, Genetic improvement and adaptation of mediterranean and tropical plants, TA A

, Campus International de Baillarguet, 34398 Montpellier Cedex

, Unité d'Amélioration, Génétique et Physiologie Forestières, Olivet 45166, France. 4 CIRAD, Department of Tropical Production system and Process Performance, Research Unit "Processing and promotion of Tropical Woods" 73 rue, USBB -Institut du Pin, 351 cours de la libération, 33405 TALENCE Cedex, France. 3 INRA

Q. S. Raiz--forestry-&-paper-research-institute and . Francisco, Apartado 15, Eixo, 3801-501 Aveiro, Portugal. 6 CRDPI, BP 1291, République du Congo. 7 UMR UPS/CNRS 5546, Pôle de Biotechnologies Végétales, p.33612

C. Cedex and F. , Food and Agriculture Organization of the United Nations, 2007.

D. Grattapaglia, C. Plomion, M. Kirst, and R. Sederoff, Genomics of growth traits in forest trees. Current opinion in plant biology, vol.12, pp.148-56, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667663

C. Plomion, G. Leprovost, and A. Stokes, Wood formation in trees, Plant Physiol, vol.127, pp.1513-1523, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01204210

C. A. Raymond, Genetics of Eucalyptus wood properties, Ann For Sci, vol.59, pp.525-531, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00881902

F. S. Malan and G. Gerischer, Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity, Holzforschung, vol.41, pp.331-335, 1987.

A. Muneri, W. Leggate, and G. Palmer, Relationships between surface growth strain and some tree, wood and sawn timber characteristics of Eucalyptus cloeziana trees. Southern Afri For, vol.186, pp.41-49, 1999.

J. L. Yang, D. Fife, G. Waugh, G. Downes, and P. Blackwell, The effect of growth strain and other defects on the sawn timber quality of 10-year-old, Eucalyptus globulus Labill. Aust For, vol.65, pp.31-37, 2002.

H. Baillères, O. Vitrac, and T. Ramananantoandro, Assessment of continuous distribution of wood properties from a low number of samples: Gion, BMC Genomics, vol.12, 2011.

, application to the variability of modulus of elasticity between trees and within tree, Holzforschung, vol.59, pp.524-530, 2005.

P. F. Trugilho, S. Rosado, J. T. Lima, F. A. De-padua, and M. De-souza, Longitudinal residual strain (DRL) and its relationship with the characteristics of the tree growth in Eucalyptus clones, Cerne, vol.13, pp.130-137, 2009.

T. Biechele, L. Nutto, and G. Becker, Growth Strain in Eucalyptus nitens at Different Stages of Development, Silva Fennica, vol.43, pp.669-679, 2009.

P. Santos, I. O. Geraldi, and J. N. Garcia, Estimates of genetic parameters of wood traits for sawn timber production in Eucalyptus grandis, Genet Mol Biol, vol.27, pp.567-573, 2004.

N. D. Kien, T. H. Quang, G. Jansson, C. Harwood, D. Clapham et al., Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla, Ann For Sci, vol.66, pp.7111-7118, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00883488

A. Santos, M. E. Amaral, A. Vaz, O. Anjos, and R. Simoes, Effect of Eucalyptus globulus wood density on papermaking potential, Tappi Journal, vol.7, pp.25-32, 2008.

Y. Matsushita, Y. Kurono, A. Suzuki, T. Imai, S. Yasuda et al., Effect of chemical composition and wood properties on kraft pulping of eucalyptus -Difference in soluble and insoluble wood extractives between Eucalyptus viminalis and Eucalyptus globulus, Conference Information: 2nd International Symposium on Emerging Technologies of Pulping and Papermaking Guangzhou, 2002.

L. A. Apiolaza, C. A. Raymond, and B. J. Yeo, Genetic variation of physical and chemical wood properties of Eucalyptus globulus, Silvae Genet, vol.54, pp.160-166, 2005.

L. Harrand, J. Hernandez, J. L. Upton, and G. R. Valverde, Genetic parameters of growth traits and wood density in Eucalyptus grandis progenies planted in Argentina, Silvae Genet, vol.58, pp.11-19, 2009.

J. Silva, N. Borralho, J. A. Araujo, R. E. Vaillancourt, and B. M. Potts, Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus, Tree Genetics & Genomes, vol.5, pp.291-305, 2009.

D. Grattapaglia, Perspectives on genome mapping and marker-assisted breeding of eucalypts. Southern Forests: a, Journal of Forest Science, vol.71, pp.69-75, 2008.

R. W. Doerge, Mapping and analysis of quantitative trait loci in experimental populations, Nature Reviews Genetics, vol.3, pp.43-52, 2002.

D. Grattapaglia, F. Bertolucci, R. Penchel, and R. R. Sederoff, Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers, Genetics, vol.144, pp.1205-1214, 1996.

D. Verhaegen, C. Plomion, J. M. Gion, M. Poitel, P. Costa et al., Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages, Theor Appl Genet, vol.95, pp.597-608, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02690381

P. C. Bundock, B. M. Potts, and R. Vaillencourt, Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus, Tree Genetics & Genomes, vol.4, pp.85-95, 2008.

