M C Mackey 
  
M Tyran-Kami Ńska 
  
R Yvinec 
email: yvinec@math.univ-lyon1.fr
  
  
  
DYNAMIC BEHAVIOR OF STOCHASTIC GENE EXPRESSION MODELS IN THE PRESENCE OF BURSTING

Keywords: analytical distributions, invariant density, piecewise deterministic Markov process AMS subject classifications. 60J25, 60J28, 92C40

This paper considers the behavior of discrete and continuous mathematical models for gene expression in the presence of transcriptional/translational bursting. We treat this problem in generality with respect to the distribution of the burst size as well as the frequency of bursting, and our results are applicable to both inducible and repressible expression patterns in prokaryotes and eukaryotes. We have given numerous examples of the applicability of our results, especially in the experimentally observed situation that burst size is geometrically or exponentially distributed.

1. Introduction. Recent spectacular advances in the ability of experimentalists to monitor the temporal behavior of single molecules [START_REF] Elf | Probing transcription factor dynamics at the single-molecule level in a living cell[END_REF][START_REF] Golding | Real-time kinetics of gene activity in individual bacteria[END_REF][START_REF] Ozbudak | Regulation of noise in the expression of a single gene[END_REF][START_REF] Raj | Stochastic mRNA synthesis in mammalian cells[END_REF][START_REF] Raj | Single-molecule approaches to stochastic gene expression[END_REF][START_REF] Suter | Mammalian genes are transcribed with widely different bursting kinetics[END_REF][START_REF] Xie | Single-molecule approach to molecular biology in living bacterial cells[END_REF] inside cells has led to a quantum leap in our knowledge of their behavior as well as a plethora of data that challenge mathematicians. These techniques are so refined that they allow the single molecule quantification of the transcription of mRNA as well as the translation of the mRNA into protein. This visualization has shown that in many cases these transcription and translation processes occur in quantal bursts in which a few molecules are produced during a discrete period of time. An analysis of the data obtained from such experiments has given us many details of the nature of the bursting kinetics that are being used to guide mathematical modeling of these fascinating processes.

This paper utilizes the two main approaches that have been employed to model these bursting processes, i.e. a discrete formulation for the numbers of molecules [START_REF] Shahrezaei | Analytical distributions for stochastic gene expression[END_REF] or a continuous one [START_REF] Friedman | Linking stochastic dynamics to population distribution: An analytical framework of gene expression[END_REF][START_REF] Mackey | Molecular distributions in gene regulatory dynamics[END_REF] and illustrates the common features of both as well as the differences. Modeling (as opposed to simulation [START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF][START_REF] Mcadams | Stochastic mechanisms in gene expression[END_REF] which we do not consider) of the details of gene expression as a discrete Markov process has an extensive literature (c.f [START_REF] Hornos | Self-regulating gene: An exact solution[END_REF][START_REF] Innocentini | Modeling stochastic gene expression under repression[END_REF][START_REF] Peccoud | Markovian modeling of gene-product synthesis[END_REF][START_REF] Raj | Stochastic mRNA synthesis in mammalian cells[END_REF][START_REF] Ramos | Symmetry and stochastic gene regulation[END_REF][START_REF] Ramos | Symmetry in biology: From genetic code to stochastic gene regulation[END_REF][START_REF] Shahrezaei | Analytical distributions for stochastic gene expression[END_REF][START_REF] Thattai | Intrinsic noise in gene regulatory networks[END_REF]) that has recently seen a flurry of activity. The other approach that has received extensive attention is modeling of the process as a continuous one and [START_REF] Friedman | Linking stochastic dynamics to population distribution: An analytical framework of gene expression[END_REF][START_REF] Lipniacki | Transcriptional stochasticity in gene expression[END_REF][START_REF] Mackey | Molecular distributions in gene regulatory dynamics[END_REF][START_REF] Ochab-Marcinek | Bimodal gene expression in noncooperative regulatory systems[END_REF][START_REF] Shahrezaei | Colored extrinsic fluctuations and stochastic gene expression[END_REF] are representative of these efforts. The reader can consult [START_REF] Kepler | Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations[END_REF] for an excellent expository account of the connection between these two approaches.

In the discrete Markov models, steady-state analytical solutions of the master equation can often be obtained using the moment generating function. For the continuous model formulations, one needs to solve the Fokker-Planck-like equations, sometimes using Laplace transforms. When solutions are not available, moment equations can be derived and usually solved [START_REF] Paulsson | Summing up the noise in gene networks[END_REF][START_REF] Tapaswi | A stochastic model of gene activation and RNA synthesis during embryogenesis[END_REF]. Though continuous models have many analytic advantages over discrete ones, it is also the case that information of potential importance may be lost in the continuous model formulation compared with the discrete formulation.

This paper presents a general one dimensional model for bursting gene expression in both a discrete Markov process formulation as well as a continuous situation. Section 2 presents some general background material while Section 3 presents the discrete version of the bursting model. Section 3.1 develops the general formulation of the discrete model while Section 3.2 deals with the special case in which the burst amplitudes are geometrically distributed. Section 4 develops the corresponding continuous model of the bursting expression, with a general development in Section 4.1 and Section 4.2 devoted to the situation where the burst amplitudes are exponentially distributed-a situation often found experimentally. Section 4.3 concludes with an examination of a generalization of the exponential distribution of burst amplitudes. The paper ends with some general observations in Section 5. Throughout the paper, our results are illustrated with numerous examples.

2. Notation and background. Let the triple (E, E, m) be a σ-finite measure space and let L 1 = L 1 (E, E, m) with norm denoted by • 1 . A linear operator P on L 1 is called substochastic (stochastic) if P u ≥ 0 and P u 1 ≤ u 1 ( P u 1 = u 1 ) for all u ≥ 0, u ∈ L 1 . We denote by D the set of all probability densities on E, i.e. D = {u ∈ L 1 : u ≥ 0, u 1 = 1}, so that a stochastic operator transforms a density into a density. In the particular case of a countable set E with E being the family of all subsets of E and m the counting measure, the space L 1 will be denoted by 1 .

