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Summary

1. Characterizing fine scale mating patterns in plant populations makes it possible to investigate

genetic drift, gene flow and selection gradients at a contemporary time scale.Molecular markers are

valuable tools for this type of analysis, and numerous statistical methods have been developed to

make the best of the information they can provide. In particular, we recently proposed a Bayesian

approach based on a paternity analysis wherein we estimate jointly the variance in male fecundity

and the pollen dispersal kernel.

2. Here, we use simulated data sets to investigate the accuracy of the Bayesian approach compared

to (i) classical maximum likelihood approaches (e.g. Neighbourhoodmodel) that ignore variance in

male fecundity or explain it through a few covariates and (ii) indirect methods (KinDist and Two-

Gener) that integrate the variance in fecundity in an ‘effective population density’.

3. The Bayesian estimates correctly considered the over-dispersion resulting from the variance in

fecundity, resulting in wider but more accurate confidence intervals, in particular in high-density

populations. The maximum likelihood methods resulted in confidence intervals with low coverage

probabilities and in widespread false-positive tests when testing the effect of covariates on male

fecundity.

4. Estimated individual fecundities and estimated empirical variance in fecundity were robust to

the distribution assumed for the individual random fecundities (log-normal or Gamma). In con-

trast, the theoretical variance estimate critically depended on the assumed distribution.

5. The indirect methods provided much more variable estimators, as expected because they use less

information about pollen sources and consider the molecular information only through genetic

structure indices.

6. Disentangling the fecundity from the spatial effects in paternity analyses is necessary when study-

ing selection in natura and or when addressing the effects of spatial distribution on effective gene

flow. The Bayesian approach studied here successfully accounts for the variance in fecundity when

a large fraction of it is not explained by the studied covariates. The Mixed Effect Mating Model

computer program introduced here is devoted to its implementation.

Key-words: long-distance dispersal, male reproductive success, mating system, microsatellite

markers, mixed effects mating models, paternity analysis, pollen dispersal, progeny array

Introduction

Genetic drift and gene flow between and within populations

are twomain evolutionary forces that interact with selection to

determine the potential for adaptation. Evaluating the relative

weights of these forces is especially important when investigat-

ing the fate of populations confronted with environmental

changes (e.g. global warming or landscape fragmentation) and

in the development of management strategies to temper the

impacts of these environmental shifts (Ellstrand 1992; Savolai-

nen, Pyhajarvi & Knurr 2007). Numerous recent studies have

been published that characterize the mating systems, variances

of reproductive success and gene flow at the instantaneous time

scale, named contemporary approaches (Sork et al. 1999;

Bacles et al. 2005).
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To measure genetic drift and departure from random mat-

ing in plant populations, early studies used neutral genetic

markers and paternity assignment to evaluate the male repro-

ductive success (i.e. male fertility) of all pollen donors in an

experimental plot (Devlin & Ellstrand 1990; Smouse & Mea-

gher 1994). The inter-individual variance of fertility is then

directly linked to the effective size of the population,Nep. Sim-

ple exclusion (Chakraborty, Meagher & Smouse 1988), cate-

gorical paternity assignment (Meagher 1986; Marshall et al.

1998) and fractional paternity assignment (Devlin, Roeder &

Ellstrand 1988; Nielsen et al. 2001) all resulted in large vari-

ance in male reproductive success only partially explained by

phenotypic or micro-environmental variables (Smouse, Mea-

gher & Kobak 1999; Smouse & Sork 2004). For instance, size,

reproductive dominance and pollen production were often sig-

nificantly related to fertility.

Among other variables, the distance between a pollen donor

and a mother plant plays a specific role in determining their

mating probability (Adams, Griffin & Moran 1992; Streiff

et al. 1999). First, distance was almost always found to have a

very significant effect on mating probability (Smouse & Sork

2004). Second, pollen dispersal limited by distance both deter-

mines gene flow at long distance and contributes to genetic

drift and mating patterns at a very local scale (Garcia et al.

2005). Finally, the spatial pattern of pollen donors is most eas-

ily modified by human management and thus can be used as a

lever tomodify patterns of gene flow and genetic drift (Fernan-

dez&Gonzalez-Martinez 2009).

Recent work has attempted to characterize the spatial com-

ponent of mating patterns (Broquet & Petit 2009). The first

step is to precisely estimate the pollen dispersal kernel, i.e. the

probability density function describing the probability for a

pollen grain emitted at a central point to pollinate an ovule at

any position in space (Klein, Lavigne & Gouyon 2006).

Numerous studies have characterized both the scale of pollen

dispersal and the shape of the dispersal kernel, and thus the

intensity of long-distance pollen dispersal (Austerlitz et al.

2004; Burczyk, Lewandowski & Chalupka 2004; Oddou-Mur-

atorio, Klein & Austerlitz 2005; Robledo-Arnuncio & Gil

2005; Goto et al. 2006; Shimatani et al. 2007). Some studies

have also compared several families of dispersal functions with

different shapes (exponential-power vs. power-law tails) (Aus-

terlitz et al. 2004;Klein, Lavigne&Gouyon 2006).

Two types of statistical approaches have been used to esti-

mate pollen dispersal kernels in recent years: (i) the indirect

approaches such as TwoGener andKindist that rely on genetic

distance or similarity indices among pollen pools sampled by

pairs of mother trees (Austerlitz & Smouse 2002; Robledo-Ar-

nuncio, Austerlitz & Smouse 2006) and (ii) spatially explicit

mating models that use a maximum likelihood (ML) approach

to integrate parentage, spatial and fecundity information (Bur-

czyk et al. 2002; Oddou-Muratorio, Klein&Austerlitz 2005).

A second step in the analysis of the spatial component of

mating patterns consists of getting rid of the effect of the rela-

tive positions of pollen donors and mother plants to estimate

male fecundities (i.e. the amount of pollen released before

dispersal) rather than male fertilities (or male reproductive

success, i.e. the amount of offspring actually fertilized by a

given pollen donor). This was partially achieved in mating

models that estimated selection gradients (i.e. fixed effects of

studied covariates on individual fecundity) in a spatially expli-

cit context [e.g. the NEIGHBOURHOOD model, (Burczyk

et al. 2002)]. Further, Klein, Desassis & Oddou-Muratorio

(2008) attempted to estimate all of the individual fecundities of

the pollen donors present in a study plot, and thus to estimate

the entire variance in fecundity rather than the small part

explained by the studied covariates. Because the variance in

fecundity is related to the effective density of pollen donors dep,

the results obtained with this approach can be compared with

those from the indirect approaches that directly estimate this

parameter (Robledo-Arnuncio, Austerlitz & Smouse 2007).

