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a b s t r a c t

The time-resolved axial and azimuthal components of the wall shear rate were measured as function of
Reynolds number by a three-segment electrodiffusion probe flush mounted in the inner wall of the outer
fixed cylinder. The geometry was characterized by a radius ratio of 0.8 and an aspect ratio of 44. The axial
distribution of the wall shear rate components was obtained by sweeping the vortices along the probe
using a slow axial flow. The wavelength and phase celerity of azimuthal waves, axial wavelength of vor-
tices and their drifting velocity were calculated from the limiting diffusion currents measured by three
simple electrodiffusion probes.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

The laminar flow in the gap between an inner rotating and outer
fixed coaxial cylinders becomes unstable at critical Reynolds num-
ber due to centrifugal forces. Toroidal counter-rotating Taylor vor-
tices with an axial wavelength equal approximately to the gap
width replace original Couette flow [1]. The critical Reynolds num-
ber of the onset of Taylor vortices depends on the radius ratio of
the cylinders [2,3]. This number does not depend on the aspect ra-
tio C (wavelength versus width of the gap) with the exception of
low values of C.

At higher rotation rates, the axisymmetric Taylor vortices be-
come instable and azimuthal waves are superposed on them. The
onset of azimuthal waves is strongly affected by end effects [4].
Even for an aspect ratio as great as 40, the onset of waves occurred
at a Reynolds number greater than that at larger aspect ratios.
Jones [5,6] calculated numerically the stability of Taylor vortices
for radius ratios in the range 0.5 < g < 1 using the approximation
of infinite length cylinder.

Further increase in rotation rate induces azimuthal waves with
modulated amplitude, then turbulent flow occurs in cells occupied
earlier by vortices and, finally, the turbulent flow spreads through-
out the whole gap.

Although the stability of supercritical circular Couette flow has
been studied extensively, results for the velocity field of the flow
are limited. Using finite-difference method, Fasel and Booz [7]

calculated velocity fields of axisymmetric Taylor vortex flow in
wide gap, g = 0.5, for the Reynolds number as high as 100Rec. Seng-
upta et al. [8] used Fluent for calculation of the velocity field of
Taylor vortices in an narrower gap, g = 0.8, for a Reynolds number
of 253. Marcus [9] simulated numerically non-axisymmetric wavy
vortex flow in g = 0.875 and up to 15Rec.

Akonur and Lueptow [10] used particle image velocimetry for
measurements of the azimuthal and radial velocities in latitudinal
planes perpendicular to the axis of rotation of wavy Taylor–
Couette flow characterized by a radius ratio of 0.81. These mea-
surements were matched to measurements of the axial and radial
velocity in several meridional planes with the aim to get time-
resolved, three-dimensional, three-component velocity field for
wavy Taylor–Couette flow. The results were published for three
Reynolds numbers (124.3, 240.8 and 585.5). The PIV technique
was also applied by Abcha et al. [11] for the measurements of
the axial and radial velocity components of different instability
modes in a geometry characterized by the radius ratio 0.8 and as-
pect ratio 45.9.

A vast number of applications of the Taylor–Couette flow (TCF)
as reactor have been proposed, covering the field of catalytic [12],
biocatalytic [13], electrochemical [14–16], photochemical [17] and
polymerization reactions [18,19] as well as the mass transfer oper-
ations, such as counter current extraction [20], tangential filtration
[21] and crystallization [22].

Many studies concerning flow patterns in TCF have been accom-
plished, but the knowledge of local wall shear rates in wavy and
higher modes of TCF is only qualitative. This quantity is primordial
for the applications like membrane filtration [23], the reactors
with catalyst or immobilised enzyme [24] and the bioreactors

0894-1777/$ - see front matter ! 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.expthermflusci.2011.04.018

⇑ Corresponding author. Tel.: +33 5 46 45 87 80; fax: +33 5 46 45 86 16.
E-mail address: magdanana@yahoo.com (M. Kristiawan).

Experimental Thermal and Fluid Science 35 (2011) 1304–1312

Contents lists available at ScienceDirect

Experimental Thermal and Fluid Science

journal homepage: www.elsevier .com/locate /et fs

Magdalena Kristiawan
A8.

