on the left and the larger pixel layer (80 m) is on the right. The CTI and MrVBF are tertiary terrain attributes and were derived after the DEM was

constrained to the watershed to avoid boundary effects. The white outline indicates the survey area.
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(LOOCV r2=0.63) (Fig. 4). The best model for watertable depth
(Models 5w and 7w) was more parsimonious (3 splits) than the
best soil depth model (Model 7s, 5 splits). In both cases, the best
models incorporate both small pixel DTAs and small pixel temporal
imagery-derived covariates in the partitioning process.

3.3. Selection of DTAs and effect of pixel size (Models 1–2)

The results indicate that decreasing the DEM pixel size from 90 m
to 10 m pixels produced more effective DTAs for modelling both soil
depth and watertable depth. By decreasing the pixel size there was

Fig. 3. Schematic illustrating (A) the pre-processing of the ASTER imagery into evapotranspiration (ET) and normalised difference vegetative index (NDVI) layers at two different

pixel sizes (15 and 90 m); (B) the generation of the temporal imagery covariates from the ET and NDVI layers; and (C) the generation of primary, secondary and tertiary digital

terrain attributes using the CLASS Spatial analyst. Bold black outlined text indicates input layers, dotted grey circles indicate intermediate steps and grey outlined text indicates

derived covariate layers.
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a corresponding increase of 11–14% in the amount of uncertainty (r2)
explained in both the soil depth and watertable depth modelling. The
DTAs at a given pixel size were more effective at partitioning the
uncertainty in watertable depth than soil depth.

The MrVBF10 covariate was the most effective covariate for the
first partitioning between shallow and deep watertables. However,
the equivalent larger pixel covariate (MrVBF80) was not selected in
the modelling (Models 2w and 6w) despite similarities in the two
maps (Fig. 2). With the 80 m DEM, the CTI and curvature covariates
were preferred to MrVBF. The Curve80 covariate was also selected in
the best soil depth model (Model 7s) over Curve10, however the
Curve10 and associated PlanC10 and ProfC10 covariates where often
present in soil depth models that incorporated the DEM10 covariates
(for example Models 5s and 7s). It is possible that the preference for
the Curve80 covariate over Curve10 is due to artefacts arising from
the choice of neighbourhood size in the calculation (Roecker and

Thompson, 2010). Further studies in this area should investigate
these possible effects.

3.4. Selection of temporal image covariates and effect of pixel size

(Model 3–4)

There was little difference between the fit of Models 3 and 4 to soil
depth and no difference in their fits to watertable depth. The pixel
size had no effect on the amount of uncertainty explained, although
it did affect the covariates selected. When modelling soil depth, ET
covariates were selected as the first partition for both models
although the type of covariates chosen differed (σ for Model 3s and
m for Model 4s).

The imagery-derived covariates explained more of the uncertainty
in soil depth, at both pixel sizes, than they did for watertable depth.
This is the opposite result to the DTA models (Models 1 and 2). It

Table 1

Fits from the overall model and a leave-one-out cross validation (LOOCV) analysis and the number of partitions for a series of regression tree models of soil and watertable depth

that use imagery-derived covariates or terrain covariates (DTAs) or a mixture of both imagery and terrain covariates.

Dependent covariate Modela Model r2 LOOCV r2 No. splits Selected independent covariates

Soil Model 1 0.58 0.46 5 Curve10, MrVBF10, Slope10
Soil Model 2 0.50 0.32 7 CTI80, ProfC80, Slope80
Soil Model 3 0.58 0.45 5 σET15, σNDVI15, μNDVI15, μET15
Soil Model 4 0.51 0.41 4 mET90, μET90, μNDVI90
Soil Model 5 0.75 0.64 5 σET15, PlanC10, MrVBF10, mNDVI15
Soil Model 6 0.51 0.41 4 mET90, μET90, μNDVI90
Soil Model 7 0.91 0.89 5 σET15, PlanC10, Curve80, MrVBF10, mNDVI15
Watertable Model 1 0.66 0.57 4 MrVBF10, PlanC10, Slope10
Watertable Model 2 0.58 0.46 5 CTI80, PlanC80

Watertable Model 3 0.45 0.28 5 μNDVI15, μET15, mNDVI15, σNDVI15
Watertable Model 4 0.42 0.28 5 σET90, μET90, μNDVI90, mET90
Watertable Model 5 0.71 0.61 3 MrVBF10, μET15, Slope10
Watertable Model 6 0.69 0.59 5 CTI80, mNDVI90, Slope80, μNDVI90, μET90
Watertable Model 7 0.71 0.61 3 MrVBF10, μET15, Slope10

a Models are specified in §2.8.

Fig. 4. Regression trees of the best performed models for both dependent variables — Model 7s for soil depth (left) and the identical Models 5w and 7w for watertable depth (right).