Let P : E × E → [0, 1] be a stochastic transition kernel, i.e. P(x, •) is a probability measure for each x ∈ E and the function x → P(x, B) is measurable for each B ∈ E, and let P be a stochastic operator on L 1 . If operator A is said to be closable if it has a closed extension. If A is closable, then the closure A of A is the minimal closed extension of A; more specifically, it is the closed operator whose graph is the closure in L 1 × L 1 of the graph of A. For an exposition of semigroup theory we refer to [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF].

A semigroup {P (t)} t≥0 of linear operators on L 1 is called substochastic (stochastic) if it is strongly continuous and for each t > 0 the operator P (t) is substochastic (stochastic). A density u * is called invariant or stationary for {P (t)} t≥0 if u * is a fixed point of each operator P (t), P (t)u * = u * for every t ≥ 0.

Theorem 1 ([21, Theorem 2]). Let {P (t)} t≥0 be a stochastic semigroup such that for some t 0 > 0 the operator P (t 0 ) is partially integral. If the semigroup {P (t)} t≥0 has only one invariant density u * and u * > 0 a.e. then lim t→∞ P (t)u -u * 1 = 0 for all u ∈ D.

3.

A discrete bursting model formulated as a Markov process. This section considers bursting gene expression as a Markov process.

The general case.

In this section we model the number of gene products as a pure-jump Markov process X = {X(t)} t≥0 in the state space E = {0, 1, 2, . . .}. Thus a master equation governs the dynamics evolution of probabilities. A general onedimensional bursting gene expression model [START_REF] Kepler | Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations[END_REF] may be constructed as follows. Let n be the number of gene products and P n (t) = Pr(X(t) = n) denote the probability of finding n gene products inside the cell at a given time t. We shall include a loss (n → n -1) and gain (n → n + k) of functional processes in terms of the general rates γ n and λ n , respectively. The step size assumes the values k = 1, 2, . . . and is a random variable (independent of the actual number of gene products) with probability density function h, so that +∞ k=1 h k = 1. Therefore, our general master equation describing the time evolution of the probabilities P n to have n gene products in a cell is an infinite set of differential equations

(3.1) dP n dt = γ n+1 P n+1 -γ n P n + n k=1 h k λ n-k P n-k -λ n P n , n = 0, 1, . . . ,
where we use the convention that 0 k=1 = 0. We supplement (3.1) with the initial condition P n (0) = v n , n = 0, 1, . . ., where v = (v n ) n≥0 ∈ 1 is a probability density function of the initial amount X(0) of the gene product. In the following paragraphs, we consider the existence and uniqueness of solutions of (3.1) together with convergence to a stationary distribution and then summarize our results in Theorem 2.

Assume that

(3.2) λ 0 > 0, γ 0 = 0, γ n > 0, λ n , h n ≥ 0, n = 1, 2, . . . , +∞ n=1 h n = 1.
The process X is the minimal pure jump Markov process with the jump rate function ϕ(n) = λ n + γ n , n ≥ 0, and the jump transition kernel K given by

(3.3) K(n, {n + j}) =    q n , if j = -1, n ≥ 1, (1 -q n )h j , if j ≥ 1, n ≥ 0, 0, otherwise, q n = γ n λ n + γ n .
First, we recall the construction of X. Let {ξ k } k≥0 , be a discrete time Markov chain in the state space E = Z + = {0, 1, . . .} with transition kernel K and let {ε k } k≥1 be a sequence of independent random variables, exponentially distributed with mean 1. Set T 0 = 0 and define recursively the times of jumps of X as

T k = T k-1 + ε k ϕ(ξ k-1 )
, k = 1, 2, . . . .

Starting from X(0) = ξ 0 we have

X(t) = ξ k , T k ≤ t < T k+1 , k = 0, 1, 2, . . . ,
so that the process is uniquely determined for all t < T ∞ , where

T ∞ = lim k→∞ T k
is called the explosion time. If the explosion time is finite, we can add the point -1 to the state space and we can set

X(t) = -1 for t ≥ T ∞ . The process X is called nonexplosive if P i (T ∞ = ∞) = 1 for all i ∈ E
, where P i is the law of the process starting from X(0) = i. In particular, if the chain {ξ k } k≥0 is recurrent, then X is nonexplosive.

We now rewrite equation (3.1) as an abstract Cauchy problem in the space 1 . We make use of the results from [START_REF] Tyran-Kamińska | Substochastic semigroups and densities of piecewise deterministic Markov processes[END_REF]. Let K be the transition operator on 1 corresponding to K defined as in (3.3)

. For v = (v n ) n≥0 ∈ 1 we have (Kv) 0 = q 1 v 1 and (Kv) n = q n+1 v n+1 + n k=1 h k (1 -q n-k )v n-k , n = 1, 2, . . . .

Define the operator

Gu = -ϕu + K(ϕu) for u ∈ 1 ϕ = {u ∈ 1 : ∞ n=0 ϕ n |u n | < ∞}.
There is a substochastic semigroup {P (t)} t≥0 on 1 such that for each initial probability density function v ∈ 1 ϕ the equation

(3.4) du dt = G(u), t > 0, u(0) = v,
has a nonnegative solution u(t) which is given by u(t) = P (t)v for t ≥ 0 and

(P (t)v) n = ∞ j=0 P j (X(t) = n, t < T ∞ )v j , n = 0, 1, . . . .
The process X is nonexplosive if and only if the semigroup {P (t)} t≥0 is stochastic. Equivalently, the generator of the semigroup {P (t)} t≥0 is the closure of (G, 1 ϕ ). In that case the solution u(t) of (3.4) is unique and it is a probability density function for each t, if v is has these properties.