Klein, Desassis & Oddou-Muratorio (2008) used a Bayesian

approach relying on aMonte-CarloMarkovChain to estimate

the individual fecundities and the effective density of pollen

donors dep and applied it to the Sorbus torminalis (ST) data set

previously analysed with several classical approaches (Oddou-

Muratorio et al. 2003; Austerlitz et al. 2004; Oddou-Murato-

rio, Klein & Austerlitz 2005, 2006). However, no investigation

of the performance of the approach on simulated data sets was

provided, although this would have helped to evaluate the

potential benefits of the approach. In addition, they did not

provide a computer program for researchers who might be

eager to apply this approach to other data sets.

In this study, our goals were (i) to evaluate the accuracy and

robustness of the estimates of the variance in fecundity

obtained from the Bayesian approachwhen compared to other

available methods, (ii) to investigate the effect of neglecting a

source of variation of fecundity on the results of likelihood

ratio tests (iii) to understand how variance in fertility differs

from variance in fecundity and (iv) to introduce a computer

program to apply easily the Bayesian statistical analyses pre-

sented here.

Materials and methods

SIMULATED DESIGNS – RANDOM DISTRIBUTIONS

Scenario ‘low density (LD)’

We simulated 50 study populations distributed following a Poisson

distribution with density 0Æ35 ha)1 in a disk with radius 13Æ49
(· 100 m) placed in the centre of a total population distributed in a

disk with radius 134Æ9 following the same distribution. These radii

were chosen to provide on average 200 trees inside the study area and

19 800 additional trees outside the study area (example given in

Fig. 1a). Sixty mother trees were randomly sampled within the study

populations.

Scenario ‘high density (HD)’

We also simulated 50 study populations distributed following a Pois-

son distribution with density 3Æ5 ha)1 in a rectangle with dimensions

5 · 11Æ4 placed in the centre of a total population distributed in a disk
with radius 50 following the same distribution. These dimensions pro-

vide on average 200 trees inside the study area and 27 290 additional

trees outside the study area (example given in Fig. 1b). Sixty mother
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trees were randomly sampled in the core of the study area, i.e. in the

rectangle with dimensions 3Æ7 · 8Æ1 centred in the study rectangle.

SIMULATED DESIGNS – CLUSTERED DISTRIBUTIONS

Scenario ‘Sorbus torminalis (ST)’

In 100 additional simulations, we used the actual positions of the 172

reproductive ST trees studied by Oddou-Muratorio, Klein & Auster-

litz (2005). This population has a density of 0Æ35 ha)1 and is distrib-

uted in clusters of�10 individuals on average in a�100-m radius. In

these simulations, we did not simulate trees outside the study plot but

fixed the immigration rate at a constant valuem = 0Æ4.

SIMULATING MATING EVENTS

In simulations LD and HD, all trees were randomly assigned a geno-

type at six microsatellite loci with 6–24 alleles per locus and given alle-

lic frequencies (see Data S1). These loci were MSS1, MMS5, MSS6,

MSS9, MSS13, MSS16 with allelic frequencies as presented in

Oddou-Muratorio et al. (2001). To draw the adult genotypes, we

assumed linkage equilibrium among all loci, absence of inbreeding at

all loci and no spatial genetic structure. The theoretical exclusion

probability for this genetic system is 0Æ987. In simulations ST, the

actual genotypes of the reproductive trees were used. They show spa-

tial genetic structure with significant average kinship coefficients up

to�300 m (Oddou-Muratorio et al. 2004).

For each simulation r and tree k, we drew a fecundity value, Fr,k, in

a log-normal distribution of mean 1 and variance
P2

r ¼ er2
r � 1. We

then computed the composition of the pollen pools over the sampled

mother trees as:

pr;jk ¼
Fr;kfðdjk; d; bÞP

l:fathers

Fr;lfðdjl; d; bÞ
and pr;jj ¼ 0 eqn 1

where pjk is the proportion of pollen grains originating from the

known father tree k in the pollen pool of mother tree j. f is the

dispersal kernel with parameters d (mean dispersal distance, scale

parameter) and b (shape parameter), and djk is the distance

between the mother tree j and the father tree k. We chose an

exponential-power dispersal kernel (e.g. Klein, Desassis & Od-

dou-Muratorio 2008) with d = 7Æ5 (· 100 m) and b = 0Æ3:

fðx; y; d; bÞ ¼ bCð3=bÞ2

2pd2Cð2=bÞ3
exp

Cð3=bÞd
Cð2=bÞd

� �2
$ %

eqn 2

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xkÞ2 þ ðyj � ykÞ2

q
and C the classical gamma

function.

For each of 1075 seeds sampled from the 60 mother trees (2–

27 seeds per tree, following the same distribution as in the ST

study), we then drew its father following the probabilities

{pjk}k = 1… respecting independence among seeds. Knowing the

mother and the father of each seed and their genotypes, we drew

the genotype of the seed using Mendelian rules and independence

among loci.

For scenarios LD and HD, we assume that no tree exists outside

the simulated population (m = 0) and that selfing never occurs

(s = 0). For the scenario ST where we did not simulate individually

the external trees, we used the following algorithm for each seed o at

each simulation r: with probability m (= 0Æ4) the pollen grain origi-

nated outside the site with a genotype drawn from the allelic frequen-

cies. With probability s (= 0Æ02), the seed originated from a selfing

event and the paternal gamete was drawn from the genotype of the

mother tree using classical segregation probabilities, and with proba-

bility (1 ) m ) s) (= 0Æ58) we drew the father from among the 171

known trees, apart from the mother, using the pollen pool composi-

tion {pjk}k = 1,…,171 and the paternal gamete from the genotype of

the retained father. A maternal gamete was drawn from the genotype

of the mother tree and associated with the paternal gamete to provide

the diploid genotype.

The first parameter of interest is the variance in fecundity Rr
2. This

is the theoretical variance of the distribution of individual fecundities.

In our simulations, this parameter is fixed. This parameter is related

to the theoretical ratio
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Fig. 1. Typical spatial configurations investigated in the three scenarios simulated: (a) Low density; (b) High density and (c) Sorbus torminalis.

Bottom figures in (a) and (b) represent zooms on the white central squares. Blue dots are pollen donors not sampled, black dots are sampled

pollen donors and red dots represent mother trees where seeds are collected.
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dobs
dep

� �th

r

¼
X2

r
þ1 eqn 3

The second quantity of interest is the empirical variance Sr
2 of the

actual fecundities of the trees within the study site. It is also unknown

and varies from site to site. For each simulation r, it is computed from

the individual fecundities Fr,k as

S2
r ¼

1

n� 1

X
k

ðFr;k � FrÞ2; eqn 4

where n is the number of father trees inside the study site and Fr

is the average of fecundities Fr,k. This parameter is related to the

empirical ratio

dobs
dep

� �emp

r

¼ S2
r þ 1 eqn 5

We also define the variance in fertility over the sampled seeds as

SF2
r ¼

1

n� 1

X
k

ðNr;k �NrÞ2; eqn 6

where Nr,k is the number of sampled seeds actually fathered by

the tree k and Fr is the average of the fertilities Nr,k.

