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Abstract

Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus
grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA
(RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For
this insect, there are not much available molecular information on databases. Using 454-pyrosequencing
methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A.
grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs.
After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-
redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis,
Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to
lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ
Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important
functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were
phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig
matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A.
grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to
develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A
new and representative transcriptome database for this insect pest is now available. All data support the state of the
art of RNAi mechanism in insects.
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Introduction

Insects comprise more than one million of the described
species. Despite the great diversity of species and the
importance of insects, mainly as disease vectors and
agricultural pests, attainable molecular biology resources for
insect study still need to be increased in order to understand
their physiology and biochemistry and to find new targets for

biotechnological tools. At least one-third of insect species are
beetles, making coleopterans the most diverse order of living
organisms. Nevertheless, few data are available for
coleopteran molecular resources in the current available
databases. The NCBI nucleotide database (http://
www.ncbi.nlm.nih.gov/nuccore/), for example, has currently
around 340,000 of total sequences for beetles. Only eight
coleopteran species have more than 5,000 sequences
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deposited: Pogonus chalceus (65779), Dendroctonus
ponderosae (41429), Rhynchophorus ferrugineus (27014),
Dendroctonus frontalis (20987), T. castaneum (16808), Ips
typographus (14810), Agrilus planipennis (12018), A.
grandis (5705). Moreover, no more than 50 insect complete
genomes are available for blast tool nucleotide search. From
these, just one, T. castaneum, is coleopteran. Recently, a
consortium called the i5k Initiative, also known as the 5,000
Insect Genome Project, was recently launched and aims to
sequence the genomes of all insect species known to be
important to worldwide agriculture, food safety, medicine, and
energy production [1].

In the last years, the study of insect transcriptomes has been
employed to evaluate gene expression profile for
biotechnological use. After the introduction of Next Generation
Sequencing techniques largely used for genome sequencing,
transcriptome analysis became fast and efficient, and it is
currently possible to detect and identify microRNAs, 3’ and 5’
untranslated regions and even complete mRNAs [2,3].
Particularly, the next generation sequencing strategy of
pyrosequencing using 454 [4,5] has been used to study insect
vectors [6–9] and to assess insect genes that code for
hemolymph and midgut proteins [10–12], metabolic pathway
enzymes [13–15] and metagenomics [16]. Moreover, some
transcriptome studies were made in order to provide ESTs
datasets of model and non-model insects [9,17–19] and have
become an effective way of assessing gene expression levels.

The cotton boll weevil, A. grandis, has been the most
important cotton insect-pest in North America. Due to the Boll
Weevil Eradication Program, sponsored by the USDA, an
integrated pest management strategy has been successful in
controlling boll weevil populations [20]. In South America,
nevertheless, the insect populations are still causing great
damage to the cotton crops, destroying cotton plant floral buds
and bolls. Due to their high reproductive rate in tropical areas
and to the endophytic behavior of earlier developmental
stages, infestation levels increase fast and unless control
measures are adopted, damages can lead up to total loss of
production [21]. The ineffectiveness and harmful aspects in
using chemical control to arrest the infestation leads to the
search for more efficient control strategies, of which the most
promising are in the biotechnological area.

The use of genetically modified (GM) crops to control insect
pests is now widely used. Several proteins have been
introduced in plants in order to control insects, mainly the
Bacillus thuringiensis (Bt) toxins [22]. None is reported to
control cotton boll weevil. The use of double-stranded RNA
(dsRNA) to silence gene expression is currently a highly
explored approach to generate insect-resistant genetically GM
crops [23–25]. Moreover, RNAi is tool widely used in reverse
genetics studies. Recent results showed the viability of the use
of dsRNA-producing plants as an insect-pest control approach.
Two groups reported GM plants that express dsRNA matching
essential genes in the digestive tract of two important
agricultural insect pests, the cotton bollworm Helicoverpa
armigera (Lepidoptera) [26] and the western corn rootworm,
Diabrotica virgifera virgifera (Coleoptera) [23]. In both cases,
mortality was achieved after feeding on artificial diet containing

dsRNA and GM plants expressing those dsRNAs had
increased resistance towards the insects. These works support
RNAi as a promising methodology for insect-pest control,
making the search for candidate genes to be silenced an
important step in control achievement.

