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Abstract 
Although much is known on the effect of climatic conditions on the development of peacock leaf 
spot of olive, field-operational models predicting disease outbreaks are lacking.  With the aim of 
developing such models, a 10-year survey was conducted to relate leaf infection to climate 
parameters that can be easily monitored in the field. As outbreaks of disease are known to be 
linked to rain, models were evaluated for their ability to predict whether infection would occur 
following a rain event, depending on air temperature and duration of relative humidity above 
85%.  We examined a total of 134 rain events followed by confirmed leaf infection and 191 rain 
events not followed by detectable infection.  The field data were adequately fitted (both 
specificity and sensitivity > 0.97) with either a multilayer neural network or with 2 of 6 tested 
regression models describing high boundary values of high humidity duration, above which no 
infection occurred over the temperature range, and low boundary values below which no 
infection occurred.  The data also allowed the selection of a model successfully relating the 
duration of latent period (time between infection and the first detection of leaf spots) as a 
function of air temperature after the beginning of rain (R²>0.98). The predictive abilities of these 
models were confirmed during two years of testing in commercial olive orchards in southern 
France. They should thus provide useful forecasting tools for the rational application of 
treatments and foster a reduction in fungicide use against this major disease of olive. 
 
Additional keywords: Olea europaea; integrated pest management; decision support system 
 
 
 
Introduction 
 
Peacock leaf spot, sometimes also referred to as olive scab, olive leaf spot or cycloconium leaf 
spot, is one of the most common diseases of olive (Olea europaea) trees worldwide (Obanor et 
al., 2008b).  Its causal agent, formerly Spilocaea oleaginea (Castagne) S. Hughes, syn. 
Cycloconium oleagineum Castagne, was recently assigned to Fusicladium oleagineum 
(Castagne) Ritschel & U. Braun on the basis of morphological and genotypic traits (Crous et al., 
2007; Schubert et al., 2003, Sergeeva et al., 2009).  Leaf symptoms consist of brown, circular 
and often zonate spots eventually surrounded by a yellow halo (Zarco et al., 2007).  Over time, 
the leaves become chlorotic and defoliation may occur, which can significantly weaken the plant 
and reduce fruit yield on heavily infected trees (Graniti, 1993). It can also affect the quality of 
the fruits and can decrease the oil yield (Graniti, 1993).  Most of the cultivars used for 
production are susceptible, even if a large range of disease prevalence can be observed among 
cultivars (MacDonald et al., 2000).  On susceptible cultivars in conditions favourable for disease 
development, the protection relies heavily on chemical control.  In such situations in New 
Zealand, up to six sprays may be applied per year, corresponding to a total application of over 6 
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kg of copper per ha (Obanor et al., 2008b).  We have also observed such levels of copper use in 
France in some orchards planted with the most susceptible cultivars in areas where climatic 
conditions are particularly favourable to disease development (unpublished data).   

The infections result from the germination of conidia on the surface of the leaves.  The fungus 
rapidly penetrates the thick cuticle of the olive leaf and develops a colony, restricted to the 
subcuticular area of the epidermis, leading to the formation of a stroma (Graniti, 1993).  The 
lesions remain undetectable to the naked eye until conidiophores are produced on the stroma, 
breaking the cuticular layer, and sporulation occurs (Graniti, 1993).  The conidia are 
disseminated by wind (Lops et al., 1993) and rain (Tenerini, 1964) and can, in turn, produce new 
lesions.  As olive is an evergreen tree, numerous cycles can take place year-round whenever 
conditions are favourable to disease development in the orchard.  Contrary to the situation for 
apple scab, caused by a related species (Gadoury & Mac Hardy, 1982), no evidence has been 
reported for any epidemiological role of a hypothetical sexual stage in F. oleagineum.  
Furthermore, recent studies on the genotypic diversity of this fungus support the predominance 
of asexual reproduction (Obanor et al., 2010a). 