In scenarios LD and HD, we simulated one data set for each of Rr
2

varying from 0 to 10 by steps of 0Æ2, resulting in 50 data sets. In the

scenario ST, we simulated one data set for each of Rr
2 varying from 0

to 10 by steps of 0Æ1, resulting in 100 data sets.

SIMULATING COVARIATES NOT AFFECTING

FECUNDITY

We investigated how variance of fecundity affects the probability that

a likelihood ratio test incorrectly detects a significant effect of a covar-

iate on fecundity (Type I error rate). To this goal, in the LD and HD

scenarios, for each adult tree inside the study area we independently

drew two discrete covariates COV1 and COV2with probabilities (0Æ9,
0Æ16, 0Æ25, 0Æ25, 0Æ16, 0Æ9) associated with six modalities (A, B, C, D,

E, F). In the ST scenario, there were three covariates associated with

each reproductive tree: flowering intensity (COV1), local density

(COV2) and diameter class (COV3) with 4, 5 and 6 modalities respec-

tively. None of these variables had any effect on fecundity or fertility

in the simulated data sets.

ESTIMATION OF THE DISPERSAL PARAMETERS AND

VARIANCE IN FECUNDITY

For each data set, we used each of the following approaches to esti-

mate dispersal parameters and variance in fecundity: the ML

approach based on a mating model (Burczyk et al. 2002; Oddou-

Muratorio, Klein & Austerlitz 2005) assuming the same fecundity for

all trees, the samemaximum likelihood approach using the covariates

(MLCov) as proxies for fecundity, (BayLN) the Bayesian approach

modelling fecundity through an individual random effect log-nor-

mally distributed (Klein, Desassis & Oddou-Muratorio 2008),

(BayG) the Bayesian approach with a gamma distribution of individ-

ual fecundities and (KD+TG) the Kindist and TwoGener

approaches associated as suggested in Poldisp (Robledo-Arnuncio,

Austerlitz & Smouse 2007). For the MLCov approach, we used the

two covariates COV1 and COV2 in the LD andHD scenarios and the

three actual covariates COV1-3 in the ST scenario.

Using a Gamma distribution (BayG) in the estimation procedure

whereas the data were simulated using a log-normal distribution for

the fecundities aims at investigating the robustness of the estimates

regarding the distribution chosen. Fitting the effects of covariates that

were not used in the simulations (MLCov) provides an evaluation of

the Type I error rate of the likelihood ratio tests.

Maximum likelihood and mating model – In the approaches ML

and MLCov, we used the likelihood function previously defined

(Adams & Birkes 1991; Burczyk et al. 2002; Oddou-Muratorio,

Klein & Austerlitz 2005), associated with the set of genotypes

g = (go)o:offsprings of the sampled seeds:

LðgjaCOV; d; b; s; mÞ ¼ P
o:offspring

�
sTðgojgjo ; gjo Þ þmTðgojgjo ;BAFÞ

þ ð1� s�mÞ
X

k:father

pjokTðgojgjo ; gkÞ
�

eqn 7

where pjk is the composition of the pollen pool (eqn 1) which

depends on the dispersal parameters only when using ML

approach (see eqn 5 in Oddou-Muratorio, Klein & Austerlitz

2005). When using the MLCov approach, pjk depends both on

the dispersal parameters and on the parameters of the covariates

(aCOV in the approach MLCov, see eqn 4 in Oddou-Muratorio,

Klein & Austerlitz 2005). Tðgo gjo ;X
�� Þ is the Mendelian segrega-

tion probability (Meagher 1986) of the offspring genotype (go)

given the genotype of the mother (gjo ) and X, where X corre-

sponds (i) to the genotype of the mother in the case of self-fertil-

ization (ii) to the allelic frequencies in the pollen pool external to

the neighbourhood (BAF) in the case of outcrossing with a non-

sampled father tree or (iii) to the genotype of the considered

father tree (gk) in the case of outcrossing with a sampled male k.

Dispersal parameters (d, b), mating parameters (s,m) and effects of

covariates (aCOV, only in the MLCov case) were estimated by maxi-

mizing the likelihood function usingMathematica 7Æ1. In theMLCov

approach, we computed the variance in fecundity and the ratio

dobs ⁄ dep from the estimated aCOV following eqn 8 in (Oddou-Murato-

rio, Klein &Austerlitz 2005).

We tested the significance of all of the effects of the covariates glob-

ally using a likelihood ratio test that compared the likelihood reached

in the MLCov with that reached in the ML approach (Johnson &

Omland 2004). We did not investigate whether the effects of the cova-

riates (aCOV) were correctly estimated but instead focused on the

probability to conclude that the covariates significantly determine

fecundity although they actually did not.

Bayesian estimation and random individual fecundity – We used the

approach developed inKlein, Desassis &Oddou-Muratorio (2008) to

estimate (i) the dispersal parameters (d, b) and the mating system

parameters (s, m), (ii) all individual relative fecundities Fk and (ii) the

ratio dobs ⁄ dep, which measures the variance in fecundity. The

approach relies on the likelihood for the set of genotypes

g = (go)o:offspring of the sampled seeds

LðgjF; r2; d; b; s;mÞ ¼ P
offspring

�
sTðgojgjo ; gjo Þ þmTðgojgjo ;BAFÞ

þ ð1� s�mÞ
X

k:father

pjokTðgojgjo ; gkÞ
�
; eqn 8

where the composition of the pollen pools pjk now depends on

the dispersal parameters and on the individual fecundities

F = {Fk}k = 1… as given by eqn 1. The transition probabilities

Tðgo gjo ;X
�� Þ are defined as above.

We used the same prior distributions and the same proposal

distributions as in Klein, Desassis & Oddou-Muratorio (2008). We
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computed the posterior distributions for the parametersP2
r ; d; b;m; s using aMote CarloMarkov Chain (MCMC) of 50 000

steps after a 5000 step burn-in period. For all parameters, we com-

puted the posterior mean and median and the 95%-credibility inter-

val from the 50 000 steps of the MCMC. We initiated the Markov

chain with
P2

r;10; d0; b0;m0; s0

� 	
¼ e2 � 1; 50; 1; 0 � 5; 0 � 1

 �

and

F0 = (1,…,1).