RNA-mediated gene silencing as a mechanism was first
described in plants as post-transcriptional gene silencing
(PTGS) [27,28]. However, the discovery of the interference
RNA mechanism (RNAi) in the free-living nematode
Caenorhabditis elegans led to the understanding of the core
characteristics of RNA-mediated gene silencing [29,30]. RNAi
pathway is a natural cell mechanism in which mRNA-
complementary dsRNA hybridizes specifically to mRNA leading
to its degradation by enzyme complexes. The basic process
seems to be conserved in the species studied so far. However,
significant differences have been reported concerning the
amplification and spread of systemic silencing signal and the
silencing effect inheritance [25,31]. Opposite to C. elegans, the
RNAi silencing effect in insects is restricted to the site of
dsRNA delivery and endures shortly. So far, no gene was
reported to be involved in a systemic mechanism for RNAi in
insects, although studies have shown RNAi systemic effect in
T. castaneum [32–34]. In this context, the sequencing of insect
genomes and transcriptomes may provide more information
about the genes involved in RNAi silencing pathway [35].

In this work, analysis of more than 500,000 reads obtained
by 454-pyrosequencing, assembled in 20,384 contigs is
reported. Predicted proteins were compared to known insect
genomes: B. mori, T. castaneum and D. melanogaster.
Moreover, the analysis of contigs related to core interference
RNA mechanism was performed by comparison to the RNAi
insect genes. The sequences generated in this work will be a
reliable source for candidate genes involved in essential
physiological processes to be used in insect control using gene
silencing via RNAi. In addition, dsRNA synthesized using A.
grandis chitin synthase 1 gene as a template was delivered to
cotton boll weevil female adults and managed to trigger chitin
synthase 1 silencing.

Materials and Methods

Insects
Eggs, larvae and adult cotton boll weevils were reared in

artificial diet according to Monnerat et al [36] at the Laboratório
de Bioecologia e Semioquímicos de Insetos of Embrapa
Recursos Genéticos e Biotecnologia in Brasília, Brazil. The
insects were kept at 26 ± 2 °C, 60 ± 10% relative humidity and
12 h:12 h light:dark. Larvae instars were determined by
measuring head capsule width, as described for lepidopterans
[37]. Adult sex determination was performed according to
Sappington and Spurgeon [38].

RNA purification, cDNA library construction/
normalization and pyrosequencing

Total RNA was extracted separately from each insect stage,
eggs, larvae (3 instars), pupae and male and female adults
using Trizol Reagent (Invitrogen Life Technologies), according
to the manufacturer. RNA was treated with RNAse-free DNAse
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I (Ambion, Invitrogen Life Sciences) at 37 °C for 30 minutes,
according to the manufacturer. A pool of 30µg of all insect
stages total RNA was sent to synthesize a cDNA library at
Eurofins MWG Operon, in Huntsville, AL, USA (http://
www.eurofinsdna.com/).

The RNA quality was assessed in a Agilent 2100 Bioanalyzer
before cDNA library construction. Full-length, enriched, cDNAs
were generated using the SMART PCR cDNA synthesis kit (BD
Clontech) following the manufacturer’s protocol. In order to
prevent over-representation of the most common transcripts,
the resulting double-stranded cDNAs were normalized using
the Kamchatka crab duplex-specific nuclease method (Trimmer
cDNA normalization kit, Evrogen) [39]. Normalized cDNA was
submitted to half-plate run 454 pyrosequencing, GS FLX
Titanium technology, according to protocols provided by
manufacturer (Roche 454 Life Sciences).

Pre-processing
Pyrosequenced reads were pre-processed using

est2ssembly 1.03 pipeline [40]. Contaminant sequences
(prokaryotic, viral, mitochondrial sequences) were removed
after BLAST analysis. Transcriptome data was deposited in
NIH Short Read Archive, with accession number SRA059959.

Assembly, Annotation and Gene Ontology (GO)
Contigs were assembled using MIRA v3.3.0.1 [41].

Homology searches (BLASTX and BLASTN) of unique
sequences and functional annotation by GO terms
(www.geneontology.org), InterPro entries (InterProScan; http://
www.ebi.ac.uk/Tools/pfa/iprscan/), enzyme classification codes
(EC) and metabolic pathways (KEGG, Kyoto Encyclopedia of
Genes and Genomes; http://www.genome.jp/kegg/) were
determined using Blast2GO software suite v2.4.3
(www.blast2go.org). Sequences were submitted to NCBI
protein nr databank via BLASTx, with e-value threshold of 10-5.
False Discovery Rate (FDR) was used at 0.05% probability
level. GO terms were improved with ANNEX tool [42], followed
by GOSlim tool available at Blast2GO (goslim_generic.obo)
[43]. Combined graphs were constructed at levels 2, 3 and 5
for Biological Process, Cellular Component and Molecular
Function categories, respectively. Enzymatic classification
codes and KEGG metabolic pathways were generated of direct
mapping of GO terms, with their respective ECs. InterPro
searches were performed remotely from Blast2GO on
InterProEBI server.