Magdalena Kristiawan

Magdalena Kristiawan

http://dx.doi.org/10.1016/j.expthermflusci.2011.04.018
mailto:magdanana@yahoo.com
http://dx.doi.org/10.1016/j.expthermflusci.2011.04.018
http://www.sciencedirect.com/science/journal/08941777
http://www.elsevier.com/locate/etfs


containing shear sensitive cells [25]. The mean values of wall shear
rate are known from the torque measurements [26,27] and linear
theories [28]. However the wall shear rates of the wavy TCF are
functions of space and time. Their fluctuations and especially their
maxima are the most important quantity in the above mentioned
applications. The experimental methods like Laser-Doppler ane-
mometry [29,30] and PIV [10] do not allow measurements in the
wall vicinity which are necessary for correct evaluation of wall
shear rates.

The electrodiffusion diagnostics (ED) is a convenient nonin-
trusive method for measurements of wall shear rates [31]. Using
three-segment micro-probes, the components of wall shear rate
can be measured [32]. In this work, the axial and azimuthal com-
ponents of the instantaneous shear rate on the wall of the outer
fixed cylinder were measured as a function of rotation rate of the
inner cylinder in the geometry characterized by radius ratio
g = 0.8 and aspect ratio C about 43. The axial distribution of the
wall shear rate components was obtained by sweeping wavy vor-
tices along the fixed probes using a slow axial flow. The method
of the vortex displacement by axial flow was already used by
Townsend [33] for determining the velocity field of the toroidal
vortices by the fixed hot wire anemometers. We also determined
the number of azimuthal waves, their phase celerity, axial wave-
length of vortices and their drifting velocity from the correlations
of the limiting diffusion currents measured by an array of simple
probes. This technique enabled us to obtain the mean azimuthal
wall shear rate of a vortex pair with an arbitrary wavelength in
contrast to the torque measurements which results in the wall
shear rate averaged over the whole gap height. Moreover the tor-
que measurements are distorted by the end effects, especially for
low depth of liquid.

The electrodiffusion measurements of wall shear rate compo-
nents for supercritical Couette flow carried out in this paper had
several objectives. The first objective was to get detailed space–
time cartography of wall shear rate components at several
Reynolds numbers. This knowledge can be used for calculation of

the instantaneous local wall shear stress via viscosity function.
The second objective was to compare the wall shear rate compo-
nents with the data on velocity fields published by Akonur and
Lueptow [10]. The third objective was to verify the theory of invis-
cid cores surrounded by boundary layers proposed by Batchelor in
the paper by Batchelor [26]. The last objective was to verify the
numerical data of Jones [5,6] on the critical Reynolds number of
the transition to wavy flow.

2. Experimental

The apparatus (see Fig. 1) consisted of an outer cylinder 3 made
of a Plexiglas tube with an inner diameter of R2 = 62 ± 0.1 mm and
an interchangeable inner Plexiglas cylinder 4. The inner cylinders
had a length of 275 mm and diameter R1 of 59 and 49.6 mm,
respectively. The corresponding radius ratios, g = R1/R2, were 0.95
and 0.8. The larger cylinder was used for the calibration of electro-
diffusion probe in situ. The inner cylinder was mounted on a stain-
less steal shaft 2 which had an upper ball bearing and bottom
polyamide sliding bearing. The shaft was driven by a stepping mo-
tor with a step of 0.9" and a gear box with slow-down ratio 1:9.
There was a plastic clutch between the shaft and gear box which
also served as electrical insulation. The revolutions were controlled
by a computer directly from the measuring software.

After filling the gap between the cylinders without rotation, the
pump was stopped and the rotation rate corresponding to Re = 80
was adjusted. When laminar Couette flow was fully developed,
Taylor vortices were established at Re equal to 100. Wavy vortex
flow was then adjusted either by a sudden step or by increasing
slowly the rotational rate (4 rpm/min) until determined Re.