For each simulation r, the MCMC provided a posterior distribu-

tion for the parameter
P2

r and the estimated theoretical variance was

obtained as the posterior mean and posterior median

R̂2
r ¼

1

T

X
t¼1;...;T

R2ðtÞ
r and ~R2

r ¼ median R2ðtÞ
r

n o
t¼1;...;T

� �
; eqn 9

where T is the number of iterations retained. The associated ratio

dobs ⁄ dep can be computed at each iteration t,

dobs
dep

� �ðtÞ
r

¼
X2ðþÞ

r
þ1 eqn 10

and the estimated theoretical ratio dobs ⁄ dep was obtained as the

posterior mean and the posterior median

dobs
dep

� �^
r

and
dobs
dep

� ��
r

eqn 11

The posterior distribution and 95% credibility intervals were

obtained by computing the 2Æ5% and 97Æ5-quantiles from the 50 000

retained values of the parameter in theMCMC.

Using the individual fecundities every 20 iterations,F
ðtÞ
r ,we also

computed the posterior distribution for the fecundity of each individ-

ual k, Fr,k. The estimated individual fecundities were then obtained as

the posterior mean:

F̂r;k ¼
1

T

X
t

F
ðtÞ
r;k; eqn 12

where T is the number of iterations retained.

We related these estimated fecundities to the actual fecundities by

computing the coefficient of determination,R2, for the log-log regres-

sion of flogðF̂r;kÞgk¼1;:::;n over flogðFr;kÞgk¼1;:::;n.
We also computed the estimated empirical variance of fecundi-

ties as

Ŝ2
r ¼

1

n� 1

X
k

F̂r;k � F̂
� 	2

; eqn 13

and the estimated empirical ratio dobs ⁄ dep as

dobs
dep

� �^;emp

r

¼ Ŝ2
r

F̂2
r

þ 1 eqn 14

Kindist + TwoGener estimation – We applied Kindist to all data

sets to estimate the parameters a, b and d of an exponential-power dis-
persal kernel. To recalibrate the pairwise kinship coefficients ‘auto-

matically’ for each data set, we set the threshold distance by choosing

the maximum distance above which 50 pairwise distances are found.

This led to threshold distances of 23Æ0 (· 100 m) and 6Æ8 on average

for the LD andHD simulations and to the distance 23Æ9 for all the ST
simulations.

The effective density dep was then estimated by applying the pair-

wise TwoGener with an exponential power dispersal kernel to all the

data sets. The dispersal parameters a and b were fixed to the values

previously estimated by Kindist and only the density was estimated.

The true density (0Æ35 or 3Æ5) was used as initial value.

ESTIMATION SOFTWARE

The Bayesian analyses were achieved using the software Mixed

Effect Mating Model (MEMM). This software implements the

method presented here and in Klein, Desassis & Oddou-Murato-

rio (2008) to estimate the dispersal and mating parameters and

the theoretical and empirical variance in male fecundity. Log-nor-

mal and gamma distributions for the random individual fecundi-

ties can be used.

Mixed Effect Mating Model is available at http://memm.biosp.org

together with a manual and examples of input data files. Versions for

MS Windows, MacOS X (intel) and linux are available. The C++

code is also available from E Klein upon request for users wishing to

compile it on their own computer. The input and output files are text

files, and functions to graphically plot the results are provided which

run onR (CRANproject).

Results

ESTIMATES OF THE DISPERSAL KERNEL AND MATING

SYSTEM PARAMETERS

The Bayesian approach BayLN provided estimates of the dis-

persal parameters independent of the variance in fecundity

dobs ⁄dep for the three scenarios (e.g. Fig. 2). The dispersal

parameter estimates were slightly biased towards more long-

distance dispersal: (i) the mean dispersal distance d was biased

upward and (ii) the shape parameter was biased downward,

i.e. towards fatter-tailed dispersal kernels (Table 1). For the

mean dispersal distance, the estimates based on the posterior

median were less biased than those resulting from the posterior

mean (geometric mean of the estimates = 8Æ18 vs. 8Æ85 for ST;
8Æ68 vs. 11Æ15 for LD; 12Æ3 vs. 24Æ2 for HD). They also had a

smaller standard deviation (not shown). Using a gamma distri-

bution (BayG) for the fecundities instead of the log-normal dis-

tribution led to a slight increase in the bias and standard

deviation (geometric mean of the posterior median esti-

mates = 8Æ54 vs. 8Æ18 for ST; 8Æ93 vs. 8Æ68 for LD and 21Æ2 vs.
12Æ3 forHD).

The 95%-credibility intervals computed in the Bayesian

approach from the posterior distribution were globally accu-

rate, with error rates between 0% (parameter b for BayLN in

scenario ST) and 16% (parameter b for BayG in scenario LD)

where we expected 5%. Finally, scenario HD provided wider

credibility intervals, especially for the mean dispersal distance

d but also for the shape parameter b. This scenario was also

associated with higher bias and greater variance of the esti-

mates (Table 1).

The maximum likelihood estimators (methods ML and

MLcov in Table 1) were almost unbiased for the dispersal

parameters d (means for d estimates were 7Æ95, 7Æ89 and 7Æ70
instead of 7Æ5 for ML in scenarios ST, LD and HD) and b

(means for b estimates were 0Æ35, 0Æ34 and 0Æ33 instead of 0Æ3
for ML in scenarios ST, LD and HD). The 95%-likelihood-

profile confidence intervals for these parameters were narrower
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than the 95% credibility interval provided by BayLN. In fact

they were too narrow, as the true value for the parameters

d = 7Æ5 and b = 0Æ3 was not included in the confidence inter-

vals in more than 5% of the simulations (16% for d in the LD

case to 42% for b in the ST case). Testing (d = 7Æ5,
b = 0Æ3) simultaneously using a 2 DF likelihood ratio test

resulted in the rejection of the true values even more often

(72%, 58% and 26% of the simulations in the ST, LD and

HD scenarios). The estimates obtained with (MLCov) or

without (ML) considering the covariates for fecundity had

similar properties (Table 1): considering inadequate covari-

ates acting on fecundity did not affect the estimates of the

dispersal parameters.

Furthermore, contrary to the Bayesian estimates, ML esti-

mates of the dispersal parameters were affected by an increase

in variance in fecundity. First, the bias in the estimation of d
increased with dobs ⁄dep (e.g. for the ST case: geometric

mean = 7Æ39 for d when dobs ⁄dep is in (1,6); geometric

mean = 8Æ55 for d when dobs ⁄dep in (6,11); geometric means

significantly different, P = 0Æ01). Second, the accuracy of the

confidence intervals decreased when dobs ⁄dep increased: in the

ST scenario, if 72 simulations over 100 found the true value

(7Æ5, 0Æ3) outside of the 95%-confidence area, this type I error

was 25% over the 20 simulations with 1 < dobs ⁄dep £ 3 and

85%over the 80 simulations with 3 < dobs ⁄dep £ 11.