The equation for the steady state p * = (p * n ) n≥0 of (3.1) is of the form

(3.5) γ n+1 p * n+1 -γ n p * n + n k=1 h k λ n-k p * n-k -λ n p * n = 0, n = 0, 1, . . . .
Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF], 1830-1852. DOI : 10.1137/12090229X

Observe that γ 1 p * 1 = λ 0 p * 0 and that we can rewrite (3.5) as

γ n+1 p * n+1 -γ n p * n = λ n p * n - n-1 k=0 h n-k λ k p * k , n = 1, 2 . . . . Hence γ n+1 p * n+1 = n j=0 λ j p * j - n j=1 j-1 k=0 h j-k λ k p * k
and changing the order of summation, we obtain

(3.6) p * n+1 = 1 γ n+1 n k=0 h n-k λ k p * k , n = 0, 1, . . . ,
where

h l = ∞ j=l+1 h j , l ≥ 0.
Thus given p * 0 , equation (3.6) uniquely determines p * . Consequently, there is one, and up to a multiplicative constant only one, solution of equation (3.5). If p * 0 > 0 and either h l > 0 for all l ≥ 0 or λ l > 0 for all l ≥ 1, then p * n > 0 for all n ≥ 1. Now, if

(3.7) ∞ n=0 p * n = 1 and ∞ n=0 (λ n + γ n )p * n < ∞,
then p * ∈ 1 ϕ , G(p * ) = 0, and K(ϕp * ) = ϕp * , which implies that the semigroup {P (t)} t≥0 is stochastic. We have thus proved the following result, which is an analog of Theorem 1 for the discrete bursting model.

Theorem 2. Assume condition (3.2) and suppose that a strictly positive p * = (p * n ) n≥0 given by (3.6) satisfies (3.7). Then for each initial probability density function

v = (v n ) n≥0 ∈ 1 ϕ equation (3.
1) has a unique solution which is a probability density function for each t > 0 and satisfies

lim t→∞ ∞ n=0 |(P (t)v) n -p * n | = 0. Remark 1. From (3.6) it follows that ∞ n=0 γ n+1 p * n+1 = ∞ n=0 n k=0   ∞ j=n-k+1 h j   λ k p * k = ∞ k=0 ∞ n=k   ∞ j=n-k+1 h j   λ k p * k .
The mean value E(h) of the distribution h can be represented as

E(h) = ∞ j=0 jh j = ∞ n=0 ∞ j=n+1 h j .
Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 ( 5 We thus obtain

E(h) = ∞ n=k ∞ j=n-k+1 h j for each k ≥ 0. Combining these leads to ∞ n=0 γ n+1 p * n+1 = E(h) ∞ k=0 λ k p * k .
3.2. Bursting with a geometric distribution. Next, we give sufficient conditions for (3.7) in the case when h is geometric

(3.8) h k = (1 -b)b k-1 , k = 1, 2, . . . , with b ∈ (0, 1). Since ∞ j=n-k+1 h j = b n-k ,
we obtain the following equation for

p * = (p * n ) n≥0 (3.9) p * n+1 p * n = λ n + bγ n γ n+1 , n = 0, 1 . . . .
Explicit stationary solutions in this case were recently obtained in [START_REF] Aquino | Stochastic single-gene autoregulation[END_REF]. However, for h geometric, we can go further and prove convergence to this stationary state with the following result which follows from Theorem 2 and Remark 1. Corollary 3. Assume that condition (3.2) holds. Suppose that h is geometric as in (3.8). Then p * = (p * n ) n≥0 is given by

(3.10) p * n = p * 0 n k=1 λ k-1 + bγ k-1 γ k = p * 0 λ 0 γ n n-1 k=1 λ k + bγ k γ k , n = 1, 2, . . . .
In particular, if

(3.11) lim sup n→∞ λ n γ n < 1 -b and lim inf n→∞ γ n > 0,
then the conclusions of Theorem 2 hold. Example 1. Consider λ n to be a Hill function of the form (3.12)

λ n = λ 1 + Θn N Λ + ∆n N
where Λ, ∆, N > 0 and Θ ≥ 0. If h is geometric and

lim inf n→∞ γ n > λΘ ∆(1 -b) ,
then condition (3.11) holds.

Remark 2 (Bifurcation in the discrete case). Equation 3.9 can be used to examine the bifurcations in the stationary density, defined as changes in the number of maxima, Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 (5), 1830-1852. DOI : 10.1137/12090229X

as a function of the model parameters. The number of maxima are linked to the number of sign changes of

(3.13) n → λ n + bγ n -γ n+1 .
In particular, p * has a maximum at 0 if λ 0 < γ 1 , and each successive sign change of (3.13) gives a maximum/minimum of p * . We now provide examples for which the stationary distribution can be identified explicitly. In the following examples we assume that h is geometric with parameter b as in (3.8) and that γ n = γn, n ≥ 1, with γ > 0.

Example 2 (Negative binomial). Suppose that λ n = λ 0 + λn with λ 0 > 0, λ ≥ 0. We have λ n ≥ 0 for each n. Substituting γ k and λ k into (3.10) gives

p * n = p * 0 n! n-1 k=0 λ 0 bγ + λ + k λ + bγ γ n , n = 0, 1, . . . . Thus p * ∈ 1 if and only if λ + bγ < γ.
In that case we obtain the negative binomial distribution

p * n = (a) n n! p n (1 -p) a , n = 0, 1, . . . ,
where

p = λ + bγ γ , a = λ 0 bγ + λ ,
and (a) n is the Pochhammer symbol defined by

(a) n = Γ(a + n) Γ(a) = a(a + 1)(a + 2) . . . (a + n -1), (a) 0 = 1.
This was previously obtained in [START_REF] Shahrezaei | Analytical distributions for stochastic gene expression[END_REF].