A comparison of cotton boll weevil transcriptome to Tribolium
castaneum genome annotation was carried out using WEGO
tool (Web Gene Ontology Annotation Plotting - http://
wego.genomics.org.cn) [44].Venn Diagram was constructed
using a free tool found in the Bioinformatics and Evolutionary
Genomics Laboratory website, hosted by the University of Gent
Plant System Biology Department (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

Sequence alignment, SID phylogenetic analysis and in
silico analysis of PAZ Domain contigs

Textual and sequence similarity searches were performed in
the transcriptome database for genes involved in RNAi

mechanism, based on available NCBI Protein Database
sequences (http://www.ncbi.nlm.nih.gov/protein).

The amino acid sequences of PAZ domains and SID proteins
were obtained by in silico translation using TrEMBL (http://
www.expasy.ch/tools/dna.html).

Two largest PAZ Domain-containing contigs, here called
A_grandis_454_c1018 and A_grandis_454_c4142 were
selected for alignment with PAZ domains of argonautes and
dicer-like proteins of other organisms including insects (Figure
S1A). All sequences used for alignment contained full PAZ
Domains, including A. grandis contigs and were submitted to
ClustalW2 Multiple Sequence Alignment (http://www.ebi.ac.uk/
Tools/msa/clustalw2/) [45] and edited with Jalview tool (http://
www.jalview.org/) [46].

For SID-like protein analysis, a complete gene sequence of
A. grandis A_grandis_454_c2889 was translated. Sequence
alignment was carried out using complete protein sequences
(Figure S1B). Full SID proteins were aligned using Clustal W
[47]. Phylogenetic and molecular evolutionary analyses were
conducted using MEGA version 5 [48]. The results of
alignments were used for constructing neighbor-joining trees
with bootstrap analysis of 10,000 replicates and evolutionary
divergence calculated by p-distance method.

Chitin Synthase dsRNA bioassay
Chitin Synthase 1 contig (AntgCHS1) was searched in A.

grandis transcriptome using tBLASTx. A specific fragment of
253 bp was chosen using BLOCK-iT™ RNAi Designer (http://
rnaidesigner.invitrogen.com/rnaiexpress/). The fragment was
amplified with primers 5’ATCACAGGAGCAGCGTTGC and
3’ACACCAACTTATCCAATATC, both containing T7 promoter
minimum sequence at 5’ end. PCR product was cloned to
pGEMT-easy vector (Promega) and sequenced to verify
correct amplification. dsRNA was synthesized with 0,5 µg of
PCR product as template, using MEGAscript® T7 High Yield
Transcription kit (Invitrogen). AntgCHS1 dsRNA was dissolved
in DEPC-treated water and quantified by spectrophotometry.

Female adults aged 48 hours were microinjected with 1 µL of
200 ng AntgCHS1 dsRNA before copulation, using a 10 µL
Gastight Luer connection (LT) syringe (1701LT model), with a
51 mm, gauge 26S, point style 4, 12° bevel needle. Each
experimental unit consisted of 16 female adults, which, after
microinjection were kept in a sieved box with 8 non-injected
males, in order to allow the collection of laid eggs. Males were
previously marked with ink. The sieved box with insects
contained artificial diet [36] and was maintained at 26 ± 2 °C,
60 ± 10% relative humidity and 12/12-hour day/night
photoperiod. Control was performed by microinjection of E. coli
gus gene dsRNA, produced as previously described. Analyzed
phenotypic parameters were oviposition, egg viability, and adult
mortality. Eggs laid by microinjected females were
mechanically pierced and kept in artificial diet for 7 days.
Neonate larvae development and phenotypes were assessed.
Data of three bioassays were applied to variance analysis and
Tukey’s multiple comparisons test at 5% level of significance.
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Results and Discussion

Sequencing, Assembly and Annotation
A cDNA library was constructed after pooling RNA extracted

from boll weevil eggs, three larval instars, pupae, male and
female adults. cDNA-normalized library 454 runs generated a
total of 576,297 ESTs (Table 1). The minimal quality standards
used in pre-processing provided 310,182 reads, with average
read length of 379 bp. These data were deposited in NIH Short
Read Archive, with accession number SRA059959. After
assembly, 20,384 contigs with average length of 676bp were
obtained, with an average depth of coverage of 9.58
sequences per nucleotide position. Of these, most contigs have
length ranging from 300 to 750 bp (Figure 1).