E. Barros, S. Verryn, and M. Hettasch, Identification of PCR-base markers linked to wood splitting in Eucalyptus grandis, Ann For Sci, vol.59, pp.675-678, 2002.

K. A. Thamarus, K. Groom, A. D. Bradley, C. A. Raymond, and G. F. Moran, Identification of quantitative trait loci for wood and fibre properties in two full sib pedigrees of Eucalyptus globulus, Theor Appl Genet, vol.109, pp.856-864, 2004.

R. B. Rocha, E. G. Barros, C. D. Cruz, A. M. Rosado, and E. F. Araujo, Mapping of QTLs related with wood quality and developmental characteristics in hybrids (Eucalyptus grandis * Eucalyptus urophylla), Revista Arvore, vol.31, pp.13-24, 2007.

J. S. Freeman, S. P. Whittock, B. M. Potts, and R. E. Vaillancourt, QTL influencing growth and wood properties in Eucalyptus globulus, Tree Genetics and Genomes, vol.5, pp.713-722, 2009.

B. R. Thumma, S. G. Southerton, J. C. Bell, J. V. Owen, M. L. Henery et al., Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens, Tree Genetics & Genomes, vol.6, pp.305-317, 2010.

A. A. Myburg, B. M. Potts, C. Marques, M. Kirst, J. Gion et al., Genome Mapping & Molecular Breeding in Plants, vol.7, 2007.

E. Paux, M. Tamasloukht, N. Ladouce, P. Sivadon, and J. Grima-pettenati, Identification of genes preferentially expressed during wood formation in Eucalyptus, Plant Mol Biol, vol.55, pp.263-280, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01565051

E. Novaes, D. R. Drost, W. G. Farmerie, G. J. Pappas, D. Grattapaglia et al., High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome, BMC Genomics, vol.9, p.312, 2008.

M. Goicoechea, E. Lacombe, S. Legay, S. Mihaljevic, P. Rech et al., EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis, Plant J, vol.43, pp.553-567, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086212

C. Foucart, A. Jauneau, J. M. Gion, N. Amelot, Y. Martinez et al., Overexpression of EgROP1, a Eucalyptus vascularexpressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana, New Phytol, vol.183, pp.1014-1029, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01565047

D. Verhaegen and C. Plomion, Genetic mapping in Eucalyptus urophylla and E. grandis using RAPD markers, Genome, vol.39, pp.1051-1061, 1996.

J. M. Gion, P. Rech, G. Pettenati, J. Verhaegen, D. Plomion et al., Mapping candidate genes in Eucalyptus with emphasis on lignification genes, Mol Breed, vol.6, pp.441-449, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02697368

J. J. Doyle and J. L. Doyle, Isolation of DNA from fresh plant tissue, Focus, vol.12, pp.13-15, 1990.

M. Effland, Modified procedure to determine acid insoluble lignin in wood and pulp, vol.60, pp.143-144, 1977.

C. Rolando, B. Monties, and C. Lapierre, Methods in lignin chemistry, vol.4, p.578, 1992.

V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, A J Enol Vitic, vol.16, pp.144-158, 1965.

N. Boizot and J. P. Charpentier, Le Cahier des Techniques de l'INRA, Numéro spécial 2006: Méthodes et outils pour l'observation et l'évaluation des milieux forestiers, prairiaux et aquatiques, Méthode rapide d'évaluation du contenu en composés phénoliques des organes d'un arbre forestier, pp.79-82, 2006.

D. Treutter, Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde, J Chrom, vol.467, pp.185-193, 1989.

M. Fournier, B. Chanson, B. Thibaut, and D. Guitard, Measurement of residual growth strains at the stem surface. Observations of different species, Ann For Sci, vol.51, pp.249-266, 1994.

L. Brancheriau and H. Baillères, Natural vibration analysis of clear wooden beams: a theoretical review, Wood Science and Technology, vol.36, pp.347-365, 2002.

H. Polge, Fifteen years of wood radiation densitometry. Wood Science and Technology, vol.12, pp.187-196, 1978.

F. Mothe, G. Duchanois, B. Zannier, and J. M. Leban, Microdensitometric analysis of wood samples: data computation method used at INRA-ERQB (CERD programme), Ann For Sci, vol.55, pp.301-313, 1998.

U. Nehls, T. Beguiristain, F. Ditengou, F. Lapeyrie, and F. Martin, The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius, Planta, vol.207, pp.296-302, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02692025

C. Diaz, M. Martin, F. Tagu, and D. , Eucalypt alpha-tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system, Plant Mol Biol, vol.31, pp.905-910, 1996.

M. C. Dornelas and A. Rodriguez, EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues, Plant Cell Tissue and organ culture, vol.79, pp.53-61, 2004.