Example 3 (Mixture of logarithmic distribution). Suppose that λ 0 > 0 and λ n = 0 for n ≥ 1. Then

p * n = p * 0 λ 0 γ b n-1 n , n = 1, 2, . . . ,
which can be rewritten as

p * n = - b n n ln(1 -b) (1 -p * 0 ), n = 1, 2, . . . , p * 0 = bγ bγ -λ 0 ln(1 -b)
.

The distribution In particular, this type of distribution will be obtained if we take λ 0 > 0, λ < 0, and

p0 = 0, pn = - b n n ln(1 -b) , n = 1, 2, . . . , is 
λ n = λ 0 + λn, if n ≤ -λ 0 /λ, 0, otherwise.
Example 4 (Hypergeometric distributions). We now take

(3.14) λ n = λ 1 + Θn Λ + ∆n
where λ > 0, Λ ≥ 1, Θ ≥ ∆. We find that, for each n,

λ n + bγn γ = b(n + a 1 )(n + a 2 ) n + b 1 ,
where

b 1 = Λ ∆ , a 1 = 1 2 (α -β) , a 2 = 1 2 (α + β) , and 
α = Λ ∆ + λΘ bγ∆ , β 2 = α 2 - 4λ bγ∆ .
Since Λ ≥ 1 and Θ ≥ ∆, we can find a nonnegative β, thus a 2 ≥ a 1 > 0. Consequently, the stationary distribution is of the form

(3.15) p * n = 1 2 F 1 (a 1 , a 2 ; b 1 ; b) (a 1 ) n (a 2 ) n (b 1 ) n b n n! , n = 0, 1, . . . ,
where 2 F 1 is Gauss' hypergeometric function 2 F 1 (a 1 , a 2 ; b 1 ; x) = ∞ n=0 (a 1 ) n (a 2 ) n (b 1 ) n x n n! .
Example 5 (Generalized hypergeometric distributions). The generalized hypergeometric function p F q is defined to be the real analytic function on R given by the series expansion

p F q (a 1 , . . . , a p ; b 1 , . . . , b q ; x) = ∞ n=0 (a 1 ) n . . . (a p ) n (b 1 ) n . . . (b q ) n x n n! .
Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 (5), 1830-1852. DOI : 10.1137/12090229X

The negative binomial distribution in Example 2 for the case of λ = 0 has the probability generating function s → 1 F 0 (a 1 ; bs)/ 1 F 0 (a 1 ; b) with a 1 = λ 0 /bγ. The distribution obtained in Example 4 has the probability generating function

s → 2 F 1 (a 1 , a 2 ; b 1 ; bs) 2 F 1 (a 1 , a 2 ; b 1 ; b)
.

Extending both of these examples we suppose that λ n ≥ 0 is a rational function of n satisfying

λ n + bγn γ = (n + a 1 ) . . . (n + a q+1 )b (n + b 1 ) . . . (n + b q ) , n = 0, 1, 2, . . . . Then p * = (p * n ) n≥0
has the probability generating function q+1 F q (a 1 , . . . , a q+1 ; b 1 , . . . , b q ; bs) q+1 F q (a 1 , . . . , a q+1 ; b 1 , . . . , b q ; b) .

4. Continuous bursting model.

4.1. The general case. In this section we consider a continuous state space version of the model presented in Section 3, which is a piecewise deterministic Markov process (PDMP) Y = {Y (t)} t≥0 with values in E = (0, ∞) where Y (t) denotes the amount of the gene product in a cell at time t, t ≥ 0. We assume that protein molecules undergo degradation at a rate γ that is interrupted by production at random times t 1 < t 2 < . . . occurring with intensity ϕ, and that both ϕ and γ depend on the current number of molecules. At each t k a random amount of protein molecules is produced, so that the process changes from

Y (t k -) to Y (t k ) = Y (t k -) + e k , k = 1, 2, . . ., where {e k } k≥1 is a sequence of random variables such that Pr(e k ∈ B|Y (t k -) = y) = B h(x, y)dx,
where h is a nonnegative measurable function satisfying

(4.1) ∞ 0 h(x, y)dx = 1, y > 0.
The time-dependent probability density function u(t, x) is described by the continuous analog of the master equation [START_REF] Mackey | Dynamics and density evolution in piecewise deterministic growth processes[END_REF][START_REF] Mackey | Molecular distributions in gene regulatory dynamics[END_REF] 

(4.2) ∂u(t, x) ∂t = ∂(γ(x)u(t, x)) ∂x -ϕ(x)u(t, x) + x 0 ϕ(y)u(t, y)h(x -y, y)dy
with the initial probability density u(0, x) = v(x), x > 0.

We assume that γ is a continuous function such that for some δ > 0 and that ϕ is a nonnegative measurable function with ϕ/γ being locally integrable on (0, ∞) and satisfying (4.4)

δ 0 ϕ(x) γ(x) dx = +∞.
From (4.3) it follows that the differential equation

(4.5) x (t) = -γ(x(t)), x(0) = x > 0,
has a unique solution which we denote by π t x, t ≥ 0, x > 0. For each x > 0 we have π t x > 0 for all t > 0 and π t x → 0 as t → ∞. This and condition (4.4) give

t 0 ϕ(π s x)ds = x πtx ϕ(y) γ(y) dy → ∞, as t → ∞,
which implies that the function

t → 1 -e -t 0 ϕ(πsx)ds
is a distribution function of a positive and finite random variable for every x > 0.

We now recall the construction of the minimal piecewise deterministic Markov process Y (see e.g. [START_REF] Davis | Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models[END_REF][START_REF]Monographs on Statistics and Applied Probability[END_REF] or [START_REF] Tyran-Kamińska | Substochastic semigroups and densities of piecewise deterministic Markov processes[END_REF] for details). Let {ε k } k≥1 be a sequence of independent random variables exponentially distributed with mean 1, which is also independent of {e k } k≥1 . Set t 0 = 0. For each k = 1, 2, . . . and given Y (t k-1 ) the process evolves as

(4.6) Y (t) = π t-t k-1 Y (t k-1 ), t k-1 ≤ t < t k , Y (t k-) + e k , t = t k ,
where t k = t k-1 + ∆t k and ∆t k is a random variable such that Pr(∆t k ≤ t|Y (t k-1 ) = x) = 1 -e -t 0 ϕ(πsx)ds , t, x > 0.