Finally, the Kindist estimates showed a moderate bias for

the mean dispersal distance, but the parameter b was overesti-

mated (means of the b estimates were 0Æ39, 0Æ48 and 0Æ94
instead of 0Æ3 in scenarios ST, LD and HD). However, several

simulations led to extreme values for d and ⁄or b. Surprisingly,
themethod seemsmore affected byHD than by a clustered dis-

tribution of pollen donors (more bias in the HD scenario than

in the ST scenario, Table 1). TheKindist estimates weremostly

characterized by a large variance apparently independent of

the variance in fecundity (Figure S1).

ESTIMATES OF THE VARIANCE OF MALE FECUNDITY

The estimated theoretical variance (eqn 9) provided by the

Bayesian approach BayLN accurately estimated the variance

in fecundity (Fig. 3, Table 2). The estimated theoretical ratio

dobs ⁄dep (eqn 11) had low bias (Fig. 1; mean relative bias of

Fig. 2. Values estimated for the dispersal parameters d (scale parameter, left column) and b (shape parameter, right column) using the BayLN

approach. Scenarios low density, high density and Sorbus torminalis are presented from top to bottom. x-axis represents the fixed theoretical ratio

dobs ⁄ dep (eqn 3). Full dots are the estimates based on the posterior median, empty dots are for the posterior mean, and bars represent the 95%

credibility interval. The black line represents the true value of the parameter.
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14%, 8% and 2% for the posterior median in scenarios ST,

LDandHD). Similar to the dispersal parameters, the posterior

meanwasmore biased than the posteriormedian. The variance

of the estimated theoretical ratio (eqn 11) and the skewness of

the posterior distribution increased notably when the true vari-

ance in fecundity increases (Fig. 3). This explains the discrep-

ancy between posterior means and posterior medians. This

also results in wide confidence intervals for large variances in

fecundity.

When we used a Gamma distribution in the estimation pro-

cedure (BayG), (although it was actually log-normally distrib-

uted, cf. M&M section) the theoretical variance was strongly

under-estimated, in particular for ratios dobs ⁄dep > 3 (Fig. 3;

mean relative biases � )45%). In fact, the BayG method

rarely estimated values above to 4 for the ratio dobs ⁄dep
(Fig. 3).

Regarding the empirical variance of fecundity (S2
rgivenby

eqn 4), the estimator Ŝ2
r (eqn 13) based on estimated indi-

vidual fecundities (F̂r;k given by eqn 12) was more robust to

the choice of the distribution (Gamma or LN) than the esti-

mator R̂2
r . First, the estimated empirical variances obtained

with the BayLN and BayG methods were quite close to

each other, even if those obtained from the BayG were gen-

erally lower than those from BayLN (Fig. 4). This was con-

firmed by the strong correlation between the individual

fecundities estimated in BayG and in BayLN (the average

correlation coefficient was 0Æ985; 0Æ992 and 0Æ991 in scenar-

ios ST, LD and HD). Second, the estimated empirical vari-

ances were closer to the true empirical variances than the

estimated theoretical variances, even with the BayLN

method (Fig. 4). This means that the individual fecundities

were well estimated even when the distribution chosen to

model them was wrong (gamma instead of log-normal).

The average correlation between the true individual fecundi-

ties and the estimated individual fecundities supported this

result (average correlation = 0Æ888, 0Æ921, 0Æ897 for the

BayLN estimates and average correlation = 0Æ878, 0Æ916,
0Æ892 for the BayG estimates).

Table 1. Mean values for the dispersal parameters estimated from the five methods in the three scenarios Sorbus torminalis (ST), low density

(LD) and high density (HD) scenarios and obtained over all values of the variance in fecundity. For each parameter and each method, we

provide the geometric mean of the estimates, the mean confidence ⁄ credibility interval and the percentage of cases where the true value of the

parameter was outside the 95%-confidence interval. For Bayesian methods BayLN and BayG, we provide in each cell the performance of the

posteriormean (left) and the posterior median (right)

Scenario Method

Mean dispersal

distance, d = 7Æ5
Shape parameter,

b = 0Æ3 Migration rate, m* Selfing rate, s

ST BayLN 8Æ85 ⁄ 8Æ18
(5Æ5; 16Æ0) 6%

0Æ29 ⁄ 0Æ29
(0Æ21; 0Æ37) 0%

0Æ45 ⁄ 0Æ45
(0Æ42; 0Æ48) 11%

0Æ011 ⁄ 0Æ011
(0Æ005; 0Æ019) 62%

BayG 9Æ35 ⁄ 8Æ54
(5Æ62; 17Æ31) 7%

0Æ29 ⁄ 0Æ28
(0Æ20; 0Æ37) 3%

0Æ45 ⁄ 0Æ45
(0Æ42; 0Æ48) 8%

0Æ011 ⁄ 0Æ011
(0Æ005; 0Æ019) 59%

ML 7Æ95
(5Æ8; 12Æ4) 23%

0Æ35
(0Æ28; 0Æ42) 42%

0Æ45
(0Æ42; 0Æ48) 13%

0Æ011
(0Æ006; 0Æ019) 50%

MLCov 8Æ05
(5Æ8; 12Æ8) 25%

0Æ34
(0Æ27; 0Æ41) 38%

0Æ45
(0Æ42; 0Æ48) 12%

0Æ011
(0Æ005; 0Æ019) 50%

KinDist 14Æ3 0Æ39 – –

LD BayLN 11Æ15 ⁄ 8Æ68
(6Æ12; 20Æ6) 4%

0Æ266 ⁄ 0Æ265
(0Æ16; 0Æ36) 14%

0Æ31 ⁄ 0Æ31
(0Æ29; 0Æ34)

<10)8 (0; 1Æ10)7)

BayG 11Æ45 ⁄ 8Æ93
(6Æ2; 23Æ4) 10%

0Æ264 ⁄ 0Æ264
(0Æ16; 0Æ36) 16%

0Æ31 ⁄ 0Æ31
(0Æ29; 0Æ34)

<10)8 (0; 1Æ10)7)