The vortices were then swept by a slow axial flow. The liquid
was alternatively pushed and pulled by a syringe with a volume
of 100 mL at a rate of 0.0858 mL s!1 to an inlet tube in the bottom
of the apparatus where it was distributed through four holes be-
neath the inner cylinder. The mean velocity of the axial flow in

Nomenclature

Az amplitude of the axial component of wall shear rate
averaged over one wave

a maximum amplitude of azimuthal waves
d width of gap between cylinders
de probes diameter
D coefficient of diffusion
f frequency
h height of vortex pair
I1, I2, I3 limiting diffusion currents of three-segment probe
I4, I5, I6 limiting diffusion currents of simple probes
Itot sum of currents I1, I2, I3

K, b coefficients in relation Itot = Kcb

L length of gap between cylinders
leq equivalent length of probe, leq = 0.82de

n number of waves along the perimeter
Pe Peclet number, Pe ¼ cl2eq=D
R1, R2 radius of the inner and outer cylinders
Re Reynolds number, Re = XdR1/m
Reax axial Reynolds number, Reax = vmd/m
R44 autocorrelation function of current 4
R45 correlation of current 5 with respect to current 4
td55 time of the passage of vortex pair along probe 5
td56 time of the vortex passage from probes 5 to probe 6
tw44 period of azimuthal waves
tw45 time of wave passage between probes 4 and 5

t time
m kinematic viscosity
vd drifting velocity of vortices
vm mean velocity of superposed axial flow
z axial distance
x critical region of an impinging jet

Greek letters
C aspect ratio, C = L/d
c wall shear rate
g radius ratios, g = R1/R2

Xw angular velocity of azimuthal waves
X angular velocity of the inner cylinder
s shear stress
d thickness of the concentration boundary layer

Index
c transition from Couette flow to Taylor vortex flow
f averaged over one azimuthal wave (perimeter)
h azimuthal
max maximum
m mean value over vortex height
min minimum
r radial
z axial
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the annular gap was 0.079 mm s!1 which corresponds to a wall
shear rate of 0.074 s!1 and an axial Reynolds number of 0.49. As
the axial flow direction was alternatively down and up and the free
surface followed this motion, the aspect ratio varied between 40
and 44. At least one pair of vortices was swept up and down along
the probes to verify that the flow structure is not deformed due to
the axial motion. We did not observe any effect of this slow axial
flow on the characteristics of vortices which is in accord with the
numerical simulations of Recktenwald et al. [3]. They found that
for an axial Reynolds number of 0.49, the critical Reynolds number
increased by 0.009%. According to the linear stability analysis of
Chung and Astill [34], there is practically no change in Rec and axial
wavelength of the vortices for Reax = 0.49.

A three-segment probe and three simple circular probes, all
having the diameter de of 0.5 mm, were flush mounted in the inner
wall of the outer fixed cylinder with zero overlapping. In this way,
they did not disturb the flow. The electrodiffusion method is based
on the measurement of the limiting diffusion current on the work-
ing electrode which depends on convective mass transfer at the
electrode. As the concentration boundary layer is much thinner
than the momentum boundary layer, it is assumed that the veloc-
ity profile in the concentration boundary layer is linear with a
slope equal to the wall shear rate. The thickness of the concentra-
tion boundary layer d depends on the wall shear rate c, the coeffi-
cient of diffusion (D = 7.8 # 10!10 m2/s) and the equivalent length
of probe (leq = 0.82de). The mean thickness can be estimated as
d = 1.238(Dleq/c)1/3 [35]. In our case, the wall shear rate was mea-
sured in a layer of 49.5 lm and 14.5 lm for c = 5 s!1 and 200 s!1,
respectively. The principle of electrodiffusion method and mea-
surements of wall shear rate components using three-segment
probe were described elsewhere [36]. The arrangement of the
probes along the perimeter is shown in Fig. 2. The azimuthal ch,

and axial cz components of the wall shear rate c were measured
by the three-segment probe 3s. The data acquisitions were done
by a six channels potentiostat and software developed under Turbo
Pascal. The data were treated by a program written in the freeware
Scilab.