Outbreaks of disease are strongly linked to rain events (Loussert & Brousse, 1978) and 
studies have been conducted on the effect of temperature and relative humidity on the infection 
process and on the latent period before symptom expression.  Leaf infections were reported to 
occur at relative humidity conditions as low as 80-85% (Chen & Zhang, 1983) but in most cases, 
wetness appeared to be necessary (Graniti, 1993; Loussert & Brousse 1978; Pappo & Pelec, 
1958).  The minimum duration of leaf wetness was estimated to vary between one and two days 
depending on the temperature, within a range of 5°C to 25°C (Graniti, 1993). The widest 
reported range of temperature conducive to conidial germination was from 2°C to 34°C (Graniti, 
1993), with an estimated optimum between 12°C and 15°C (Loussert & Brousse, 1978) or 
between 16°C and 22°C (Chen & Zhang, 1983; Graniti, 1993).  The time needed for symptom 
expression following leaf infection (referred to as "latent period" in this work) was also reported 
to be highly dependent upon temperature, ranging from 12 days at 16-20°C to 16-19 days at 21-
25°C (Chen & Zhang, 1983).  In very hot or very cold conditions, the latent period was estimated 
to last for several weeks or even several months (Miller, 1949; Graniti, 1993) and this resulted in 
autumn infections which caused leaf spots that did not develop until the next spring or summer 
(Graniti, 1993). 

Such knowledge of conditions favourable to disease development can be very useful to limit 
the application of fungicides according to the risk of infection.  In the last ten years, 
comprehensive multifactorial studies conducted in precisely controlled conditions have provided 
a useful basis for the construction of multiple regression models which characterize the 
relationships between disease severity or key steps of the disease cycle and environmental 
factors.  A third-order polynomial equation was used to describe disease severity as a function of 
air temperature and the duration of leaf wetness (Viruega & Trapero, 2002), and second-order 
polynomial equations were used to describe spore germination or appressorium formation as 
affected by temperature and leaf wetness duration and for modelling the kinetics of germ tube 
growth for 180 hours at each of five temperature levels (between 5 and 25°C) under continuous 
wetness (Obanor et al., 2008a). More recently, Obanor et al. (2010b) proposed a second-order 
polynomial model relating disease severity (estimated by the number of spots on batches of 
leaves examined on potted plants) to wetness duration, temperature and leaf age.  They also 
showed that in conditions of continuously high relative humidity (98% or higher) the quantitative 
relationship between disease severity and inoculum concentration was adequately represented by 
logistic equations for five different temperature levels between 5 and 25°C.  The effect of 
wetness interruption and the effect of wetness duration prior to a 12 hour dry period were also 
modelled with second-order polynomial equations for experiments conducted at either 10 or 
20°C.   

Such data constitute tremendous progress in our comprehension of the epidemiology of the 
disease and provide key information for the development of risk prediction models in the field.  
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In our attempts to develop such a model, however, we were confronted with difficulties in 
measuring leaf wetness duration accurately and in a way that would be representative for most of 
the canopy in an orchard.  To date, no wetness sensors have been endorsed by the World 
Meteorological Organization (Anonymous, 2008) and studies in orchards have shown that 
wetness assessment is highly influenced by the position of the sensors on the trees (Sentelhas et 
al., 2005).  Furthermore, reported correlations between visual observations and information 
provided by wetness sensors can be low with R² coefficients below 0.6 (Magarey et al., 2006).   

As a consequence, a different approach was initiated to develop predictive models for 
infection events and for the duration of the latent period, based on field-measured relative 
humidity, rain duration and temperature.  As infections are strongly related to rain in the field, 
the aim of our work was to identify the associated risk factors that could be easily integrated into 
an operational decision support system.  The specific objectives of the present study were (i) to 
identify climatic conditions that are needed, in addition to the presence of rain, to produce leaf 
infection in the field, and (ii) to estimate the duration of the latent period as a function of air 
temperature and relative humidity. 
 