Similarity searches and gene ontology analysis
After read assembly, contigs were submitted to BLASTx

similarity search against NCBI non-redundant protein database
(nr) to assess their putative function. Around 10,600 contigs
showed at least one hit against nr (Table 1). Of these, 84.9%
showed significant blast matches at a cutoff e-value ≤ 10-3

(Figure S2). Contigs with e-value = 0 were represented at the
end of the figure, and correspond to 2.5% of the total number
of contigs.

Figure 2 shows the top-hit species after BLASTx similarity
search. As expected, 65.7% of the contigs were similar to T.
castaneum sequences. T. castaneum (red flour beetle) is the
most important coleopteran of Tenebrionidae family because it
attacks stored grain products and is responsible for great loss
and damage. Until now, it is the only coleopteran with a fully

sequenced genome available [49], which explains the far
greater number of contigs of A. grandis with similarity to T.
castaneum sequences. The three top matching species after
Tribolium are fungi. Insect transcriptome pyrosequencing
reports show a number of contigs of the Phylum Microsporidia.
Nosema is a genus of microsporidian known to parasite a great
number of arthropods. Insect orders parasited include
Orthoptera, Lepidoptera, Diptera, Hymenoptera and
Coleoptera. It is a very common contamination in boll weevil
colony rearing and is found in the insect midgut [50]. The most

Table 1. Summary of Anthonomus grandis transcriptome
sequencing assembly and annotation.

Number of reads before pre-processing 576,297

Number of bases before pre-processing 179,676,724

Average read length before pre-processing (bp) 379

Number of reads after pre-processing 310,182

Number of bases after pre-processing 119,094,383

Average read length after pre-processing (bp) 383

Number of contigs 20,384

Number of bases in contigs 13,780,583

Average contig length (bp) 676

Min. contig length (bp) 201

Max. contig length (bp) 4,847

Average read coverage per contig 9,58

% contigs with at least 1 IPR 70

Contigs with at least 1 blast hit against nr 10,621

doi: 10.1371/journal.pone.0085079.t001

Figure 1.  Contigs length distribution showing the major number ranging from 350 to 1000 pb.  The average contig length
was 676pb.
doi: 10.1371/journal.pone.0085079.g001
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studied species so far, with a whole sequenced genome, is
Nosema ceranae, which cause a disease in honey bees and
thus great loss to apiculture. The microsporidian genus
Encephalitozoon is also described associated in symbiosis to
insects [51,52]. Very important in human health, seven
genome-sequencing projects of three Encephalitozoon species
are deposited in the NCBI Genome Bank. Our data suggest
that our insect colony was possibly infected by those
microsporidians and some of their ESTs sequenced and well
annotated due to the great number of available sequences on
databases.

The most part of ESTs was similar to insect sequences.
Besides the coleopteran T. castaneum, the other insect
species with full genome sequences, although phylogenetically
distant, are distributed into the orders Hymenoptera (Nasonia
vitripennis, Camponotus floridanus, Apis mellifera,
Harpegnathos saltator), Phthiraptera (Pediculus humanus),
Diptera (Aedes aegypti, Anopheles gambiae, Culex

quinquefasciatus, Anopheles darlingi, Drosophila virilis,
Drosophila willistoni, D. melanogaster, Drosophila mojavensis),
Hemiptera (Acyrthosiphon pisum), and Lepidoptera (B. mori).
The coleopterans Tenebrio molitor and Chrysomela tremulae
also were among the top-hit species, but with a low number of
matched contigs, probably because they do not have their
genomes sequenced yet. This may also explain why A. grandis
has a low number of matched sequences.

The A. grandis transcriptome was GO-annotated based on
matches to Interpro proteins. In order to group the proteins with
associated GO terms, the top level terms for each GO category
"Molecular function", "Biological Process" and "Cellular
component" were recorded at the different match levels. The
dominant terms for Molecular function are clearly transporter
activity and binding, while the dominant term for Biological
process is pigmentation. Within Cellular component the
dominant terms are evenly divided between organelle, cell part
and organelle part (Figure S3A, B and C).

