N. Mizushima, T. Yoshimori, and Y. Ohsumi, The role of Atg proteins in autophagosome formation, Annu Rev Cell Dev Biol, vol.27, pp.107-132, 2011.

B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, vol.469, pp.323-335, 2011.

N. Mizushima and M. Komatsu, Autophagy: renovation of cells and tissues, Cell, vol.147, pp.728-741, 2011.

T. Johansen and T. Lamark, Selective autophagy mediated by autophagic adapter proteins, Autophagy, vol.7, pp.279-296, 2011.

C. Kraft, M. Peter, and K. Hofmann, Selective autophagy: ubiquitin-mediated recognition and beyond, Nat Cell Biol, vol.12, pp.836-841, 2010.

S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, and J. Bruun, ) p62/ SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J Biol Chem, vol.282, pp.24131-24145, 2007.

V. Deretic, Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors, Curr Opin Immunol, vol.24, pp.21-31, 2012.

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, and N. Mizushima, Escape of intracellular Shigella from autophagy, Science, vol.307, pp.727-731, 2005.

B. F. Py, M. M. Lipinski, and J. Yuan, Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection, Autophagy, vol.3, pp.117-125, 2007.

C. L. Birmingham, A. C. Smith, M. A. Bakowski, T. Yoshimori, and J. H. Brumell, Autophagy controls Salmonella infection in response to damage to the Salmonellacontaining vacuole, J Biol Chem, vol.281, pp.11374-11383, 2006.

M. G. Gutierrez, S. S. Master, S. B. Singh, G. A. Taylor, and M. I. Colombo, Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages, Cell, vol.119, pp.753-766, 2004.

S. Mostowy and P. Cossart, Bacterial autophagy: restriction or promotion of bacterial replication?, Trend Cell Biol, vol.22, pp.283-291, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648348

S. Mostowy, Autophagy and bacterial clearance: a not so clear picture, Cellular Microbiol, vol.15, pp.395-402, 2013.

S. Mostowy, V. Sancho-shimizu, M. Hamon, R. Simeone, and R. Brosch, ) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways, J Biol Chem, vol.286, pp.26987-26995, 2011.

S. Mostowy, M. Bonazzi, M. A. Hamon, T. N. Tham, and A. Mallet, Entrapment of intracytosolic bacteria by septin cage-like structures, Cell Host Microbe, vol.8, pp.433-444, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01376115

M. Ogawa, Y. Yoshikawa, T. Kobayashi, H. Mimuro, and M. Fukumatsu, A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens, Cell Host Microbe, vol.9, pp.376-389, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02315923

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nat Rev Mol Cell Biol, vol.13, pp.183-194, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02653058

D. Shim, T. Suzuki, S. Chang, S. Park, and P. J. Sansonetti, New animal model of shigellosis in the guinea pig: its usefulness for protective efficacy studies, J Immunol, vol.178, pp.2476-2482, 2007.

O. J. Perdomo, J. M. Cavaillon, M. Huerre, H. Ohayon, and P. Gounon, Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis, J Exp Med, vol.180, pp.1307-1319, 1994.

G. J. Lieschke and N. S. Trede, Fish immunology. Curr Biol, vol.19, pp.678-682, 2009.

S. A. Renshaw and N. S. Trede, A model 450 million years in the making: zebrafish and vertebrate immunity, Dis Model Mech, vol.5, pp.38-47, 2012.

C. Santoriello and L. I. Zon, Hooked! Modeling human disease in zebrafish, J Clin Invest, vol.122, pp.2337-2343, 2012.

P. Herbomel, B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo, Development, vol.126, pp.3735-3745, 1999.

J. P. Levraud, O. Disson, K. Kissa, I. Bonne, and P. Cossart, Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae, Infect Immun, vol.77, pp.3651-3660, 2009.

J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, and P. Herbomel, Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos, Immunity, vol.17, pp.693-702, 2002.

E. Colucci-guyon, J. Tinevez, S. A. Renshaw, and P. Herbomel, Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes, J Cell Sci, vol.124, pp.3053-3059, 2011.

A. M. Van-der-sar, R. Musters, F. Van-eeden, B. J. Appelmelk, and C. Vandenbroucke-grauls, Zebrafish embryos as a model host for the real time analysis of Salmonella Typhimurium infections, Cell Microbiol, vol.5, pp.601-611, 2003.

A. E. Clatworthy, J. Lee, M. Leibman, Z. Kostun, and A. J. Davidson, Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants, Infect Immun, vol.77, pp.1293-1303, 2009.

M. K. Brannon, J. M. Davis, J. R. Mathias, C. J. Hall, and J. C. Emerson, Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos, Cell Microbiol, vol.11, pp.755-768, 2009.

A. C. Vergunst, A. H. Meijer, S. A. Renshaw, O. 'callaghan, and D. , Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection, Infect Immun, vol.78, pp.1495-1508, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02381194

T. K. Prajsnar, R. Hamilton, J. Garcia-lara, G. Mcvicker, and A. Williams, A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model, Cell Microbiol, vol.14, pp.1600-1619, 2012.

E. A. Harvie, J. M. Green, M. N. Neely, and A. Huttenlocher, Innate immune response to Streptococcus iniae infection in zebrafish larvae, Infect Immun, vol.81, pp.110-121, 2013.

M. Kanther and J. F. Rawls, Host-microbe interactions in the developing zebrafish, Curr Opin Immunol, vol.22, pp.10-19, 2010.

A. J. Perrin, X. Jiang, C. L. Birmingham, N. So, and J. H. Brumell, Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system, Curr Biol, vol.14, pp.806-811, 2004.