 
 
Materials and Methods 
 
Experimental orchard  
The study was conducted from 1999 to 2009 in the Baux-de-Provence production area in 
southern France in a 2 ha commercial olive orchard located at an altitude of 50 m above sea 
level.  The orchard was planted in 1960 with cultivar Grossane, which is one the most 
susceptible to F. oleagineum among cultivars grown in France.  The trees were pruned in a 
traditional vase shape.  They were not irrigated and were cultivated according to local organic 
farming practices.  Within this orchard, we used a 70-tree experimental plot which had received 
no pesticide treatment since 1990. On 30 March 1999 at the beginning of the experiment, disease 
symptoms were present on 8% of the leaves in the experimental plot.  In the surrounding 
orchard, disease was only detected in a few areas, where a maximum of 2% of the leaves were 
infected. 
 
Monitoring of climatic data  
Data were collected from a weather station (CIMEL 140, CIMEL Electronique, Paris, France) 
managed by a local administration ("Comité Economique Agricole de l’Olivier" at Aix en 
Provence).  Located among olive trees 50 m south-east of the experimental plot, this weather 
station was equipped with sensors which allowed continuous recording of air temperature, 
relative humidity (RH) and rain intensity (in mm per hour for rain events > 0.2 mm).   
 
Disease assessment  
Ten trees were selected in the center of the experimental plot and marked for future observations.  
They were examined one to three times a week between January 1999 and December 2004. 
From each tree, 10 fully expanded leaves (3-12 months old) were collected at random and 
examined for symptoms. As a result, 100 leaves were examined for every observation date.  This 
sample size was chosen as an empirical compromise between the need for feasibility of frequent 
field surveys and the aim to minimize the risk of missing small increases in disease incidence.  
Each time, the number of leaves with visible spots was recorded and leaves without visible spots 
were processed to reveal latent infections.  We used a method somewhat similar to that 
developed by Zarco et al. (2007).  The leaves were incubated for 30 minutes in 15% KOH at 18-
22°C.  Following this treatment, a leaf was considered as infected if at least one translucent spot 
was revealed (Figure 1). 
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Linking rain events and leaf infection events 
Rain is indispensible for leaf infection to occur, but certain rain events may not result in infection 
if available inoculum is insufficient or if microclimatic conditions are not favourable.  The basis 
of our study was to examine 376 rain events (recorded between 1999 and 2009) and determine 
which of them resulted in subsequent infection.  Two iterative steps were used to achieve this 
purpose.  In the first step, we used threshold values of temperature and wetness duration 
provided by previous studies to identify situations conducive to infection and situations for 
which infection was not possible.  A rain was considered to be "non-infectious" in two 
situations: (i) if it occurred when air temperature was below 6°C (based on data of Chen & 
Zhang, 1983) or (ii) if it was followed by a high humidity period (RH>85%) shorter than 6 
hours.  A rain was considered as "infectious" (presuming that inoculum was present) if it 
occurred when air temperature was between 10°C and 20°C (based on data of Obanor et al., 
2010b) and when it was followed by a high humidity period (RH>85%) longer than 12 hours.  
This first step resulted in the identification of unambiguous situations (either clearly infectious or 
clearly non-infectious rain events). For the remaining ambiguous rain events, a second iterative 
step was carried out to remove the ambiguity.  
The second iterative step involved a detailed comparative examination of the weather data and 
the disease incidence data over the days following each of these ambiguous rain events.  We 
compared the dates of emergence of new leaf spots with the estimated duration of the latent 
period following each of these rain events.  The method used to estimate the duration of the 
latent period as a function of temperature and air humidity will be described below.  When the 
estimated latent period elapsed without any emergence of leaf spots, the rain event was regarded 
as "non-infectious".  Conversely, a rain event was regarded as clearly "infectious" if an outbreak 
of lesions occurred during the estimated latent period that followed and if no other rain events 
occurred during that period.  It was thus possible to identify additional infectious or non-
infectious events, leading to a substantially larger total data set.  However, it was sometimes 
impossible to define whether a rain event was responsible for a subsequent outbreak of disease, 
for example when several rain events occurred within a short time span before the observation of 
new symptoms. Such unresolved ambiguous cases were excluded from the rest of the study.   
 