Count indicates the total number of data at each node whilst the bar provides an indication of the proportion of shallow (grey) and deep (black) data at each node. The covariate and

the value used for each split are also shown.
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appears that information on vegetation development is not a good
indicator of depth to the watertable; rather it indicates access to the
watertable. The imagery is unable to differentiate between conditions
where vines are accessing the watertable due to a shallow watertable
or conditions where access is achieved by a deep watertable and deep
rooting depth.

3.5. Effect of modelling with both DTAs and imagery covariates

(Models 5–6)

When the DTAs and temporal imagery-derived covariates were
mixed for a given pixel size (Models 5 and 6), the gain compared to
the best results from the previous models (Models 1–4) differed for
the two dependent variables. In the case of soil depth, Model 5s,
which used the small pixel covariates, explained 18% more of the un-
certainty in the soil depth data than Model 1s (the best result from
Models 1–4). Model 6s was identical to Model 4s indicating that at a
90 m pixel resolution the DTAs provide no additional value to the
imagery data.

The watertable depth models that used both imagery-derived
covariates and DTAs produced similar results regardless of the pixel
size (r2 of 0.61 and 0.59 for Models 5w and 6w respectively) and
these were only slightly better than Model 1w (r2=0.57). Both
Models 5w and 6w used a mixture of imagery-derived covariates and
DTAs. Model 5w was the most parsimonious with 3 splits compared
to 5 splits for Model 6w and 4 splits for Model 1w.

3.6. Multi-scale covariate modelling. (Model 7)

For soil depth, the Model 7s fit was superior to all other models
(LOOCV r2=0.89) and explained at least 25% more of the uncertainty
than the next best model (Model 5s). The difference between Model
7s and 5s is the inclusion of the Curve80 covariate inModel 7s. This larger
pixel indicator of curvature fills a gap that the small pixel imagery and
DTAs cannot in Model 5s. The results from the regression tree analysis
indicate that multi-scale DTAs and imagery-derived covariates are
complementary, and a mixed approach yields a superior non-linear
model. The choice of multi-scale DTAs in the best performed soil
depth model would seem to support previous observations (Roecker
and Thompson, 2010; Smith et al., 2006) that multi-scale terrain char-
acterization is preferable for modelling and prediction.

In the soil depth models, the σET15 and mNDVI15 covariates were
selected in the best models that mixed the terrain and imagery-
derived covariates (Models 5s and 7s) rather than the mean response
(μET and μNDVI), which were selected in the poorer performing
Model 6s. The σET15 and mNDVI15 covariates are describing the
change in the vines vegetative response relative to other vines in
the image and are able to identify vines with either poor or good
water supply as a result of either soil depth or watertable depth or
both. These imagery observations may be independent of the under-
lying geo-hydrology and are able to identify areas where a vines
access to groundwater does not correspond to the general rules of
pedogenesis and geo-morphology, for example a shallow soil over a
shallow watertable in a relatively low-lying position in the landscape.
Since this is a complex pedo-landscape, there are several areas
where soil depth is independent of watertable (Guillaume Coulouma,
UMR LISAH, INRA, Montpellier, pers. comm.). This complexity is
hypothesised to be the reason that the vine response provides little
value as a covariate for modelling watertable depth.

For watertable depth modelling there was very little advantage
in using multi-scale covariates. Model 7w produced similar results
to Models 5w and 1w. Of primary interest in Model 7w for watertable
depth is the choice of the scaled μET15 covariate (discussed further
below). Overall the results for modelling watertable depth were
not surprising. With the exception of perched watertables, the
depth function for watertable is driven primarily by landscape and

geohydrological conditions with fluctuations imposed by the flux of
groundwater in the system (Guix, 2005). These processes are gener-
ally well understood and fairly universal in application i.e. they are
not specific to particular regions (Tassinari, 1998). For this reason
the alternative DTAs, such as MrVBF, also appear to work well in
this area even though the pedo-landscape is very different from the
pedo-landscapes where the attribute was developed and has been
previously applied (Ransley et al., 2007). Information on vegetative
growth is neither superior nor complementary to information on
terrain factors for modelling watertable depth.

In general, the temporal imagery-derived covariates were identi-
fied as relevant discriminators although generally the small pixel
covariates were preferred (ET15, NDVI15). A high σET15 value clearly
defines points where shallow soils exist and is the first split in all
models where the ET15 covariates are available. In the best watertable
depth model (Model 7w, Fig. 4b) a low μET15 identifies points with a
deep watertable (poor vine access to ground water) in areas where
shallow watertables are expected (high MrVBF). Similarly, in the
last split of the best soil depth model (Fig. 4a), the mNDVI15 response
is differentiating soil depth on points that are not located on the
valley floor. In these areas (slopes and hill crests), locations with a
deep soil profile can be determined by a positive trend in the NDVI
response (mNDVI15>0.008) around veraison (relative to other loca-
tions in the catchment).