The random variable ∆t k can be defined with the help of the exponentially distributed random variable ε k through the equality in distribution

ε k = ∆t k 0 ϕ(π s Y (t k-1 ))ds,
which can be rewritten as

ε k = Q(π ∆t k Y (t k-1 )) -Q(Y (t k-1 )),
where the non-increasing function Q is given by

(4.7) Q(x) = x x ϕ(y) γ(y) dy,
and x = +∞, when the integral is finite or any x > 0 otherwise. Since

Y (t k -) = π ∆t k Y (t k-1 )
, we obtain the following stochastic recurrence equation for where

{Y (t k )} k≥0 (4.8) Y (t k ) = Q -1 (Q(Y (t k-1 )) + ε k ) + e k , k = 
Q -1 is the generalized inverse of Q, Q -1 (r) = sup{x : Q(x) ≥ r}. Consequently, Y (t 
) is defined by (4.6) for all t < t ∞ , where t ∞ = lim k→∞ t k is the explosion time.

As in the discrete state space we can extend the state space E by adding the point -1 and define Y (t) = -1 for t ≥ t ∞ . Let P x be the law of the process Y starting at Y (0) = x and denote by E x the expectation with respect to P x . Remark 3. Note that if condition (4.4) holds (equivalently Q(0) = ∞) then the amount of the gene product {Y (t k )} k≥0 at the jump times is a discrete time Markov process with transition probability function given by

K(y, B) = B k(x, y)dx, B ∈ B((0, ∞)), where (4.9) k(x, y) = e Q(y) y 0 1 (0,x) (z)h(x -z, z) ϕ(z) γ(z) e -Q(z) dz, x, y > 0.
If Q(0) < ∞ then the random variable ∆t 1 is infinite with positive probability, since we have for any x > 0

Pr(∆t 1 = ∞|Y (0) = x) = lim t→∞ Pr(∆t 1 > t|Y (0) = x) = e Q(x)-Q(0) > 0,
which then forces the process Y (t, ω) starting form Y (0, ω) = x to be π t (x) for all t, if ω is such that ∆t

1 (ω) = ∞.
In what follows we assume that (4.3) and (4.4) hold. We rewrite equation (4.2) as an abstract Cauchy problem in L 1 

D(C) = {u ∈ L 1 : γu ∈ AC, (γu) ∈ L 1 , lim x↑∞ (γ(x)u(x)) = 0, ϕu ∈ L 1 },
and γu ∈ AC means that the function x → γ(x)u(x) is absolutely continuous. From [START_REF] Mackey | Dynamics and density evolution in piecewise deterministic growth processes[END_REF][START_REF] Tyran-Kamińska | Substochastic semigroups and densities of piecewise deterministic Markov processes[END_REF] it follows that there is a substochastic semigroup {P (t)} t≥0 on L 1 such that for each initial density v ∈ D(C) equation ( 4.10) has a nonnegative solution u(t) which is given by u(t) = P (t)v for t ≥ 0 and (4.13) 

∞ 0 P x (Y (t) ∈ B, t < t ∞ )v(x)dx = B P ( 
Rv := R(1, C)v = ∞ 0 e -t P (t)vdt.
The operator R is substochastic and it satisfies Rv ≥ R 1 v for any nonnegative v ∈ L 1 (see [START_REF] Mackey | Dynamics and density evolution in piecewise deterministic growth processes[END_REF]), where

R 1 v(x) = 1 γ(x) ∞ x v(y)e Q(y)-Q(x)+ y x 1 γ(z) dz dy, x > 0.
Note that R 1 is the resolvent operator R(1, A) of a substochastic semigroup {S(t)} t≥0 with generator

Au(x) = d(γ(x)u(x)) dx -ϕ(x)u(x), u ∈ D(C).
Since for any two nonnegative and nonzero

v 1 , v 2 ∈ L 1 we can find c(v i ) > 0 such that ∞ c(vi) v i (y)dy > 0, i = 1, 2,
we obtain Rv i (x) > 0 for all x < min{c(v 1 ), c(v 2 )}, i = 1, 2. Now suppose that u 1 , u 2 are densities such that u = u 1 -u 2 is nonzero. Then both u + = max{0, u} and u -= max{0, -u} are nonnegative and nonzero. Thus, R(u + )(x) > 0 and R(u -)(x) > 0 for x < c and some c > 0. We have

|Ru(x)| = |R(u + )(x) -R(u -)(x)| ≤ R(u + )(x) + R(u -)(x) = R(|u|)(x),
thus the inequality is strict on a set of positive measure, which implies that if u 1 -u 2 = 0 then

Ru 1 -Ru 2 1 < R|u 1 -u 2 | 1 ≤ u 1 -u 2 1 .
Consequently, the operator R can have at most one invariant density.

Let K be the transition operator on L 1 given by (4.14)

Kv(x) = ∞ 0 k(x, y)v(y)dy, v ∈ L 1 ,
where the kernel k is as in (4.9). Observe that (4.15)

Kv(x) = x 0 h(x -z, z) ϕ(z) γ(z) e -Q(z) ∞ z v(y)e Q(y) dydz.
A mild condition on the transition operator K, in conjunction with Theorems 3.6 and 5.2 of [START_REF] Tyran-Kamińska | Substochastic semigroups and densities of piecewise deterministic Markov processes[END_REF], has interesting consequences for {P (t)} t≥0 as contained in the following result. Proposition 5. If the transition operator K is mean ergodic, i.e. for any v ∈ L 1 , v ≥ 0 the sequence

1 n n-1 j=0 K j v
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is convergent in L 1 , then the semigroup {P (t)} t≥0 is stochastic.