Relating the duration of the latent period with air temperature after an infection event 
An estimate for the duration of the latent period was a necessary tool to reduce the number of 
ambiguous cases described in the second iterative step above.  The basis for establishing this 
estimate was the set of "infectious" rain events clearly identified in the first iterative step above.  
For each of these rain events, the duration of the latent period was compared to the average air 
temperature during the time between the beginning of the rain and the field observation of the 
associated peacock spots.  Regression analysis was used to fit second to sixth order polynomial 
models to the data. The goodness-of-fit of the models was compared on the basis of the 
correlation coefficients and the standard errors of the estimates computed as 

kn
YestYobs

SEER −

−
= ∑ 2)(

, where Yobs and Yest were the observed and model-estimated values, 

respectively, n was the total number of data points and k the degrees of freedom of the model.  
The distributions of residuals were also examined as routinely carried out in regression analysis.  
The best model was then used in the second iterative step described above, leading to an 
enlarged set of infectious rain events. This final set of data was then used to conduct a second 
round of regression analysis, using the same types of models, in order to further refine the latent 
period model. 
 
Relating the occurrence of infection with air temperature during rain and duration of high 
relative humidity following rain events  
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Two methods were used for the analysis of data associated with the set of infectious and non-
infectious rain events. One method consisted of regression analysis and the second method 
consisted of fitting neural network models.   
 
Regression analysis 
In a first step, an exploratory analysis of the data was realized by constructing a graph (Figure 2) 
plotting rain events according to the average temperature recorded during the rain (TR; X axis) 
and the duration of high relative humidity after the rain (DHRH; Y axis), quantified as the 
number of hours with high relative humidity (RH>85%).  Infectious rain events were 
distinguished from non-infectious rains, revealing conditions favourable to infection, conditions 
clearly not conducive to infection and "ambivalent conditions" for which both infectious and 
non-infectious rains were present.   
In the second step we determined, across the range of recorded temperatures, two sets of 
boundary values.  One set of boundary values represented the shortest durations of high humidity 
associated with infectious rains and the second set represented the longest durations of high 
humidity associated with non-infectious rains (Figure 2).   
The third step consisted in fitting regression models to the boundary values identified in step 
two, in order to characterize the critical condition curve above which a rain was always 
infectious and the curve below which a rain was never infectious.  Regression analysis was 
realized with the help of CurveExpert 1.3 software.  Among the types of models available for 
evaluation with this software, six were selected for comparison (Table 1) because they provided 
curves with a high negative slope at low X values and a general L or U shape (Perner, 2007; 
Seber & Wild, 1989) as shown by the data points (Figure 2).  The goodness-of-fit of the models 
was compared on the basis of the correlation coefficients, the standard errors of the estimates and 
the distribution of residuals, as indicated above.  In addition, the Akaike Information Criterion 
(Akaike, 1969) was computed as AIC = n Log(SSE/n) + 2(p+1), where SSE was the sum of 
squared errors SSE = Σ(Yobs – Yest)² and p was the number of estimated parameters of a model.   
 
Artificial neural network models 
The data were also analysed using a multilayer feed-forward neural network (Peacock et al., 
2007) to provide an appraisal of the occurrence of infection following a rain event.  Tanagra 
software (available from the website: http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html) 
was used with the same two variables as in the regression analysis above (TR and DHRH).  The 
neural network was run with the standardized values of these variables ([raw value – 
average]/standard deviation), two neurons in the hidden layer and the learning parameters and 
stopping rules shown in Table 2.  Its performance was evaluated by computing the overall 
prediction success, the sensitivity and the specificity as described by Peacock et al., 2007.   
 
 
 
Results 
 
Progress of infection over time  
The observed incidence of leaves with typical peacock spots (visible infections) in the orchard 
varied widely over the ten-year study (0 to nearly 70%; Figure 3).  When taking into account the 
latent infections revealed by the laboratory test (referred to as "total infections"), the maximum 
incidence reached 90%.  Reductions in the number of diseased leaves in the orchard were 
associated with defoliation, due to natural senescence of the leaves or disease-related abscission.  
This phenomenon was occasionally amplified by episodes of strong winds (wind speed > 70 
km.hr-1; Figure 3). 
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Linking rain events and leaf infection events 
The first iterative step resulted in the unambiguous identification of 63 infectious and 165 non-
infectious rain events among the 376 rain events examined.  
The second iterative step allowed the identification of 71 additional infectious events and 26 
non-infectious events, leading to a total data set of 134 infectious and 191 non-infectious rain 
events.  The remaining unresolved ambiguous cases (excluded from the rest of the study) 
amounted to 51 out of a total of 376.   
 