ML 7Æ89 (6Æ03;
11Æ87) 16%

0Æ34
(0Æ26; 0Æ43) 36%

0Æ31
(0Æ29; 0Æ34) 64%%

–

MLCov 7Æ88 (6Æ09;
11Æ89) 10%

0Æ34
(0Æ25; 0Æ42) 30%

0Æ31
(0Æ29; 0Æ34) 64%

–

KinDist 9Æ24 0Æ48 – –

HD BayLN 24Æ2 ⁄ 12Æ3
(4Æ5; 116) 8%

0Æ25 ⁄ 0Æ25
(0Æ13; 0Æ41) 6%

0Æ54 ⁄ 0Æ54
(0Æ51; 0Æ57)

<10)6 (0; 7Æ10)5)

BayG 70Æ0 ⁄ 21Æ2
(4Æ9; 383) 14%

0Æ232 ⁄ 0Æ221
(0Æ11; 0Æ39) 12%

0Æ54 ⁄ 0Æ54
(0Æ51; 0Æ57)

<10)6 (0; 2Æ10)6)

ML† 7Æ70
(5Æ11; 28Æ6) 20%

0Æ33
(0Æ19; 0Æ48) 18%

0Æ54
(0Æ51; 0Æ57) 46%

–

MLCov† 7Æ85
(4Æ21; 34Æ3) 14%

0Æ32
(0Æ18; 0Æ47) 10%

0Æ54
(0Æ51; 0Æ57) 44%

–

KinDist‡ 2Æ25 0Æ94 – –

*The true value for m was 0Æ45 in the ST scenario. In the LD and HD scenarios, we computed the true value by averaging over the sim-

ulations the proportion of real paternities actually out of the study site. We found m = 0Æ32 and 0Æ54 for LD and HD respectively.
†The simulation dobs ⁄ de = 10Æ2 was removed because the absence of convergence led to unrealistic values (d > 105 and b < 0Æ1)
‡Three simulations were removed (dobs ⁄ de = 1Æ2, 1Æ8 and 10Æ8) because they led to unrealistic values (de > 1000 and d < 0Æ1)
–, not estimated.

Estimating male fecundity and pollen dispersal 355

� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society, Methods in Ecology and Evolution, 2, 349–361



Fig. 3. Values estimated for the parametermeasuring the variance in fecundity using the Bayesian approach. x-axis represents the true theoretical

ratio dobs ⁄ dep (eqn 3) and y-axis the estimated theoretical ratio (eqn 10). Scenarios low density, high density and Sorbus torminalis are presented

from top to bottom. Left figures present parameters estimated using a log-normal random fecundity (BayLN) and right figures parameters esti-

mated with a Gamma random fecundity (BayG). Full dots are the estimates based on the posterior median, empty dots are for the posterior

mean, and bars represent the 95% credibility interval. The black line represents the diagonal ‘estimated value = true value’.

Table 2. Variance in fecundity parameters estimated from the five methods. Mean relative bias and mean relative confidence interval are

provided for dobs ⁄ de. Geometric mean is provided for de estimates. Type I error rates for MLCov provide the percentage of simulated data sets

for which the likelihood ratio 5%-test concluded in a significant effect of the covariates that actually had no effect on fecundity (we would thus

expect values close to 5%)

Scenario Method dobs ⁄ de de (trees ha
)1)* Type I error rate

Sorbus torminalis BayLN +30% ⁄+14% ()0Æ34; 1Æ88) 8%
BayG )44% ⁄ )45% ()0Æ53; )0Æ33) 89%
MLCov )71% max = 3Æ72 97%

KinDist+ TwoGener +290% 0Æ067 R2 = 0Æ001

Low density BayLN +19% ⁄+8% ()0Æ32; 1Æ36) 8%
BayG )46% ⁄ )46% ()0Æ54; )0Æ37) 88%
MLCov )74% max = 1Æ63 96%

KinDist + TwoGener +31% 0Æ12 R2 = 0Æ004

High density BayLN +12% ⁄+2% ()0Æ37; 1Æ24) 6%
BayG )42% ⁄ )43% ()0Æ52; )0Æ30) 88%
MLCov† )72% max = 2Æ04 94%

KinDist + TwoGener‡ +13% 3Æ89 R2 = 0Æ011

*R2 indicates the coefficient of determination for the regression of the estimated density de against the true dobs ⁄ de.
†The simulation dobs ⁄ de = 10Æ2 was removed because the absence of convergence led to unrealistic values (d > 105 and b < 0Æ1)
‡Three simulations were removed (dobs ⁄ de = 1Æ2, 1Æ8 and 10Æ8) because they led to unrealistic values (de > 1000 and d < 0Æ1)

356 E. K. Klein, F. H. Carpentier & S. Oddou-Muratorio

� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society, Methods in Ecology and Evolution, 2, 349–361



As expected, theML approach with covariates that were not

actually related to fecundity (MLCov) was unable to estimate

correctly the variance in fecundity (Table 2, mean relative

biases � )70%). However, note that some unexpectedly high

variances of fecundity were estimated for some particular sim-

ulations (estimated dobs ⁄dep of 3Æ72, 1Æ63 and 2Æ04 were

obtained for scenario ST dobs ⁄dep = 9Æ7, scenario LD

dobs ⁄dep = 9Æ6 and scenarioHD dobs ⁄dep = 9Æ6).
Kindist and Two-Gener estimated values for dep that were

in the correct order of magnitude (dep estimated at 0Æ067
and 0Æ12 on average for ST and LD where dobs = 0Æ35 and

thus dep = 0Æ35 to 0Æ032; dep estimated at 3Æ89 on average

for HD where dobs = 3Æ5 and thus dep = 3Æ5 to 0Æ32). How-

ever, among different simulations of the same scenario, the

estimated values dep were not correlated with the true value

dobs ⁄dep (R2 = 0Æ001, 0Æ004 and 0Æ011, P = 0Æ08, 0Æ17 and

0Æ51 for ST, LD and HD).

RELATION BETWEEN MALE FECUNDITY AND MALE

FERTIL ITY ( I .E . MALE REPRODUCTIVE SUCCESS)

In our simulations, the average correlation between individual

fecundities and expected individual fertilities was (only) 0Æ8,
0Æ89 and 0Æ87 in the three scenarios investigated. This correla-

tion was the lowest in the ST scenario, where both LD and

clustered distribution of trees were expected to provide greater

stochasticity.

Assuming that all paternities could have been retrieved per-

fectly from a paternity analysis resulting in observed mating

success equal to the number of progeny found for each pollen

donor, we could be tempted to use these observed individual

fertilities as estimates of individual fecundities. However, they

provided worse estimates than the Bayesian approach: the

average correlation between the individual fecundities and the

observed individual fertilities was 0Æ75, 0Æ84 and 0Æ81 (in ST,

LD and HD scenarios), whereas the average correlation with

the BayLN estimate of fecundity was 0Æ89, 0Æ92 and 0Æ90 and

the correlation with the BayG estimates was 0Æ88, 0Æ92 and

0Æ89.