Figure 2.  Species distribution of top BLASTx matches of A. grandis contigs.  A great number of contigs matched insect
genes, mainly another coleopteran, T. castaneum. E-value cutoff is 1x10-3.
doi: 10.1371/journal.pone.0085079.g002
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A more detailed classification of the contigs function can be
obtained from the top 35 InterPro entries (Table 2). The most
abundant entry is NAD(P)-binding domain (IPR016040).
Chaperones, nucleic acid binding and oxidative stress-related
domains constitute the most part of InterPro entries, in
accordance to the grouped GO top terms (Figure S3A, B and
C).

We used WEGO [44] for visualizing and comparing our GO
annotation to the T. castaneum genome annotation data
(Figure 3). Similar number of genes was annotated for the
same GO terms in both insects for a determined GO category

Table 2. Main protein families found in cotton boll weevil
transcriptome.

InterPro Entry
Accession # of Contigs   InterPro Entry Name
IPR016040 154 NAD(P)-binding domain
IPR011009 145 Protein kinase-like domain

IPR016196 116
Major facilitator superfamily domain, general
substrate transporter

IPR011046 110 WD40 repeat-like-containing domain
IPR015943 101 WD40/YVTN repeat-like-containing domain
IPR015880 94 Zinc finger, C2H2-like
IPR012677 88 Nucleotide-binding, alpha-beta plait
IPR016024 84 Armadillo-type fold
IPR000504 83 RNA recognition motif domain
IPR001680 79 WD40 repeat
IPR012336 77 Thioredoxin-like fold
IPR007087 73 Zinc finger, C2H2
IPR017853 73 Glycoside hydrolase, superfamily
IPR002198 67 Short-chain dehydrogenase/reductase SDR

IPR013781 67
Glycoside hydrolase, subgroup, catalytic
domain

IPR009003 66 Peptidase cysteine/serine, trypsin-like
IPR001254 65 Peptidase S1/S6, chymotrypsin/Hap
IPR011992 59 EF-hand-like domain
IPR001650 55 Helicase, C-terminal
IPR000618 54 Insect cuticle protein
IPR001128 54 Cytochrome P450
IPR001611 49 Leucine-rich repeat

IPR002290 45
Serine/threonine- / dual-specificity protein
kinase, catalytic domain

IPR002018 44 Carboxylesterase, type B
IPR009057 44 Homeodomain-like
IPR011989 44 Armadillo-like helical
IPR011990 44 Tetratricopeptide-like helical
IPR016027 44 Nucleic acid-binding, OB-fold-like

IPR015424 42
Pyridoxal phosphate-dependent transferase,
major domain

IPR003959 41 ATPase, AAA-type, core
IPR012340 41 Nucleic acid-binding, OB-fold
IPR002557 40 Chitin binding domain
IPR009072 40 Histone-fold
IPR011701 40 Major facilitator superfamily
IPR001353 39 Proteasome, subunit alpha/beta

doi: 10.1371/journal.pone.0085079.t002

and no significant differences were shown, which indicates that
de novo annotation for A. grandis is comparable to the T.
castaneum genome annotation. Hence, we consider that we
accomplished the objective of generating a database
describing a significant and representative portion of the A.
grandis transcriptome.

We performed a comparison of the A. grandis 454 Pfam
entries to D. melanogaster and B. mori Pfam transcript sects
from Flybase [53] and Silkbase [54] (with tBLASTx, e < 10-3) in
order to establish a simplified genetic overlap between these
species. The low number of A. grandis sequences, which do
not match either D. melanogaster or B. mori (Figure 4) is
probably due to the sum of new unique genes, poorly
conserved genes, and erroneously sequenced reads. We
noticed that the protein family similarity is higher to Drosophila
(Diptera) than to Bombyx (Lepidoptera). This is significant
because the number of sequence data in plant-insect pest
interaction is greater for Lepidoptera than for Diptera, which
normally lead to a probably erroneous biased search for
ortholog sequences for coleopterans in lepidopteran
databases.

Proteins involved in RNA interference mechanism
The mechanisms of RNAi seem to be conserved among

species, despite the previously described differences regarding
signal amplification, systemic effect and inheritance [32]. In
insects, except dipterans, dsRNA uptake is carried out by
SID-1. Once inside the cell, dsRNA is cleaved in small RNAs
(siRNAs) by Dicers. siRNAs are recognized by the RNA-
induced silencing complex (RISC), which contain argonaute
proteins. The siRNAs hybridize with specific mRNAs and the
duplex siRNA-target mRNA is then degraded. We have found
several contigs of genes coding for proteins involved in RNAi
mechanisms (Figure 5). Most proteins sequenced belonged to
Argonaute, Dicer and Helicase families, involved in dsRNA
cleavage and endonuclease activity. The number of contigs
found for each gene class is indicated.