C. A. Collins, A. De-mazière, S. Van-dijk, F. Carlsson, and J. Klumperman, Atg5-independent sequestration of ubiquitinated mycobacteria, PLoS Pathog, vol.5, p.1000430, 2009.

Y. Yoshikawa, M. Ogawa, T. Hain, M. Yoshida, and M. Fukumatsu, Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nat Cell Biol, vol.11, pp.1233-1240, 2009.

F. Pan, R. Malmberg, and M. Momany, Analysis of septins across kingdoms reveals orthology and new motifs, BMC Evol Biol, vol.7, p.103, 2007.

S. Mostowy, N. Tham, T. Danckaert, A. Guadagnini, S. Boisson-dupuis et al., Septins regulate bacterial entry into host cells, PLoS ONE, vol.4, p.4196, 2009.

M. Kinoshita, C. M. Field, M. L. Coughlin, A. F. Straight, and T. J. Mitchison, Selfand actin-templated assembly of mammalian septins, Dev Cell, vol.3, pp.791-802, 2002.

L. Guyader, D. Redd, M. J. Colucci-guyon, E. Murayama, E. Kissa et al., Origins and unconventional behavior of neutrophils in developing zebrafish, Blood, vol.111, pp.132-141, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-02558365

A. Zychlinsky, M. C. Prevost, and P. J. Sansonetti, Shigella flexneri induces apoptosis in infected macrophages, Nature, vol.358, pp.167-169, 1992.

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, vol.304, pp.242-248, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683278

D. Klionsky, Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes, Autophagy, vol.4, pp.151-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00214269

N. Mizushima, T. Yoshimori, and B. Levine, Methods in mammalian autophagy research, Cell, vol.140, pp.313-326, 2010.

M. Laplante, S. David, and M. , mTOR signaling in growth control and disease, Cell, vol.149, pp.274-293, 2012.

C. He and D. J. Klionsky, Analyzing autophagy in zebrafish, Autophagy, vol.6, pp.642-644, 2010.

Y. Boglev, A. P. Badrock, A. J. Trotter, Q. Du, and E. J. Richardson, Autophagy induction is a Tor-and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis, PLoS Genet, vol.9, p.1003279, 2013.

K. Makky, J. Tekiela, and A. N. Mayer, Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine, Dev Biol, vol.303, pp.501-513, 2007.

V. Deretic and B. Levine, Autophagy, immunity, and microbial adaptations, Cell Host Microbe, vol.5, pp.527-549, 2009.

H. Christopher, J. , F. Maria, V. , O. Stefan et al., Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish Is dependent upon inducible nitric oxide, Cell Stem Cell, vol.10, pp.198-209, 2012.

L. Zhu, G. Zhao, R. Stein, X. Zheng, and W. Hu, The proteome of Shigella flexneri 2a 2457T grown at 30 and 37uC, Mol Cell Proteomics, vol.9, pp.1209-1220, 2010.

T. K. Prajsnar, V. T. Cunliffe, S. J. Foster, and S. A. Renshaw, A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens, Cell Microbiol, vol.10, pp.2312-2325, 2008.

M. Holub, C. Cheng, S. Mott, P. Wintermeyer, and N. Van-rooijen, Neutrophils sequestered in the liver suppress the proinflammatory response of Kupffer cells to systemic bacterial infection, J Immunol, vol.183, pp.3309-3316, 2009.

T. Suzuki, L. Franchi, C. Toma, H. Ashida, and M. Ogawa, Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages, PLoS Pathog, vol.3, p.111, 2007.

C. T. Yang, C. J. Cambier, J. M. Davis, H. Christopher, J. et al., Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages, Cell Host Microbe, vol.12, pp.301-312, 2012.

I. Tattoli, M. T. Sorbara, D. Vuckovic, A. Ling, and F. Soares, Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program, Cell Host Microbe, vol.11, pp.563-575, 2012.

F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, ) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, pp.49-56, 2011.

C. Gray, C. A. Loynes, M. K. Whyte, D. C. Crossman, and S. A. Renshaw, Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish, Thromb Haemostasis, vol.105, pp.811-819, 2011.

C. Hall, M. Flores, T. Storm, K. Crosier, and P. Crosier, The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish, BMC Dev Biol, vol.7, p.42, 2007.

M. Westerfield, The zebrafish book. A guide for the laboratory use of zebrafish (Brachydanio rerio), 1993.

C. Kimmel, W. Ballard, S. Kimmel, B. Ullmann, and T. Schilling, Stages of embryonic development of the zebrafish, Dev Dyn, vol.203, pp.253-310, 1995.

W. Salgado-pabón, S. Celli, E. T. Arena, K. Nothelfer, and P. Roux, Shigella impairs T lymphocyte dynamics in vivo, Proc Natl Acad Sci, vol.110, pp.4458-4463, 2013.

D. Gibbings, S. Mostowy, F. Jay, Y. Schwab, and P. Cossart, Selective autophagy degrades DICER and AGO2 and regulates miRNA activity, Nat Cell Biol, vol.14, pp.1314-1321, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00769543

M. Hollinshead, H. L. Johns, C. L. Sayers, C. Gonzalez-lopez, and G. L. Smith, Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus, EMBO J, vol.31, pp.4204-4220, 2012.

G. Lutfalla and G. Uze, Performing quantitative reverse-transcribed polymerase chain reaction experiments, Methods in Enzymology, pp.386-400, 2006.

M. Ludwig, N. Palha, C. Torhy, V. Briolat, and E. Colucci-guyon, Wholebody analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae, PLoS Pathog, vol.7, p.1001269, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02558376