NEGLECTING THE VARIANCE OF MALE FECUNDITY IN

ML APPROACHES

As mentioned earlier, the confidence intervals for dispersal

parameters were too narrow when dobs ⁄dep increased, leading
to excessive rates of CI not containing the true value. Further-

Fig. 4. Estimated values for the parameters measuring the variance in

fecundity. True empirical ratio dobs ⁄ dep (eqn 5) computed from the

actual fecundity of the simulated putative fathers inside the study plot

are plotted on the x-axis. On the y-axis, we plotted the estimated theo-

retical ratio dobs ⁄ dep (eqn 10, empty marks) and the estimated empiri-

cal ratio dobs ⁄ dep (eqn 13, full marks). Estimations obtained from a

log-normal assumption for the distribution of the random individual

fecundity are plotted in green. Estimations obtained from a gamma

assumption are plotted in black. Scenarios low density, high density

and Sorbus torminalis are presented from top to bottom.
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Fig. 5. Type I errors of the likelihood ratio test aiming at detecting

significant effects of covariates on the fecundity. The values of the

LRT for all simulated data sets are represented as a function of the

theoretical ratio dobs ⁄ dep (x-axis, eqn 3). All three scenarios are plot-

ted [Squares: low density (LD); Circles: high density (HD); Triangles:

Sorbus torminalis (ST)]. The horizontal lines represent the threshold

values above which the covariates are considered as significant at the

5% level (Black: LD and HD; Grey: ST). 16 values of the LRT>200

are not plotted on this scale.
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more, the MLCov approach wrongly concluded that there

were significant effects of the covariates in 192 simulations of

200 in all three scenarios (Fig. 5). The only eight simulations

where the likelihood ratio test correctly concluded that there

were non-significant effects of the covariates were all concen-

trated in the range dobs ⁄dep < 3.

Discussion

We ran two hundred simulations to evaluate the Bayesian esti-

mation of the pollen dispersal kernel and the variance of male

fecundity in a realistic context concerning the number of puta-

tive parents, the number of mother trees and sampled seeds

and the exclusion power of the genetic system used. Although

the statistical theory provides theoretical properties for large

data sets (asymptotic results), it is also necessary to investigate

the actual properties of our estimates for typical data sets. This

is particularly true for Bayesian algorithms where several tun-

ing parameters (prior distributions, proposal distribution,

number of iterations of the MCMC and burn-in iterations)

may affect the results of the estimation procedure.

Overall the Bayesian estimates performed well, providing

quite accurate estimates of the dispersal parameters and of the

variance in fecundity (low bias). However, the variance and the

width of the confidence intervals of the Bayesian estimates of

the variance in fecundity increases quickly with the true vari-

ance in fecundity. Estimating precisely this parameter when

large differences of pollen production and pollen efficiency

among trees exist could thus be difficult. Including both the

major covariates determining male fecundity and a random

individual effect is a way to consider random individual effects

with smaller variance. The dispersal parameters estimates were

not affected by the variance in fecundity over the wide range

investigated here (dobs ⁄dep from 1 to 11). This is a valuable

property of the analysis method because variance in fecundity

can be high under real experimental conditions. The classical

ML estimates, by contrast, were notably affected by the vari-

ance in fecundity, with a bias increasing with dobs ⁄dep and con-

fidence intervals and likelihood ratio tests becoming less

accurate as dobs ⁄dep increased.
We also found that the estimate of the theoretical variance

in fecundity (i.e. that of an infinite populations of trees where

the whole distribution of fecundities would be represented)

was sensitive to the assumed distribution of fecundity (here

gamma or LN). This is comparable to estimated mean dis-

persal distances, where different dispersal kernels fitted on the

same data set result in very different mean dispersal distances.

Mean dispersal distance and variance of fecundity both depend

strongly on the tails of the curves (i.e. dispersal kernels and dis-

tribution of fecundity) and thus on the extrapolation of the

processes observed within the site to a broader range. This

problem can be minimized by (i) using several curves and

selecting the one that best fit the data (e.g. this can be carried

out using Bayes factors to select the Gamma or LN in the

Bayesian scheme here, e.g. Klein, Desassis & Oddou-Murato-

rio 2008) and (ii) building experiments covering the largest

range as possible (i.e. larger spatial scale and better sampling

of the distribution of male fecundities will provide better

extrapolations). Finally, the drawback of extrapolation is

avoidedwhen focusing only on the empirical variance in fecun-

dity (i.e. that among the actual trees present in the study site)

instead of the variance of the population.

We showed here that the estimated empirical variance was

much less sensitive to the distribution assumed for fecundity.

However, this parameter leads too less general conclusions as

the empirical variance in fecundity can vary notably from site

to site and be notably different from the variance of the popu-

lation (e.g. Fig. 4).

This study was more focused on the estimation of the vari-

ance in fecundity, andwe did not fully investigate the questions

about the estimation of the dispersal function. In particular,

we did not analyse the data using a kernel family different from

the exponential power family used to generate them. In tradi-

tional ML approaches, this results in inaccurate estimates of

the dispersal parameters and the same result is expected from

the Bayesian approach with random fecundity. Using several

kernel families and selecting the best fitting function remains a

critical step in the analysis of experimental data, especially

because of a lack of fit owing to a misspecification of the dis-

persal kernel could subsequently be compensated by incorrect

estimated individual fecundities and biased variance in fecun-

dity. More intensive sampling (more mother trees widespread

in the site) should limit this drawback. Further simulations

should investigate quantitatively this aspect, but a general con-

clusion expected is that the Bayesian approach is better suited

for large data sets.

This article is also an opportunity to present the MEMM

computer program available for those wishing to estimate vari-

ance in fecundity and the dispersal function using the Bayesian

method first proposed in (Klein, Desassis &Oddou-Muratorio

2008) and investigated here. The program presently available

at http://memm.biosp.org provides Bayesian estimates for the

dispersal parameters and the variance in fecundity assuming a

log-normal or a gamma distribution for the random individual

fecundities and an exponential power function for the dispersal

kernel. Future versions will include more diverse dispersal

functions as several studies have shown that the shape of the

dispersal function strongly affects the estimated mating pat-

terns (Klein, Lavigne & Gouyon 2006; Robledo-Arnuncio &

Austerlitz 2006). It thus deserves careful analysis through the

application of a wide range of possible dispersal tails (Auster-

litz et al. 2004; Goto et al. 2006).