The relevance of the ET15 covariates indicates an advantage to the
downscaling of the ET data from 90 to 15 m pixels. The original larger
pixel imagery (ET90) is known to contain ‘mixed’ pixels. Soil sampling
was only performed within vineyards; however the response over the
90 m pixels is often ‘mixed’ (multiple landuses). The downscaling
approach applied here attempted to filter the vineyard response,
and the results indicate that it has produced more effective covariates
for modelling.

3.7. Implications for the GlobalSoilMap.net project

The models performed here indicate that using covariates at
multiple scales (Model 7) confers benefits to the soil depth modelling
process. However multi-scale covariates complicate the movement
from a digital soil modelling to a digital soil mapping application.
McBratney (1998) provides an introduction to some concepts for
model development in multi-scale situations. McBratney (1998) sug-
gests that either a) the inputs be scaled (either up or down) to the
relevant model/output scale before processing, b) the model be run
at the preferred input scale (where some inputs may need to be
scaled) and then the output rescaled to the relevant support or c)
the inputs are added at their original scale and scaling is performed
within the model to produce an output on a different support. The
results here would indicate that some version of option (c) is prefer-
able, especially for soil depth. In the context of the GlobalSoilMap.net
project, multi-scale inputs are likely and from the results here prefer-
able, however only a single scale output (90 m pixel size) is desired.
Digital soil depth models therefore need to be able to both predict
and scale the input data. Currently, most approaches to DSM have
followed approach (a) in scaling the inputs to the desired support
(usually 90 m pixels) prior to modelling/mapping.

Whilst filtering the imagery is beneficial, it cannot be ascertained
from this study whether or not the pixel sizes used here are the opti-
mum. It may be preferable to upscale/downscale to an intermediate
value, such as 30, 45 or 60 m pixels. This is certainly an area for fur-
ther investigation. The availability of either a 1″ SRTM (~30 m) DEM
for some regions of the world or a downscaled 30 m grid for others
(e.g. the 30 m DEM of Australia being generated by the Australian
Government (http://www.ga.gov.au/topographic-mapping/digital-
elevation-data.html)) may present opportunities at this pixel size. It
is certainly of interest to understand how the terrain covariates be-
have at these intermediate pixel sizes.
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The approach of using vegetative covariates takes advantage of
(and is reliant on) the canopy development within a perennial rain-
fed monoculture system to reflect subsoil properties. Therefore, the
application of this approach will likely be most effective in other
regions where a perennial rain-fed monoculture exists. This may be
an agricultural (e.g. other viticultural or horticultural zones) or a nat-
ural environment (e.g. coniferous forests). However, the potential ap-
plication to annual (monoculture) systems should not be dismissed.
In many cases it is in these areas where high quality digital soil
maps are particularly needed to optimise production potential. Pro-
vided that the variance associated with management (sowing date,
fertilisation and crop development) can be minimised, the canopy
response across an annual system may reflect subsoil conditions.
This may reflect a subsoil constraint(s), i.e. the effective rooting
depth, rather than the actual soil depth. At a farm level, inter-
annual temporal NDVI layers have been used to map subsoil con-
straints in annual wheat (Triticum aestivum) systems (Dang et al.,
2011). The challenge remains to upscale this to a regional scale that
is compatible with regional DSMM.

Finally, it is important to recall that regression trees and partitioning
algorithms are known to have limitations when used for prediction. The
intention here is to use them for data mining, not for prediction. A
partitioning approach to a prediction may or may not be the preferred
method and the determination of this is outside the scope of this paper.
Whenpartitioning algorithms are incorporated into predictionmethodol-
ogies then there is usually some form of boot-strapping or jack-knifing,
for example the random forest algorithm (Breiman, 2001), is preferred.

4. Conclusions

The regression tree analysis showed some clear trends for model-
ling soil depth and water table depth using remotely-sensed vegeta-
tive and digital terrain attributes. The incorporation of vegetative
covariates derived from the thermal wavebands of satellite imagery
was useful in modelling soil depth but not watertable depth. Terrain
attributes from a small pixel DEM proved to be the best covariates
for modelling both soil and watertable depths. There was a distinct
advantage in modelling soil depth using both the vegetative and ter-
rain covariates at multiple scales compared to single scale models.
The value of the vegetative covariates in modelling soil depth is
based on the ability of the plant to reflect the soil conditions in
which it is growing. This illustrates that some soil attributes are able
to be modelled through a vegetation–soil inference system. The suc-
cess of the multi-scale model in this exploratory analysis indicates
that further work to create multi-scale predictive models for DSMM
is likely to be beneficial for some soil attributes.
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