For steady flow at high Peclet numbers Pe ¼ cl2
eq=D

! "
the Leve-

que relation holds between the limiting diffusion current and wall
shear rate, Itot = Kc1/3. As our Peclet numbers were not high enough,
the three-segment probe was calibrated in the small gap (g = 0.95)
where the laminar Couette flow with wall shear rates in the inter-
val (5; 80 s!1) was adjusted. The sum of the segment currents was
measured as a function of c, see Fig. 3. The shear rates measured in
our experiments (g = 0.8) were also superior to 80 s!1. Using the
results of numerical calculations of Geshev and Safarova [37], we
divided the interval of the measured shear rates into two power
law sections (Itot = Kcb), one for the shear rates inferior to 80 s!1

with corresponding b = 0.31 and the other section for the shear
rates superior to 80 s!1 with b = 0.325. Typical values of K were
evaluated from the calibration data as follows K = 5.07 for
b = 0.31 and K = 4.75 for b = 0.325. The coefficients K and b were
used for the calculation of wall shear rate magnitude from the
sum of the measured currents in wavy flow. For the decomposition
of wall shear rate into axial and azimuthal components, directional
calibration at c = 20 s!1 was curried up. The probe was turned by
15" steps and the currents of three segments were measured in
the range (0"; 360"). The dependences of the segment currents nor-
malized by the sum of the currents on the flow angle are called
directional characteristics (see Fig. 4). Every flow angle corre-
sponds to unique combination of three currents.

The above given method of the wall shear rate calculation from
the measured limiting diffusion currents holds for steady and
quasi-steady flows. If the flow is not steady, the inertia of diffusion
boundary layer manifests itself as a filter which diminishes ampli-

Fig. 1. Experimental set-up with Taylor vortices. 1 – Three-segment electrodiffu-
sion probe, 2 – shaft, 3 – outer cylinder, 4 – inner cylinder.

5.8
24.2 23.5 

3s e4 e5

e6

velocity of the inner cylinder 
γz

γθ

γ

φ

Fig. 2. Arrangement of electrodiffusion probes along the perimeter of the outer
cylinder. The thick dash line stands for the cylinder perimeter. 3s: three-segment
probe; e4, e5, e6: simple probes.
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Fig. 3. Dependence of the total current of three-segment probe on wall shear rate.
Solid line stands for Itot = 5.07c0.31 for c 6 80 s!1.
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tude and cause phase shift. The method of Sobolik et al. [38] was
used for the calculation of absolute values of c from the measured
currents. Rehimi et al. [39] verified this method by numerical sim-
ulations. The inertia of the diffusion boundary layer has also an ef-
fect on the directional resolution of three-segment probes, but this
problem has not been solved until yet. Therefore the flow angle
was calculated under the assumption of quasi-steady flow.

The working solution was a 25 mol m!3 equimolar potassium
ferri/ferrocyanide aqueous solution with 1.5 mass% K2SO4 as sup-
porting electrolyte. A kinematic viscosity of 1.053 # 10!6 m2 s!1

was measured by an Ubbelohde viscometer at 22 "C and a density
of 1007 kg m!3 by a pycnometer. The behavior of the solution was
purely Newtonien [40]. The measured critical Reynolds number of
the onset of Taylor vortices (94.9) was in agreement with 94.8 re-
ferred by Ali et al. [41].

Different flow regimes were distinguished from the course of
the limiting diffusion currents delivered by the three-segment
probe. For a steady laminar flow, the currents ratio is constant.
The axial flow component of Taylor vortices changes this currents
ratio. The wavy vortex flow manifests itself by the current
oscillations.

The limiting diffusion current histories measured by the three-
segment probe (I1, I2, I3) and three simple probes (I4, I5, I6) in wavy
vortex flow at Re = 646 are shown in Fig. 5. The measurements
were taken over about one and half vortex pairs with a sampling
frequency of 40 s!1. The electric noise was removed by a low pass

Butterworth filter of order 3 with a low pass frequency correspond-
ing to 20 points. The signals have two periods. The azimuthal
waves manifest themselves by the signal oscillations with the
short period. The long period, td55, corresponds to the passage of
vortex pairs along the probe. The drifting velocity of vortices was
calculated from the time necessary for a vortex to cover the axial
distance (5.8 mm) between the probes e5 and e6. This time corre-
sponds to the lag td56 of the currents I5 and I6. Vortex height was
obtained by multiplication of the drifting velocity by the vortex
period.