Relating the duration of the latent period to air temperature after an infection event 
The final polynomial regression analysis was carried out on the total data set of 134 infectious 
rain events.  Fitness improvement beyond the fourth degree polynomial was marginal (Figure 4).  
The equation for this model, represented in Figure 5, was:  
Di = 364.76 – 89.57 * Ti +9.12 * Ti^2 –0.43 * Ti^3 + 0.0078 * Ti^4,  
where Di and Ti represented the duration of the latent period and the average temperature during 
the period from leaf infection until symptom expression, respectively. 
 
Relating the occurrence of infection to air temperature during rain and duration of high 
relative humidity following rain events  
Regression models  
Among the six models tested, four adequately described both sets of boundary values defined in 
Figure 2 (critical conditions above which a rain was always infectious and those below which a 
rain was never infectious).  The best fitness indicators were observed for the Logistic model 
(Table 1) and for the Vapor Pressure model whose graphic representation is shown on Figure 6.   
 
Neural network model 
The feed-forward multilayer neural network was successfully used to define a model assigning a 
correct infection status to all but two of the 325 rain events examined in the study, resulting in a 
sensitivity value of 0.985.  All rain events not followed by infection were correctly identified, 
resulting in a specificity value of 1.  The parameters of this model are described in Table 3.  
Based on the model, a curve was constructed to delineate the critical high humidity duration 
above which infection could occur over the temperature range (Figure 6).  
 
 
 
 
Discussion 
The analysis of the large data set collected in our 10-year study, using the results from previous 
work in controlled conditions (Viruega & Trapero, 2002; Obanor et al., 2008a; Obanor et al., 
2010b), allowed the successful fitting of models relating field-measured climate data to the 
occurrence of olive leaf infection by F. oleagineum and to the duration of the latent period 
following infection. To our knowledge, this is the first successful exploitation of field data on 
olive peacock spot to develop predictive models.  

Two very different approaches were used for modelling leaf infection. The regression 
approach required the selection and separate analysis of two sets of boundary values 
(representing, respectively, the shortest durations of high humidity associated with infectious 
rains and the longest durations of high humidity associated with non-infectious rains).  In 
contrast, the neural approach used the global data set, without any need for preliminary 
interpretation of the data, and provided a single boundary separating infectious and non-
infectious rain events. Despite this advantage and its wide use for pattern or voice recognition, 
this type of model is still seldom used for plant protection studies (Peacock et al., 2007).  
Interestingly, the predictive curves provided by the two approaches were quite similar in shape 
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(Figure 6) and the sensitivity and specificity of the models were similarly high (Table 4).  This 
supported a posteriori the choices made in the present study to distinguish the critical high and 
low boundary values (Figure 2).  For practical field application, however, the models provided 
by the regression approach were preferred for further work.  The reason for this choice was that 
the difference in specificity and sensitivity of the two complementary curves (Table 5) allows the 
operator to select a model depending on an appreciation of the field situation and the level of 
acceptable risk. Using the curve showing low boundary values for infection (Figure 6) as a 
decision threshold can lead to possible under-estimation of the infection risk. In contrast, using 
the curve showing high boundary values for non-infection can lead to possible over-estimation of 
the infection risk.  

Among the six models used in the regression analysis of the high and low boundary values, 
two clearly provided the best fits: the logistic model and the vapour-pressure model.  Although 
the fitness indicators were slightly higher for the logistic model (Table 1), we selected the 
vapour-pressure model for the development of a predictive tool.  The reason which guided this 
choice was that the curves fitted to our data with the logistic model intersected at low 
temperatures (X axis), casting a doubt on their biological legitimacy because they delineated a 
zone where a rain event should be both infectious and non-infectious at the same time.  The 
vapour-pressure model did not present this drawback.  Interestingly, the curves fitted with this 
model (Figure 6), although they only pertain to infection vs non-infection, present a strong 
analogy in shape with those of the model recently used by Viruega et al. (2011) to describe 
disease severity according to wetness duration and temperature in a controlled environment 
study.   