Another biological phenomenon crucial for determining the

mating events among individuals is asynchronous flowering

(Kang et al. 2003; Gérard et al. 2006). Including a temporal

distance between individuals that governs the probability of

mating is possible in mating models (Smouse & Sork 2004) but

requires the measurement of flowering phenology for all of the

pollen donors in the study site. These data are costly to gather

even if they sometimes prove to more significantly affect mat-

ing probability than distance does (Chenault et al., 2008 on

Populus nigra). This drawback could be partially solved by

improving the Bayesian approach developed here to include a

supplementary unobserved random variable associated with
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each individual that would model the flowering time (and ide-

ally one variable for the duration, to account both for timing

and length of the flowering period). The information from typ-

ical genotypic data is expected to be sufficient to estimate pref-

erential mating between some individuals in addition to the

spatial component and the differential fecundities among pol-

len donors that we presently estimate (even if preferential mat-

ing can be the result of mechanisms other than phenology).

Estimating this unobserved phenological data for all trees

would necessitate sampling a reasonably large number of

mother plants with various phenologies, probably a large num-

ber of seeds, and would require some prior information about

phenological variance and overlap.

Our Bayesian approach could probably be improved by pro-

viding more concentrated prior distributions for the parame-

ters. Here in particular, we used distributions over wide areas

[(0Æ50 km) for the mean dispersal distance, (0Æ5) for the shape
parameter b, (1, 1000) for the ratio dobs ⁄dep) with long tails pro-
viding non-negligible weight to large unrealistic values. These

prior distributions could explain the bias for the dispersal

parameters in high-density populations. Even if this type of

prior distributions can be justified if there is a complete absence

of expectation concerning the scale of pollen dispersal, in prac-

tice we generally have some preliminary knowledge about the

biology of the species that could be used to provide more con-

centrated prior distributions. Adding the possibility to use sev-

eral prior distributions in the MEMM program is a necessary

improvement.

One main result of our simulations is the unexpected Type

I error rate of the likelihood ratio tests (or equivalently AIC-

based model selection) used in the classical mating models [e.g

Chybicki & Burczyk 2010; Goto et al. 2006; Oddou-Murato-

rio, Klein & Austerlitz 2005; Shimatani et al. 2007]. This

result was qualitatively expected: a large variance in fecundity

not considered in the model implies that some trees have large

mating probabilities for (some) mother plants and the numer-

ous progenies they generate (on these mothers) appear as cor-

related mating. Thus, the hypothesis of independent

fecundation events used to compute the likelihood is no

longer true. This results in over-dispersion (McCullagh & Nel-

der 1989) and incorrect inferences (too narrow confidence

intervals, underestimated P-values). In Oddou-Muratorio,

Klein & Austerlitz (2005) we already discussed a possible

over-dispersion and the consequences for inferences. How-

ever, we did not expect that this phenomenon could be

so strong in practice. Here all but one simulation with

dobs ⁄dep > 2 concluded wrongly that there were significant

effects of the covariates considered. Such a ratio of

dobs ⁄ dep > 2 is likely to occur for numerous studies [N ⁄Ne

is reported to be generally between 2 and 10 by Frankham

(1995); Shimatani (2010) also reports a large variance of

fecundity not explained by DBH]. Additional simulations

covering a range of scenarios showed that the type I error

rate found here (i) was weakly sensitive to the dispersal ker-

nel used, (ii) was not sensitive to the consideration of

another covariate (related or unrelated to fecundity), but

(iii) was lower for ‘simpler’ covariates (one quantitative

covariate < three quantitative covariates < one class co-

variate < two class covariates), (Data S2).

Hereford, Hansen & Houle (2004) previously listed several

reasons why selection gradients found in the literature could be

generally overestimated. Here, we showed that for studies typi-

cal of trees species, the covariates reported so far as significant

could also be over-represented. Thus, conclusions about signif-

icant covariates affecting fecundity should be carefully consid-

ered. We can expect that the biological relevance of the

variation in fecundity detected across covariates values helps

to drawwise conclusions.

Possible alternatives are proposed by statistical theory to

account for these correlated matings because of variance in

fecundity. A first solution can be bootstrap consisting in re-

sampling mother plants and using the genotypes of the

actual seeds from these mother plants until reaching the

same number of seeds as the observed data set (e.g. Chenault

et al. 2008). This procedure generates bootstrap data sets

that keep the correlation structure among seeds within prog-

enies. A second solution would be to develop mixed-effects

mating models that simultaneously consider fixed effects of

the covariates on fecundity and an additional random indi-

vidual effect that accounts for the remaining unexplained

part of variance in fecundity. The Bayesian framework devel-

oped here makes it possible to estimate the parameters in

this statistical model, and the MEMM computer program

should integrate fixed effects soon. This type of approach

has already been fruitful in several domains which simulta-

neously consider genotypic and demographic information

such as survival analysis, life-history traits estimation or heri-

tability in relation to capture-mark-recapture data (Gimenez

& Choquet 2010).

Finally, this study stresses the difference between individual

fertility (i.e. male reproductive success) and individual fecun-

dity. The former is defined as the actual number of ovules that

a given plant fertilizes after pollen dispersal (either as an

expected number before sampling or as a realized number

after sampling, which is estimated from categorical assign-

ments), whereas the latter is the amount of efficient pollen

released before dispersal. Achieving a paternity assignment

and counting the number of seeds fertilized by each pollen

donor provides a good estimate of individual fertilities but is

not perfectly correlated to individual fecundity because of (i)

the spatial arrangement of individuals and (ii) the sampling

strategy of the mother trees. Here, we found correlations

between fertilities and fecundities between 0Æ8 and 0Æ9. But the
differences between fecundity and expected fertility should

increase with more clustered distributions of trees: The fertil-

ity of an isolated individual is lower than expected from its

fecundity for instance. And the differences should increase

with a decreasing number of sampled mother trees because no

correction is applied to fertility estimates to account for the

biases generated by a non-representative sampling (i.e. some

mothers instead of all plants providing seeds). Furthermore,

the differences between expected fertility and observed fertility

should be more variable with a smaller number of seeds anal-

ysed. Both phenomena should amplify the poor performance
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of basic paternity analysis in estimating individual fecundities

when the sampling rate decreases.

Because fertility is not always the characteristics of principal

interest, it can be fruitful to separate the spatial (and phenolog-

ical) and fecundity components within amodelling framework.

In this way, it is possible to compute in a second step the male

reproductive success (and the variance of male reproductive

success, determining the effective size of male population) in

different spatial designs, or for different sampling schemes (for

instance, over all progeny of all trees in the study site). If the

main goal of a study is to characterize the effective number of

pollen donors per mother tree in the particular spatial configu-

ration of the study site basic paternity analyses provide a satis-

factory answer. The former approach is a first step towards a

‘mechanistic model’ of mating patterns, while the second is a

more descriptive approach.
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