The period and celerity of azimuthal waves were calculated
from the currents I4 and I5. For this aim the current correlations
with respect to the current I4 were calculated (see Fig. 6). The wave
period equals to the period of the correlations. This period is de-
noted as tw44 on the autocorrelation function R44. This period was
also found on the spectral density function calculated by the fast
Fourier transform. The celerity of azimuthal waves was calculated
from the time lag of the currents delivered by e4 and e5 and the
distance between these electrodes (23.5 mm). This time corre-
sponds to the lag tw45 between the correlations R44 and R45. The
length of azimuthal waves was then calculated from their celerity
and period. The number of azimuthal waves was obtained by divi-
sion of the perimeter of the outer cylinder by the wave length. An
entire number of waves was obtained with an accuracy of 3.5%. The
axial wave length of vortices was obtained with a similar accuracy.

Experimental uncertainty in wall shear rate measurements, typ-
ically 6% in absolute value and 3" in flow angle exceeds other
purely mechanical uncertainties such as tolerances of the cylin-
ders, the error in the rotational rate or physical uncertainties such
as accuracy of the time correlation. The error in wall shear rate
measurements was due to activity variation (fouling) of the elec-
trode surface. Typical variation of electrical current within 1.8%
in the calibration before and after series of experiments results
in 21/b = 6.28% variation in the wall shear rate. Another uncertainty
was in the irreproducibility of the flow pattern itself. Therefore
triplicate measurements were carried out and the mean values
were calculated. The electrodes were cleaned by a wet cloth and
calibrated before each set of measurements.

3. Results and discussion

The absolute value and components of the wall shear rate mea-
sured at Re = 646 and calculated from the currents I1, I2, I3 are
shown in Fig. 7 as a function of time normalized by the time of vor-
tex passage along the probe td55. As we have known the drifting
velocity of vortices, the time was transformed into axial distance
z (z = tvd). The z-coordinate concerns the wavelength of vortices
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0 60 120 180 240 300 360
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Fig. 4. Dependence of normalized segment currents on the angle of flow near the
wall.

Fig. 5. Current history of three-segment probe (currents I1, I2 and I3) and simple
probes (currents I4, I5 and I6) at Re = 646.
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Fig. 6. Correlation of currents shown in Fig. 5 with respect to the current I4.
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but it is irrelevant for the wavelength of azimuthal waves. The per-
iod of the oscillations in Fig. 7 is a function of the length and celer-
ity of azimuthal waves and drifting velocity of vortices. This period
increase with decreasing number and celerity of waves, and with
decreasing drifting velocity of vortex.

Several notions for the description of wall shear rate and its
components were introduced. The meaning of different symbols
is apparent from Fig. 7. The vortices are described by functions
cf, chf and czf, which are the wall shear rate and their components
averaged over azimuthal waves, or in another words averaged over
perimeter. To obtain these functions the azimuthal waves were re-
moved by a Butterworth filter of order 3 with a low pass frequency
corresponding to 1000 points. The course of filtered wall shear
rates and their components is similar to the wall shear rates in
Taylor–Couette non-wavy flow [42]. The wall shear rate cf and azi-
muthal component chf exhibit the same minima and maxima
(cfmin = chfmin = cmin, cfmax = chfmax = cmax). At these points the axial
component czf has practically negligible value. We can say that
czf is symmetric with respect to zero. Its amplitude is denoted as Az.

From the point of view of the axial component of wall shear
rate, there are critical points located at the outer cylinder at the
extremes of chf. The outflow manifests itself at the forward critical
point (z/h = 0.5, chfmax) and the inflow at the rear critical point
(z/h = 0, chfmin). The variation of czf is very steep with inflexion in
the forward critical point. The outflow has the form of a narrow
jet with high radial and azimuthal velocities. The course of chf is
symmetric with respect to the critical points. This fact was also
confirmed by visual observation. Abcha et al. [11] have presented
figures of the mean values of several flow quantities. However
their shear rate (Fig. 8g in [11]) does not exhibit the above mention
symmetry at the wall.

The wall shear rate of azimuthal waves has azimuthal and axial
components. The amplitudes of these components, which are func-

tions of the axial coordinate z, are given by the oscillation enve-
lopes in Fig. 7. The amplitudes of the axial component have
maximum az in the forward critical point and they are very small
in the rear critical point. The amplitudes of the azimuthal compo-
nent are almost zero in the critical points. They have maxima ah at
the extremes of czf.