In particular, if K has a strictly positive fixed point, i.e. there is v * such that Kv * = v * and v * > 0 a.e., then K is mean ergodic [START_REF] Kornfeld | Weak almost periodicity of L 1 contractions and coboundaries of non-singular transformations[END_REF]. Note that a mean ergodic stochastic operator has a nonzero fixed point.

We now describe invariant densities for the semigroup {P (t)} t≥0 with the help of fixed points of the operator K.

Theorem 6. Let

H(x, y) = ∞ x h(z, y)dz, x > 0.
Suppose that there is a nonnegative solution u * of the equation The functions ϕu * and v * are integrable. Consequently, if u * ∈ L 1 then u * ∈ D(C) and C(u * ) = 0. Since

v * (x) = ϕ(x)u * (x) - d dx (γ(x)u * (x)) = -e -Q(x) d dx (e Q(x) γ(x)u * (x)),
we obtain

∞ z v * (x)e Q(x) dx = - ∞ z d dx (e Q(x) γ(x)u * (x))dx = e Q(z) γ(z)u * (z),
which shows that Kv * (y) = v * (y), by (4.15). We now turn to the converse part. Suppose that u * is as in (4.18), where v * is a fixed point of K. Since Q is non-increasing and v * is integrable, we see that lim x→∞ γ(x)u * (x) = 0 and that ϕu * ∈ L 1 . It is easily seen that u * satisfies equation (4.19). Integrating equation (4.19) with respect to x from z to ∞ leads to

∞ z d dx (γ(x)u * (x))dx = ∞ z ϕ(x)u * (x)dx - ∞ z x 0 h(x -y, y)ϕ(y)u * (y)dydx
and changing the order of integration in the last integral gives

∞ z x 0 h(x -y, y)ϕ(y)u * (y)dydx = z 0 ∞ z h(x -y, y)ϕ(y)u * (y)dxdy + ∞ z ∞ y h(x -y, y)ϕ(y)u * (y)dxdy. 
. Combining these we conclude that u * satisfies (4.16).

The following theorem guarantees that {P (t)} t≥0 is stochastic and its strong convergence to a unique stationary density u * that is given explicitly.

Theorem 7. Suppose that the operator K as in (4.15) has an invariant density v * > 0 a.e. and let

c := ∞ 0 1 γ(x) ∞ x e Q(y)-Q(x) v * (y)dydx < ∞.
Then the semigroup {P (t)} t≥0 is stochastic and for each initial density v we have is the unique stationary density of {P (t)} t≥0 . Proof. By Proposition 5, the semigroup {P (t)} t≥0 is stochastic. From Theorem 6 it follows that u * ∈ D(C) and C(u * ) = 0. Thus, u * is an invariant density for the stochastic semigroup {P (t)} t≥0 and it is unique, by Proposition 4. Since v * (x) > 0 for a.e. x > 0, we conclude that u * (x) > 0 for all x > 0. From assumptions (4.3) and (4.4) it follows that there is a δ 0 such that ϕ(y) > 0 for y ∈ (0, δ 0 ). This and (4.17) imply that ∞ 0 ∞ 0 p(x, y)ϕ(y)dydx > 0, where p(x, y) = 1 (0,x) (y)h(x -y, y).

lim t→∞ P (t)v -u * 1 = 0, where u * (x) = 1 cγ(x) ∞ x e Q(y)-Q(x) v * (
Consequently, we can find t > 0 such that the operator P (t) is partially integral [START_REF] Mackey | Dynamics and density evolution in piecewise deterministic growth processes[END_REF] and the result follows from Theorem 1.

We conclude this section with sufficient conditions for mean ergodicity of the transition operator K.

Proposition 8. Let K be a transition operator K with a bounded kernel k. Suppose that there exist a nonnegative measurable function V : (0, ∞) → [0, ∞) which is bounded on bonded subsets of (0, ∞) and constants a, d > 0 such that

(4.20) ∞ 0 V (x)k(x, y)dx ≤ V (y) -1 + a1 (0,d) (y), y > 0.
Then the operator K is mean ergodic on L 1 .

Proof. Let Z n , n ≥ 0, be a Markov chain with stochastic kernel K given by

K(y, B) = B k(x, y)dx, y > 0, B ∈ B((0, ∞)).
Recall that a probability measure µ is invariant for the chain if and only if the measure µ satisfies the equation

µ(B) = ∞ 0 K(y, B)µ(dy)
for all Borel measurable sets B. We have

µ(B) = B ∞ 0 k(x, y)µ(dy)dx.
Thus each invariant probability measure is absolutely continuous with respect to the Lebesgue measure on (0, ∞). Since K is the transition operator corresponding to K, we have

B K j v(x)dx = ∞ 0 K j (y, B)v(y)dy, B ∈ B((0, ∞)),
where K 1 (y, B) = K(y, B) and

K j (y, B) = ∞ 0 K j-1 (z, B)K(y, dz), y > 0, j ≥ 2.
From Theorem 1 and Lemma 1 of [START_REF] Tweedie | Drift conditions and invariant measures for Markov chains[END_REF] it follows that there exist a finite number of invariant probability measures µ 1 , . . . , µ N and a finite number of nonnegative functions

L 1 , . . . L N such that N i=1 L i (y) = 1 and (4.21) 1 n n j=1 K j (y, B) → N i=1 L i (y)µ i (B)
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K j v(x)dx = B N i=1 ∞ 0 L i (y)v(y)dyv i (x)dx,
for all Borel B. Moreover, the sequence 1 n n j=1 K j v is bounded in L 1 . Thus, it is weakly convergent in L 1 and, by the mean ergodic theorem, it converges in L 1 .