Several future improvements in the predictive tool could be envisioned.  Beyond knowing if 
weather conditions are conducive for infection to occur, the growers may wish to modulate the 
timing of their fungicide applications depending on the severity of the ensuing disease in the 
field.  The recently established relationship between disease severity and climatic parameters 
(Viruega et al., 2011) constitutes a remarkable step toward such a goal.  Several additional 
factors would need to be considered in the field, including the susceptibility of the olive cultivar 
(MacDonald et al., 2000) and inoculum pressure.  The quantitative role of inoculum pressure has 
clearly been shown in controlled environment studies, both in terms of disease incidence and 
disease severity (Obanor et al., 2010b; Viruega et al., 2011).  For intensively studied diseases 
such as Botrytis leaf blight of onion, direct field assessment of airborne inoculum has been used 
in conjunction with weather-based disease prediction models (Van der Heyden et al., 2012).  
Alternatively, indirect estimates of inoculum pressure might also be simpler to implement in a 
field situation in the case of olive peacock.  For example, quantifying the frequency of leaf 
infection on the trees might provide sufficient information for modelling purposes as fallen 
leaves in the orchard are not expected to liberate substantial amounts of inoculum (Prota, 1958; 
Laviola, 1966).  Implementing such improvements, however, might not be sufficient as other 
complex factors may also be implicated in disease severity.  For example, classes of leaf age 
would need to be distinguished, as most damaging infections were reported to occur in the spring 
(Shabi et al., 1994), possibly because the susceptibility of a leaf varies significantly with its age 
(Viruega et al., 2011).  This in turn would also require the establishment of models to describe 
the production of new leaves by the trees as well as their life span and the factors which 
influence their final abscission, providing an additional level of complexity.  Although desirable, 
such improvements of the risk prediction tools may be difficult to achieve soon in practice.  Even 
for better-known diseases such as apple scab, to which much modelling effort has been devoted, 
quantification of risk has long been limited to predicting the release of primary inoculum 
according to climatic factors (Gadoury & MacHardy, 1982; Giosuè et al., 2000), suggesting that 
difficulties were encountered for the development of predictive tools taking disease severity into 
account.  More recent advances include models attempting to predict scab severity based on host 
susceptibility and phenological stage as well as climatic factors (Rossi et al., 2007).  However, 
modelling the severity of apple scab is complicated by at least two factors.  One is the 
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implication of both a sexual and an asexual form of inoculum.  The second one is the difficulty 
in predicting the survival of pseudothecia and the amount of viable ascospores that they carry 
(Gadoury & MacHardy, 1986; Holb, 2006).  This remains to be demonstrated, but faster progress 
could be anticipated for peacock leaf spot of olive as its epidemiology is somewhat simpler (due 
to the absence of sexual reproduction) and there is hope that the amount of conidial inoculum 
could be inferred from by the number of diseased leaves present on the trees of an orchard. 

In conclusion, despite (or possibly thanks to) their simplicity, the models obtained in the 
present study appear to constitute a promising tool for practical field application.  During a 2-
year period of field validation (2009-2011) by the French Phytosanitary Advisory Service over a 
sample of 40 sites in the French olive-growing region, each encompassing a 1-km radius around 
a weather station, only one infection failed to be predicted (unpublished data).  That particular 
infection event could not be linked to any detected rain. It was thus probably the result of a very 
short rain (< 0.5 mm) which failed to be detected by the sensor. With this single exception, the 
robustness of the predictive tool appears promising, although it cannot be excluded that growers 
may have failed to detect minor infection events, associated with very low increases in disease 
incidence. It is not possible to evaluate the frequency of falsely predicted infections, as growers 
sprayed in response to a predicted infection if they considered that current fungicide coverage 
was insufficient.  The models are also currently used, together with archive meteorological data 
from 140 weather stations, to map the risk of olive peacock disease in Southern France according 
to the average yearly number of infectious rains. 
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Table 1:  Regression models fitted to the boundary values representing the shortest durations of high humidity associated with 'infectious' rains 
and     the longest durations of high humidity associated with 'non-infectious' rains shown in Figure 2. 