Increasing the rotational rate very slowly (1 rpm/min), we ob-
served the transition from the Taylor vortex flow into wavy vortex
flow with two azimuthal waves at Re = 121.6. This value is close to
the value calculated by Jones [5]. From his Fig. 3, we deducted for
g = 0.8 values of Reynolds number 110, 115.2 and 129 for 1, 2 and 3
waves, respectively. Akonur and Lueptow [10] have found the tran-
sition to two waves mode at the Reynolds number 126 for g equal
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to 0.81. Our measurements of wall shear rate started at the Rey-
nolds number equal to 193 where three azimuthal waves were
strong enough to support the axial translation without deforma-
tion. In the range of Reynolds number (242–810), it was possible
to install three waves mode by a sudden increase of rotational rate
to determined Re from the fully developed Taylor vortices
(Re = 100). However four waves mode, which was adjusted by
increasing of rotational rate slowly (4 rpm/min), was more stable.
At the Reynolds number superior to 967 two wave mode was al-
ways achieved no matter how the rotational rate was established.
Two waves mode at Re > 967 is in agreement with the numerical
simulation of Jones [6].

The components of wall shear rates measured at different rota-
tion rate are shown in Fig. 8. At the lowest rotational rate, Re = 193
(Fig. 8a), three azimuthal waves were stable. The amplitude of the
azimuthal component of wall shear rate oscillations was almost
zero at the critical points. The amplitude of the axial component
exhibited maximum at the forward critical point (z/h = 0.5) and a
small value at the rear critical point (z/h = 0, 1). Minima of the axial
amplitude are located at the extremes of czf. At these points, the
azimuthal amplitude exhibited maxima. This scenario was the
same for all rotational rates.

The amplitudes of the azimuthal waves of successive vortices
were not always the same. Slight differences of magnitude compa-
rable with the accuracy of electrodiffusion measurements are man-
ifested by the dissymmetry on each side of the forward critical
point in Fig. 8b and c.

The axial component of the wall shear rate can be compared to
the wall shear rate in classical impinging jet even if the azimuthal
component in the forward critical point of wavy Taylor–Couette
flow exhibits a maximum. According to the boundary layer theory
[43], it holds for the critical region of an impinging jet that the wall
shear rate is proportional to the distance from the critical point x.
The maximum of the wall shear rate is at the transition from the
critical zone to the wall jet region. The distribution of the wall
shear rate fluctuations in function of x depends on the jet Reynolds
number and the distance of the orifice from the plate [44]. Jones [6]
concluded that the strong azimuthal jets at the outflow zone desta-
bilize the flow making the vortices wavy. Coughlin and Marcus
[45] supposed that the both radial and azimuthal jets and axial gra-
dient of the azimuthal velocity are responsible for the waviness.
Our results (Figs. 7 and 8) confirm these features. A strong azi-
muthal jet manifests itself by the maxima of chf and steep, linear
variation of czf in the outflow. The radial velocity of the jet can
be deduced from the axial gradient of czf, which increases with
the increasing Reynolds number.

The character of the flow was verified by frequency spectra, see
Fig. 9a and b. The first peak in Fig. 9b corresponds to a frequency
f1 = 0.623 Hz. This frequency is equal to the rotation rate 1.17 Hz
multiplied by the dimensionless frequency of wave train 0.266
and the number of waves 2. The second (1.246 Hz) and third peak
(1.86) are the harmonics of the base frequency. No other significant
frequencies appeared which would correspond to modulation of
the azimuthal waves.

Taylor–Couette flow was often studied by the torque measure-
ments. As the torque can be deduced from the mean azimuthal
wall shear rate, we had plotted chm in Fig. 10 as a function of the
Reynolds number. The triangles correspond to the Taylor vortices
[42] and the circles to the wavy vortices (gray to four waves, open
to three waves and full to two waves). The dash and dot line corre-
sponds to the hypothetical laminar Couette flow and the dotted
line to the Taylor flow. The full line, which represents the best fit
of the wavy vortices, has the equation chm = 0.003Re1.5. This expo-
nent was also found by Batchelor [26] who supposed that the flow
is steady and consists of inviscid cores surrounded by boundary
layers. However, the theory of Batchelor does not give the value