We now apply the last result to our transition operator K. Corollary 9. Let K be the transition operator as in (4.15) with bounded h. Suppose that the function

m 1 (y) = ∞ 0 xh(x, y)dx, y > 0,
is bounded on bounded subsets of (0, ∞). If 

m 1 (z) ϕ(z) γ(z) -1 e -Q(z) dz < 0,
then the operator K is mean ergodic. Proof. Since K has kernel k given by (4.9), we obtain

k(x, y) ≤ c 1 e Q(y) y 0 ϕ(z) γ(z) e -Q(z) dz = c 1 , x, y > 0,
where c 1 is the upper bound for h. By Proposition 8 it is sufficient to check that the function V (x) = x, up to a multiplicative constant, satisfies condition (4.20). We have

∞ z V (x)h(x -z, z)dx = m 1 (z) + z, z > 0. Thus ∞ 0 V (x)k(x, y)dx = e Q(y) y 0 (m 1 (z) + z) ϕ(z) γ(z) e -Q(z) dz
for all y > 0. Since

y = e Q(y) y 0 z ϕ(z) γ(z) e -Q(z) dz + e Q(y) y 0 e -Q(z) dz, we obtain ∞ 0 V (x)k(x, y)dx -V (y) = e Q(y) y 0 m 1 (z) ϕ(z) γ(z) -1 e -Q(z) dz,
which is a bounded function on sets of the form (0, d). then condition (4.22) holds, since we can find z 0 > 0 and δ > 0 such that

m 1 (z) ϕ(z) γ(z) -1 ≤ -δ for z ≥ z 0 , which implies that e Q(y) y y0 m 1 (z) ϕ(z) γ(z) -1 e -Q(z) dz ≤ -ae Q(y)-Q(y0) (y -y 0 )
for all y ≥ y 0 ≥ z 0 with the right-hand side going to -∞. 

If Q(∞) = -∞
Kv(x) = x 0 1 b e -(x-z)/b ϕ(z) γ(z) e -Q(z) ∞ z v * (y)e Q(y) dydz.
Note that the integrable function

v * (x) = e -x/b-Q(x)
is a fixed point of the operator K, since

Kv * (x) = e -x/b x 0 ϕ(z) γ(z) e -Q(z) dz = e -x/b-Q(x) .
Again, an explicit stationary solution was recently obtained in [START_REF] Aquino | Stochastic single-gene autoregulation[END_REF], and we establish convergence to this stationary state with the following result. Corollary 10. Assume that conditions (4.3) and (4.4) hold and that h is exponential as in (4.23) with b > 0. Suppose that

(4.24) c := ∞ 0 1 γ(x) e -x/b-Q(x) dx < ∞, ∞ 0 e -x/b-Q(x) dx < ∞.
Then the semigroup {P (t)} t≥0 is stochastic and for each initial density v we have

lim t→∞ P (t)v -u * 1 = 0,
where

(4.25) u * (x) = 1 cγ(x) e -x/b-Q(x)
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(0) = ∞ and lim x→∞ ϕ(x) γ(x) < 1 b , then the function x → e -x/b-Q(x) is integrable on (0, ∞). If, additionally, lim inf x→∞ γ(x) > 0, lim x→0 e -Q(x) γ(x) r < ∞, and δ 0 γ(x) r-1 dx < ∞
for some δ, r > 0, then condition (4.24) holds. Furthermore, if it should happen that b, γ(x) and u * (x) are known or can be approximated from data, then it is possible to estimate ϕ(x) from

(4.26) ϕ(x) = 1 b γ(x) + (γ(x)u * (x)) u * (x) . 
Finally, note that if ϕ is assumed to be bounded, then u * has an exponential tail, from which we can deduce the parameter b. Remark 6 (Bifurcation in the continuous case). As in the discrete formulation of the model we can use relation (4.26) to derive bifurcation properties of the stationary density as a function of the relevant parameters. Namely, the number of extrema are linked to the number of solutions of

ϕ(x) = γ(x) b + γ (x).
In all examples below, we consider a linear degradation function, γ(x) = γx with γ > 0.

Example 6. Consider the function ϕ of the form

(4.27) ϕ(x) = λ 1 + Θx N Λ + ∆x N = λ ∆ + λ 1 - Λ ∆ 1 Λ + ∆x N ,
where λ, Λ, ∆, N are positive constants and Θ ≥ 0. Then

Q(x) = c 1 - λ γΛ log(x) + λ N ∆γ ∆ Λ -Θ log(Λ + ∆x N ),
where c 1 is a constant. The stationary density is given by (4.28)

u * (x) = (cγ) -1 e -x/b x λ(γΛ) -1 -1 (Λ + ∆x N ) θ , where (4.29) θ = λ N ∆γ Θ - ∆ Λ .
This solution has been extensively studied in terms of numbers of maxima (P-bifurcation) in [START_REF] Mackey | Molecular distributions in gene regulatory dynamics[END_REF] when Θ = 1. When Θ = ∆ = Λ = 1 the density u * is that of a gamma distribution, as obtained in [START_REF] Friedman | Linking stochastic dynamics to population distribution: An analytical framework of gene expression[END_REF]. 

(x) = 1 Γ(λ 0 /γ) 1 b - λ γ λ0/γ x λ 0 γ -1 e -( 1 b -λ γ )x ,
which is a continuous approximation of the negative binomial distribution previously obtained, as in [START_REF] Shahrezaei | Analytical distributions for stochastic gene expression[END_REF]. Then for each y the function x → h(x, y) is a density and

h(x -y, y) = - ν (x) ν(y) , x > y.
The operator K can be thus rewritten as

Kv(x) = - x 0 ν (x) ν(z) ϕ(z) γ(z) e -Q(z) ∞ z v(y)e Q(y) dydz.
It is easily seen that if the function

v * (x) = -ν (x)e -Q(x)
is integrable then Kv * (x) = v * (x), thus we obtain the following. Corollary 11. Let h be as in (4.32). Suppose that

c := ∞ 0 ν(x) γ(x) e -Q(x) dx < ∞ and - ∞ 0 ν (x)e -Q(x) dx < ∞.
Then the semigroup {P (t)} t≥0 is stochastic and for each initial density v we have

lim t→∞ P (t)v -u * 1 = 0, where u * (x) = ν(x) cγ(x) e -Q(x)
is the unique stationary density of {P (t)} t≥0 . Remark 7 (Bifurcation in the continuous case-again). As before (see Remark 6), the number of extrema are linked to the number of solutions of