Based on the contigs found, RNAi mechanism in A. grandis
seems to be similar to other insects in the steps of the process
like dsRNA cleavage, dsRNA binding and Argonaute activity
(Figure 5B, C, D), but differs of dipterans in dsRNA uptake
(Figure 5A). No gene involved in dsRNA degradation was
found (Figure 5F). The contigs found best matched insect
genes, mainly from dipteran and coleopteran species (Table
S1).

Two sid-1 contigs (A_grandis_454_c14864,
A_grandis_454_rep_c2889, 709bp and 1918bp, respectively),
gene that codes for the membrane protein responsible for
dsRNA uptaking and spreading through the tissues, were
found. The top species BLASTx hit for these two contigs was T.
castaneum, which has three sid-1 paralogs in its genome. Both
contigs have above 60% identity and e-value < 5x10-31. Those
contig sequences do not overlap, and probably are paralog
genes. Their best BLASTx hits are T. castaneum sid-1A and
sid-1C, respectively.

We used the predicted protein from contig
A_grandis_454_c2889 for phylogenetic analysis because it
contains the complete ORF for sid-1. A distance/neighbor-
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joining dendrogram for the SID proteins grouped the
A_grandis_454_c2889 contig with SID-like A and SID-like B
from T. castaneum (Figure 6). SID-like C from T. castaneum is
closer to hemipteran A. gossypii and grouped in the branch that
have homopteran and mainly hymenopteran insects. Probably,
the contig A_grandis_454_c14864 that has as BLASTx best hit
sid-1C of T. castaneum, could group in the same branch,
although we need full gene sequence to confirm it. An
evaluation of available genomes shows that the number of
sid-1 gene copies varies among insects. Dipterans have no
sid-1 genes, and hemipterans, hymenopterans, orthopterans
and phthirapterans have just one sid-1 [35]. Among
lepidopterans this number are even more variable: while B.mori
has three, Spodoptera exigua has only one [25,35]. As
previously described for other insects, no sid-2 ortholog gene,
which is present in nematodes, was found for A. grandis.

No ortholog gene for RNA-dependent RNA polymerase
(RdRP), the enzyme that amplifies RNAi signal in nematodes,
was found (Figure 5E). Recent studies performed and patented

by our group showed that delivery of dsRNA by microinjection
was capable of trigger silencing of laccase2 [55] and chitin
synthase 2 [56] genes in A. grandis. Since the morphological
effects were observed far from the local of microinjection, this
corroborates the already proposed hypothesis that when RNAi
signal amplification occurs in insects, mainly in coleopterans, it
may be mediated by other mechanism [57].

In order to evaluate a conserved domain in a protein involved
in RNAi mechanism, we performed an alignment of the PAZ
domains of two contigs from the boll weevil transcriptome
(A_grandis_454_c1018 and A_grandis_454_c4142) with dicers
and argonautes of 5 different species: (Figure 7): D.
melanogaster (Dm_Dicer-1, Dm_AGO1C, Dm_AGO2), C.
elegans (Ce_Dicer1, Ce_Alg1, Ce_Alg2), Homo sapiens
(Hs_Dicer-1, Hs_Ago1), Arabidopsis thaliana (At_Dicer-like-1,
At_AGO, At_AGO1) e Schizosaccharomyces pombe
(Sp_AGO1). PAZ is a double-stranded-RNA-binding domain
present in all argonautes and dicers [31,58]. Conserved
residues in dicers and argonautes are also present in A.

Figure 3.  Comparison of the distribution of GO terms.  The X-axis shows subgroups of cellular component, molecular functions
and biological process from GO. Distribution of GO terms of gene families of T. castaneum and A. grandis are compared. The Y-
axis shows the percentage (left) and the number of genes (right) of the matched Pfam entries.
doi: 10.1371/journal.pone.0085079.g003
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grandis contigs, which can validate in transcriptome assembly.
These residues are normally located on the domain surface
and at only one side of the RNA-binding proteins [59]. In figure
7, the highlighted residues are responsible for the stabilization
of the dsRNA-binding region, forming seven β structures and a
α-helix. A subdomain featuring aromatic residues (in yellow)
keep the domain folding which is similar to an OB-fold (OB –
Oligonucleotide/oligosaccharide Binding fold), known to bind
single-stranded DNA unspecifically [60,61]. Along with a

cysteine residue (blue), preceded by a proline and a glutamate
(yellow), some invariant residues (red) create a hydrophobic
subdomain that interacts with RNA. Differential residues
between PAZ domains of dicers and argonautes suggest that
the cotton boll weevil contigs belong to the latter family (in
brown), although experimental approaches are necessary to
confirm it.