of the multiplication constant. Wendt [27] measured the torque
in three geometries, g = 0.68, 0.85 and 0.935 with an uncertainty
3%. His results were interpolated for g = 0.8 to give chm =
0.00289Re1.5 in the interval 400 < Re < 104, see Lathrop et al. [46].
The accord with our measurements is within 3.5%
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Fig. 9. Frequency spectra pour two waves mode. (a) Re = 967, 1st peak 0.54 Hz, 2nd
peak 1.08 Hz, 3rd peak 1.62 Hz. (b) Re = 1130, 1st peak 0.623 Hz, 2nd peak 1.246 Hz,
3rd peak 1.86 Hz.
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Fig. 10. Mean azimuthal wall shear rate as a function of Reynolds number.4 Taylor
vortices [42], s wavy flow n = 4, wavy flow n = 3, d wavy flow n = 2, — best fit of
data chm = 0.003Re1.5, –$$– hypothetical laminar Couette flow, $$$ best fit of Taylor
vortices, – – – data by Wendt [27] chm = 0.00289Re1.5.
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Akonur and Lueptow [10] estimated the mean value of the azi-
muthal shear stress from the PIV measurements. These values
were normalized by the shear stress at the transition to Taylor vor-
tex flow, srh/srhc. As the shear stress is a linear function of the shear
rate with viscosity as the multiplication constant, we can calculate
this ratio from our measurements, see Table 1. Our values chm/chc

are about 15% higher at Reynolds number about 570. This devia-
tion can be caused by the irreproducibility of the flow regimes,
the accuracy of the electrodiffusion method and also by the inabil-
ity of PIV to measure close enough to a wall. The last hypothesis is
supported by the fact that the data on the shear stress [10] exhibit
a discontinuity close to the wall.

For the prevention of membrane fouling the variations of wall
shear stress are more important than mean values. Akonur and
Lueptow [10] have found that for a Reynolds number of 585.5,
the shear at the outer cylinder for the outflow boundary is more
than three times higher than that for an inflow boundary. We have
found this ratio (chfmax/chfmin) higher than six for a similar Re = 568.
The discrepancies between the both methods can be explained by
the fact that the electrodiffusion method measures in a thinner
layer close to the wall than PIV technique. The particles used in
the PIV had a diameter 14 lm whereas the thickness of the diffu-
sion boundary layer, where we measured the shear rate, was about
25 lm at Re = 568. Bouabdallah [47] applied the electrodiffusion
method for the measurements of wall shear rates in Taylor–Couette
flow with g = 0.82, 0.909 and 0.954. We can compare our results on
chfmax and chfmin with that of Bouabdallah [47] for g = 0.909. In both
cases, the minimum values of shear rate approach the extrapolated
values of laminar Couette flow. For Re equal to 200 and 1000 the
ratios of maximum and minimum values are 1.6 and 2.2 [47],
respectively, and 4.6 and 9.8 (our results), respectively. Lathrop
et al. [46] used hot film anemometry for wall shear rate measure-
ments but their results are presented as time series only.

The knowledge of maximum values of wall shear stress is
important for the solicitation of microorganisms and prevention
of membrane fouling. The values of chfmax for three waves grew

with Reynolds number with an exponent of 1.67, see Fig. 11. Prac-
tically, the data for all three numbers of azimuthal waves can be
fitted by the same function.

The amplitude Az of the axial component of averaged wall shear
rate czf grows with an exponent of 1.88, see Fig. 12, that is more
rapidly than chfmax. However the values of Az are lower than that
of chfmax, especially for two azimuthal waves.

The maximum azimuthal amplitude ah of azimuthal waves de-
pends on the number of waves, see Fig. 13. The amplitude grows
up with increasing Reynolds number and with decreasing number
of waves.

The maximum axial amplitude az also depends on the number
of waves, see Fig. 14. The axial amplitude grows more rapidly with
Reynolds number than the azimuthal amplitude.

It holds for all Re, that az is superior to ah. The maximum ampli-
tude az is located in the forward critical point. However, the oscil-
lation of the absolute value of the wall shear rate are almost
negligible in this point, because ah is zero and chf has its maximum
which is several times higher than az. A single electrode gives only
scares information about fluctuations. It exhibits small oscillations
in the forward critical point (outflow), see currents I4, I5 and I6, in
Fig. 5. One of the currents of the three-segment probe exhibits al-
ways fluctuations which manifest in the axial oscillations in the
forward critical point.