S. G. Southerton, S. H. Strauss, M. R. Olive, R. L. Harcourt, V. Decroocq et al., Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY, Plant Mol Biol, vol.37, pp.897-910, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02695401

M. Kirst, A. A. Myburg, J. De-león, M. E. Kirst, J. Scott et al., Coordinated Genetic Regulation of Growth and Lignin Revealed by Quantitative Trait Locus Analysis of cDNA Microarray Data in an Interspecific Backcross of Eucalyptus, Plant Physiol, vol.135, pp.2368-2378, 2004.

R. Brondani, C. Brondani, R. Tarchini, and D. Grattapaglia, Development, characterisation and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla, Theor Appl Genet, vol.97, pp.816-827, 1998.

M. Orita, H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya, Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc Natl acad Sci, vol.86, pp.2766-2770, 1989.

S. Mariette, J. Cottrell, U. Csaikl, P. Goikoechea, A. König et al., Comparison of levels of genetic diversity detected with Gion et al, BMC Genomics, vol.12, 2011.

, AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands, Silvae Genet, vol.51, pp.72-79, 2002.

D. Grattapaglia and R. Sederoff, Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers, Genetics, vol.37, pp.1121-1137, 1994.

E. S. Lander, P. Green, J. Abrahamson, A. Barlow, M. J. Daly et al., MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics, vol.1, pp.174-181, 1987.

R. C. Jansen and P. Stam, High resolution of quantitative traits into multiple loci via interval mapping, Genetics, vol.136, pp.1447-1455, 1994.

R. W. Doerge and G. A. Churchill, Permutation tests for multiple loci affecting a quantitative character, Genetics, vol.142, pp.285-294, 1996.

C. Scotti-saintagne, C. Bodénès, T. Barreneche, E. Bertocchi, C. Plomion et al., Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L, Theor Appl Genet, vol.109, pp.1648-1659, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681266

J. Parelle, M. Zapater, C. Scotti-saintagne, A. Kremer, Y. Jolivet et al., Quantitative Trait Loci of tolerance to water-logging in a European oak (Quercus robur L.): physiological relevance and temporal QTL effect patterns, Plant Cell Environ, vol.30, pp.422-434, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00341591

D. Pot, J. C. Rodrigues, P. Rozenberg, G. Chantre, J. Tibbits et al., QTLs and candidate genes for wood properties in maritime pine, Pinus pinaster Ait.). Tree Genetics & Genome, vol.2, pp.10-24, 2006.

P. M. Visscher, R. Thompson, and C. S. Haley, Confidence intervals in QTL mapping by bootstrapping, vol.143, pp.1013-1020, 1996.

R. E. Voorrips, MapChart: Software for the graphical presentation of linkage maps and QTLs, J Hered, vol.93, pp.77-78, 2002.

Y. R. Lin, K. F. Shertz, and A. H. Paterson, Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific Sorghum population, Genetics, vol.141, pp.391-411, 1995.

J. Rencoret, G. Marques, A. Gutierrez, D. Ibarra, J. Li et al., Structural characterization of milled wood lignins from different eucalypt species, Holzforschung, vol.62, pp.514-526, 2008.

W. D. Beavis, The power and deceit of QTL experiments: Lessons from comparative QTL studies, Proceedings of the Forty-ninth Annual Corn and Sorghum Industry Research Conference, pp.250-266, 1994.

B. Bost, D. De-vienne, F. Hospital, L. Moreau, and C. Dillmann, Genetic and Nongenetic Bases for the L-Shaped Distribution of Quantitative Trait Loci Effects, Genetics, vol.157, pp.1773-1787, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00113666

S. M. Kaeppler, Power analysis for quantitative trait locus mapping in populations derived by multiple backcrosses, Theor Appl Genet, vol.95, pp.618-621, 1997.

S. Salvi and R. Tuberosa, To clone or not to clone plant QTLs: present and future challenges, TRENDS in Plant Science, vol.10, pp.297-304, 2005.

E. Paux, V. Carocha, C. Marques, A. Mendes-de-sousa, N. Borralho et al., Transcript profiling of Eucalyptus xylem genes during tension wood formation, New Phytol, vol.167, pp.89-100, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01183025

B. R. Thumma, M. F. Nolan, R. Evans, and G. F. Moran, Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp, Genetics, vol.171, pp.1257-1265, 2005.

F. S. Poke, R. E. Vaillancourt, R. C. Elliott, and J. B. Reid, Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2), Mol Breed, vol.12, pp.107-118, 2003.

E. Lacombe, S. Hawkins, J. Van-doorsselaere, J. Piquemal, D. Goffner et al., Cinnamoyl CoA reductase, the first commited enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships, The Plant Journal, vol.11, pp.429-441, 1997.

H. Bailleres, B. Chanson, M. Fournier, and M. T. Tollier, Monties B: Structure, composition chimique et retraits de maturation du bois chez des clones d'Eucalyptus, Ann For Sci, vol.52, pp.157-172, 1995.

G. R. Brown, D. L. Bassoni, G. P. Gill, J. R. Fontana, N. C. Wheeler et al., Identification of quantitative trait loci influencing wood property traits in loblolly pine III QTL verification and candidate gene mapping, Genetics, vol.164, pp.1537-1546, 2003.

. Gion, Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus, BMC Genomics, vol.12, p.301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651298