 

 
 
 
 

α y = duration of period with air relative humidity > 85% from the start of a rain event (h) and x = average air temperature during the rain (°C) 
β a rain event was considered as 'infectious' if it was followed by an increase in the incidence of peacock leaf spot within a time frame and 
conditions described in the Materials and Methods 
γ Akaike Information Criterion 
δ ND: not defined; the software was unable to fit this model to the data 
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Table 2:  Parameters and rules used for the construction of a multilayer neural network describing 
the advent of leaf infection by Fusicladium oleagineum following rain events 
 
Learning parameters 

Validation set proportion 0.20 
Learning rate 0.15 

Stopping rules 
Maximum number of iterations 100 

Error rate thresold 0.01 
Verify error stagnation no 

 
 
Table 3:  Parameters of the fitted neural network model describing the advent of leaf infection by 
Fusicladium oleagineum following rain events 
 
Parameters for Input variable standardization 

Variable Average Standard deviation 
TRα 12.3566 4.4680 

DHRHβ 9.6559 6.6573 
Weights from Input layer to Hidden layer 

- Neuron 1 Neuron 2 
TR -5.0460 0.4371 

DHRH -1.1489 -5.6071 
bias -3.2367 -3.8346 

Weights from Hidden layer to Output layer 
- no infection infection 
Neuron 1 4.87441612 -4.87440901 
Neuron 2 5.30379161 -5.30378556 

bias -2.694614 2.69461031 
α TR: average temperature recorded during the rain 
β Duration of high relative humidity (RH>85%) after the rain 
 
 
Table 4: Specificity and sensitivity of the models selected to describe the advent of leaf infection by 
Fusicladium oleagineum following rain events.   
 
Model α Specificity β Sensitivity γ 
Low threshold regression 
model (Vapor Pressure 
Model) 

1 0.977 

High threshold regression 
model (Vapor Pressure 
Model) 

0.974 1 

Neural network model 1 0.985 
α see Figure 3 for a description of the models 
β  rate of correctly predicted absence of infection 
γ rate of correctly predicted infections 
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Figure 1: Latent infection of Fusicladium oleagineum (translucent spot) revealed by treatment of 
symptomless olive leaf with potassium hydroxide. 
 
 
 
 
 
 

 
 
Figure 2: Characterisation of rain events according to temperature and duration of high relative 
humidity after rain onset.  Each rain event was assigned an "infectious" status if it was followed by 
an increase in the incidence of peacock leaf spot within a time frame and conditions described in the 
Materials and Methods.  Two sets of rain events were distinguished as boundary values.  One set 
represented the rain events with the shortest durations of high humidity associated with infection 
and the second set represented the longest durations of high humidity associated with non-infectious 
rains. 
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Figure 3: Progression overtime of Fusicladium oleagineum incidence (% infected leaves). The 
lower curve (grey colour) represents leaves with typical peacock spots (visible infections).  The 
upper curve (black colour) represents the total number of infected leaves, including those with 
latent infections revealed by laboratory tests.  Individual dots on the upper part of the frame 
represent events of substantial leaf fall related with episodes of strong winds (>70 km per hour).  
 
 
 

 
 
Figure 4: Relationship between goodness-of-fit indicators and the order of polynomial models 
relating the duration of peacock leaf spot latent period as a function of air temperature 
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Figure 5: Relationship between the duration of the latent period and air temperature. Each data point 
represents an infectious rain event.  The curve shows a 4th order polynomial model fit to the data 
 
 
 
 

 
 
Figure 6: Predictive models for the infection of olive leaves by Fusicladium oleagineum according 
to temperature and duration of high relative humidity after rain onset. In addition to a multilayer 
neural network model, regression models were fitted to the boundary values representing the lowest 
durations of high humidity associated with "infectious" rains and the highest durations of high 
humidity associated with "non-infectious" rains. 