The angular velocity of azimuthal waves normalized by the
velocity of the inner cylinder is shown in Fig. 15. The exponential

Table 1
Comparison of normalized mean azimuthal wall shear rate with normalized mean
wall shear stress [10].

Akonur and Lueptow [10] This work

Re srh/srhc n Re chm/chc n

241 4.5 4 242 5.1 3
590 15 4 568 17.2 4
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Fig. 12. Amplitude of the axial component of mean wall shear rate as a function of
Reynolds number. For symbols see Fig. 11. — best fit of data for n = 3
Az = 0.00022Re1.88.
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Fig. 11. Maximum and minimum of azimuthal wall shear rate as a function of
Reynolds number. s wavy flow n = 4, wavy flow n = 3, d wavy flow n = 2. –, best
fit of data for n = 3 chmax = 0.0019Re1.67.and chmin = 0.005Re1.2.
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Fig. 13. Maximum of azimuthal amplitude of azimuthal waves as a function of
Reynolds number. For symbols see Fig. 11. — best fit of data for n = 3,
ah = 0.00036Re1.7.
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dependence on Reynolds number has an asymptote equal to 0.267.
This value is in agreement with the numerical simulation of King
et al. [48].

At the lowest Re, the drifting velocity of vortices was about 9%
higher than the mean velocity of the axial flow, see Fig. 16. The
drifting velocity decreased exponentially with increasing Re to a
value of the mean velocity of the axial flow. Using perturbation
theory, Snyder [49] predicted vd/vm = 1.21 for g = 0.95 at the

transition from Couette flow to Taylor vortices. His experimental
values diminished with increasing Reynolds number which is in
accord with our measurements. Wereley and Lueptow [50]
obtained a value of 1.17 for g= 0.83 by interpolation of the theoret-
ical results of Recktenwald et al. [3]. Their experimental values lay
below the theoretical.

The axial wavelength of vortices was in almost all cases lower
than the double of the angular space (h = 11–12 mm, 2d =
12.4 mm). Only at the highest Reynolds numbers (967 and 1130)
the wavelength of vortices was superior (13.1 mm) to 2d.

The course of azimuthal component averaged over perimeter is
symmetric with respect to the critical points which is in concor-
dance with the results of Akonur and Lueptow [10]. Her form is
similar to the distribution in axisymmetric Taylor vortices [42].
However, the maximal values are more important in wavy flow.
This similarity was also confirmed by Wang et al. [51] who com-
pared the mean values of velocity components measured in wavy
flow using PIV with the results of numerical simulations at the
same Reynolds number supposing that the flow is axisymmetric.

4. Conclusions

Previous studies of Taylor–Couette wavy flow have never given
components of time dependent wall shear rate. We have used
three-segment electrodiffusion probe to measure these compo-
nents in a large range of Reynolds numbers. The knowledge of the
azimuthal and axial components of wall shear rate gives us an idea
about the variations of the wall shear stress and flow direction in the
wall vicinity. These variations are crucial for the prevention of mem-
brane fouling and solicitation of microorganisms fixed at the wall.

The maximum values of wall shear rate are in forward critical
point (outflow). They are equal to the azimuthal component as
the axial component is zero at this point. The fluctuations of the
azimuthal component are zero whereas the fluctuation of axial
component achieved a maximum at this point. The oscillations
have a similar character also in the rear critical point, where the
wall shear rate and azimuthal component have a minimum and
the axial component is near to zero.

The axial distributions of the wall shear rate components averaged
over perimeter are similar to the distribution in steady Taylor vortices.

The space averaged wall shear rate, the maximum of azimuthal
component, and the amplitudes of wall shear rate components in-
crease with Reynolds number on the power between 1.5 and 1.9.

The wave celerity normalized by the velocity of the inner cylin-
der decreases exponentially with increasing rotational rate. The
drifting velocity of vortices decreases with increasing Reynolds
number.

The dependence of the mean azimuthal component of the wall
shear rate on the angular velocity of the inner cylinder is in agree-
ment with the theory of inviscid cores surrounded by boundary lay-
ers proposed by Batchelor [26]. The wall shear rate components
exhibited the same features as described by Akonur and Lueptow
[10].
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