ϕ(x) = - ν (x) ν(x) + γ (x).
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If m 1 (x) = ∞ 0 zh(z, x)dz < ∞, then only the knowledge of m 1 (x) is sufficient as

- ν (x) ν(x) = 1 + m 1 (x) m 1 (x) .
In the examples below, we take a linear degradation function γ(x) = γx, with γ > 0. where α, β > 0, for all x < α, and ν(x) = 0 for x ≥ α. Suppose the function ϕ is given by (4.27) where λ, Λ, ∆, N are positive constants and Θ ≥ 0. Then the stationary density u * is integrable and is given by, for all x < α,

u * (x) = 1 cγ (α -x) β x λ(γΛ) -1 -1 (Λ + ∆x N ) θ ,
where θ is as in (4.29). Convergence is obtained in the state space (0, α).

Conclusions and summary.

In this paper we have presented both a discrete Markov process formulation as well as a continuous model formulation for bursting gene expression. Our development of the discrete model formulation in Section 3.1 allowed us to prove a very general convergence result in Theorem 2 and then to use that result to explore a variety of examples in Section 3.2 when the burst amplitude is geometrically distributed. In Section 4 we developed the analogous continuous model for bursting expression. Section 4.1 contains the general development with Proposition 4 limiting the number of invariant densities of the semigroup {P (t)} t≥0 , while Proposition 5 uses mean ergodicity of the transition operator K to show that {P (t)} t≥0 is stochastic. Theorems 6 and 7 give criteria for a unique stationary density u * of {P (t)} t≥0 and for convergence to that stationary density. In Section 4.2 we have used these results in a number of specific examples when the burst amplitudes are exponentially distributed-a situation often noted experimentally. Section 4.3 concludes with an examination of a generalization of the exponential distribution of burst amplitudes.
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  u(t, y)h(x -y, y)dy is defined on the domain(4.12) 

  -y, y)ϕ(y)u * (y)dy such that ϕu * ∈ L 1 . Then the function(4.17) v * (x) = x 0 h(x -y, y)ϕ(y)u * (y)dy is a fixed point of the operator K in L 1 , where K is as in (4.15). Moreover, if u * ∈ L 1 then u * ∈ D(C) and C(u * ) = 0, where C is as in (4.11).Conversely, if the operator K has a nonnegative fixed point v * ∈ L 1 then the function

0 1 0 H

 00 y)-Q(x) v * (y)dy is a solution of (4.[START_REF] Mcadams | Stochastic mechanisms in gene expression[END_REF]) and ϕu * ∈ L 1 .Proof. Let u * be a solution of (4.16) such that ϕu * ∈ L 1 . Sincelim x→∞ 1 [y,∞) (x)H(x -y, y) = 0for each y and 0 ≤ 1 [y,∞) (x)H(x -y, y) ≤ 1 for all x, y, we obtainlim x→∞ γ(x)u * (x) = lim x→∞ ∞ [y,∞) (x)H(x -y, y)ϕ(y)u * (y)dy = 0, by the Lebesgue's dominated convergence theorem. Similarly, we conclude that lim x→0 γ(x)u * (x) = 0. We have x (x -y, y)ϕ(y)u * (y)dy = y)dzϕ(y)u * (y)dy. Thus, γu * ∈ AC and (4.19) d dx (γ(x)u * (x)) = ϕ(x)u * (x) -x 0 h(x -y, y)ϕ(y)u * (y)dy. Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 (5), 1830-1852. DOI : 10.1137/12090229X
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  /b , x, y > 0, where b > 0. The operator K as defined in (4.15) then takes the form

Example 7 .

 7 Consider the case of linear regulation with the function ϕ of the form ϕ(x) = λ 0 + λx, Comment citer ce document : Mackey, M., Tyran-Kamiska, M., Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. Siam Journal on Applied Mathematics, 73 (5), 1830-1852. DOI : 10.1137/12090229Xwhere λ 0 , λ are nonnegative constants. u * is integrable and is given by the gamma distribution (4.31) u *

4. 3 .

 3 Other examples. In this subsection we consider some more exactly solvable examples. The class of examples we provide generalizes the exponentially distributed case of h. Let ν(y) be a positive, decreasing, and absolutely continuous function on (0, ∞) such that ν(y) → 0 as y → ∞. Consider the function(4.32) h(x, y) = -ν (x + y) ν(y) , y, z > 0.
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  Recall that u * is an invariant density for the semigroup {P (t)} t≥0 if and only if it is an invariant density for the resolvent operator

	t)v(x)dx
	for all Borel subsets B of (0, ∞). The semigroup {P (t)} t≥0 is stochastic if and only
	if its generator (C, D(C)) is the closure of the operator (C, D(C)).
	We first study the fixed points of the semigroup, showing that {P (t)} t≥0 has no
	more that one invariant density through
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Proof.

  for all y and all Borel sets B. Let v 1 , . . . , v N be the densities of the invariant measures µ 1 , . . . , µ N . Now let v ∈ L 1 . From (4.21) and the Lebesgue dominated convergence theorem it follows that

	lim n→∞ B	1 n	n j=1
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  Exponentially distributed bursts. Experimental findings in populations of cells indicate that the burst size is often exponentially distributed[START_REF] Xie | Single-molecule approach to molecular biology in living bacterial cells[END_REF] so we now consider

	and			
	lim sup z→∞	m 1 (z) -	γ(z) ϕ(z)	< 0
	then condition (4.22) holds as well by d'Hospital's rule.
	4.2.			
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