Figure 4.  Venn diagram of the number of contigs from A. grandis which show IPR matches to D. melanogaster and/or B.
mori.  Numbers are unique Butterflybase and Flybase IPR results. The number of similar protein families between A.grandis and D.
melanogaster is higher than A.grandis and B. mori.
doi: 10.1371/journal.pone.0085079.g004
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Figure 5.  Genes involved in RNAi mechanism found in A. grandis transcriptome.  The comparison with genes of C. elegans,
T. castaneum, and D. melanogaster suggested that RNAi mechanism is well conserved in insects (A, B, C, D), including lack of
amplification (E). No gene involved in dsRNA degradation was found (F). The number of contigs found in A. grandis transcriptome
for each gene class is shown.
doi: 10.1371/journal.pone.0085079.g005
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Effect of parental AntgCHS1 dsRNA on eggs and
neonate larvae

Chitin synthase (EC 2.4.1.16) is the final enzyme of the chitin
synthesis pathway which polymerizes chitin by promoting
covalent bonds between activated UDP-N-acetylglucosamine
monomers [62]. Gene silencing reports have showed the
importance of chitin biosynthesis for insect cuticle formation
[63,64]. A chitin synthase contig was found in A. grandis
transcriptome and here called AntgCHS1, corresponding to
chitin synthase 1, enzyme described to trigger chitin
polymerization in insect cuticle [62,65]. In order to evaluate the
effect of RNAi gene silencing on A. grandis, GUS dsRNA and
AntgCHS1 dsRNA were synthesised and delivered to female
adults by microinjection before copulation. No effect was
phenotipically observed in the microinjected females.
AntgCHS1 dsRNA microinjection caused no effect in female
survival. After copulation, the number of laid eggs was not
different between treatments, but viability, measured as the
average number of eggs which hatched and generated well-
formed larvae, was reduced 84% for eggs laid by AntgCHS1
dsRNA (Figure 8E). Interestingly, embryo formation and normal
movement inside the same eggs were observed, suggesting
that larvae were formed but could not eclose. So mechanical
perforation of egg shell was performed and larvae transferred
to artificial diet and observed for seven days. Larvae from GUS

dsRNA-microinjected females developed normally, while larvae
from AntgCHS1 dsRNA-treated females failed to develop and
died (Figure 8A). This can be explained by the observed head
capsule and mandibule malformation which must have
hampered diet feeding as well the previously described
difficulty of tearing the egg shell and eclosing (Figure 8B, C, D).
Previous studies have already reported the incapacity of egg
shell rupture by larvae in which chitin synthesis was
compromised [66]. Mutations in D. melanogaster chs 1 gene,
formerly called kkv, caused the embryos to develop normally,
but to fail in eclode from the eggs. When the vitelline
membrane in these mutant eggs was punctured by mechanic
pressure, embryos were alive and more stretched than wild-
type embryos. This phenotype, called blimp, was explained by
the failure of epidermal cells in synthesize the cuticle correctly.
Loss of functionality in chitin synthases, either by mutation or
by the use of synthetic inhibitors, like benzoylphenyl urea
(BPU) can produce the same results [67–69].

In addition, eggs laid by microinjected females after
copulation were used to evaluate the number of AntgCHS1
gene transcripts. The microinjection of 200 ng of AntgCHS1
dsRNA in adult females resulted in a 5,5-fold reduction of
AntgCHS1 gene transcripts in eggs when compared to control,
indicating that RNAi effect was transferred to the next
generation (Figure 8F). These results confirm that synthesis of

Figure 6.  Distance neighbor-joining tree showing the phylogeny of a SID-like contig of A. grandis (A_grandis_454_c2889)
and SID-like proteins of the insects T. castaneum, B. impatiens, A. mellifera, L. migratoria, B. mori, A. gossypii, H. saltator,
Camponotus floridanus.  The percentage of percentage of bootstrap confidence values is shown at the nodes.
doi: 10.1371/journal.pone.0085079.g006
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chitin in insect epidermis is affected in A. grandis after
AntgCHS1 dsRNA delivery. Parental RNAi effect transferred to

offspring was also reported for T. castaneum genes [32,34]. As
discussed before, these facts also support the theory of at least

Figure 7.  Comparison of dicer and argonaute PAZ domains.  Two cotton boll weevil contigs were aligned to five species
sequences: D. melanogaster (Dm_Dicer-1, Dm_AGO1C, Dm_AGO2), C. elegans (Ce_Dicer1, Ce_Alg1, Ce_Alg2), Homo sapiens
(Hs_Dicer-1, Hs_Ago1), A. thaliana (At_Dicer-like-1, At_AGO, At_AGO1) and Schizosaccharomyces pombe (Sp_AGO1). The
sequence IDs are the same found in the NCBI Protein Database. Secondary structures within the domain are indicated as α-helices
and β structures. The highlighted residues are responsible for the stabilization of the dsRNA-binding region. In yellow, a subdomain
of aromatic residues. Along with a cysteine residue (blue), preceded by a proline and a glutamate (yellow), some invariant residues
(red) create a hydrophobic subdomain that interacts with RNA. Residues that differ in dicer and argonaute PAZ domains are shown
in brown.
doi: 10.1371/journal.pone.0085079.g007
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one unknown mechanism of RNAi signal amplification, which is
different from nematodes and plants, since insects do not have
RdRP genes in their genomes.

Conclusions

Here it is described the analysis of a new database of cotton
boll weevil (A. grandis) nucleotide sequences obtained by
pyrosequencing of the insect transcriptome. It is the largest
number of sequences provided for this insect pest so far.
These results provide a significant molecular biology dataset,
which can be used, as an example, for molecular prospection
in order to validate genes to be used in insect control. The
silencing of a chitin synthase gene in larvae emerged from
eggs laid by dsRNA-microinjected females proved that not only
RNAi machinery is able to trigger RNAi silencing in A. grandis,
but also to transfer its effect to the next generation. Since the

main goal here was to generate and analyze data in silico,
other experiments of gene expression quantitation, silencing
via RNAi and gene sequencing in specific insect stages or
submitted to certain conditions must be carried out. These
experiments will allow the characterization of processes, either
to understand cotton boll weevil biology or to assess gene
candidates for development of insect control biotechnological
tools.

Supporting Information

Figure S1.  Orthologous genes used in PAZ Domain
alignment (A) and SID-1 phylogenetic Analysis (B). Two
largest cotton boll weevil PAZ Domain-containing contigs were
selected for alignment with PAZ domains of argonautes and
dicer-like proteins of other organisms including insects. For
SID-like protein phylogenetic analysis, a cotton boll weevil

Figure 8.  Effect of AntgCHS1 on A. grandis on oviposition.  Larvae that emerged from eggs laid by females previously
microinjected with 200 ng of either GUS (control) or AntgCHS1 dsRNA (A). After egg hatching, larvae were fed in artificial diet for 7
days. Details of head capsule show malformations in AntgCHS1 dsRNA-treated larvae (C and D) when compared to control (B).
The viability was reduced (E) and as well as the number of transcripts of AntgCHS1 (F) in eggs laid by females previously
microinjected with AntgCHS1 dsRNA.
doi: 10.1371/journal.pone.0085079.g008
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complete gene sequence was translated and aligned to
complete protein sequences.
(TIF)

Figure S2.  E-value for the top BLASTx hits. Sequences with
e-value equal to 0 are represented in a peak at right. 84.9% of
the contigs showed significant blast matches at a cutoff e-value
≤ 10-3.
(TIF)

Figure S3.  Gene ontology (GO) categories for A. grandis
transcriptome. The terms were classified on level 2, 3 and 5 in
the (A) Biological Process, (B) Cellular Component and (C)
Molecular Function, respectively. The dominant terms for
Molecular function are transporter activity and binding, while
the dominant term for Biological process is pigmentation.
Within Cellular component the dominant terms are evenly
divided between organelle, cell part and organelle part. The
percentage of contigs in each GO term is shown.
(TIF)

Table S1.  A. grandis contigs found in the transcriptome
corresponding to RNAi insect genes. RNAi mechanism in A.

grandis seems to be similar to other insects in the steps of the
process like dsRNA cleavage, dsRNA binding and Argonaute
activity, but differs of dipterans in dsRNA uptake. No gene
involved in dsRNA degradation was found.
(XLSX)
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