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Abstract
Likelihood-based methods of inference of population parameters from genetic data in structured populations have been
implemented but still little tested in large networks of populations. In this work, a previous software implementation of
inference in linear habitats is extended to two-dimensional habitats, and the coverage properties of confidence intervals are
analyzed in both cases. Both standard likelihood and an efficient approximation are considered. The effects of misspecifi-
cation of mutation model and dispersal distribution, and of spatial binning of samples, are considered. In the absence of
model misspecification, the estimators have low bias, low mean square error, and the coverage properties of confidence in-
tervals are consistent with theoretical expectations. Inferences of dispersal parameters and of the mutation rate are sensitive
to misspecification or to approximations inherent to the coalescent algorithms used. In particular, coalescent approxima-
tions are not appropriate to infer the shape of the dispersal distribution. However, inferences of the neighborhood parameter
(or of the product of population density and mean square dispersal rate) are generally robust with respect to complicat-
ing factors, such as misspecification of the mutation process and of the shape of the dispersal distribution, and with respect
to spatial binning of samples. Likelihood inferences appear feasible in moderately sized networks of populations (up to 400
populations in this work), and they are more efficient than previous moment-based spatial regression method in realistic
conditions.
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Introduction
Accurate estimation of dispersal in natural populations by
demographic observations is difficult, which has led to the
development of many methods to infer dispersal from ge-
netic information. Recent developments include some ap-
plications of assignment techniques (Wilson and Rannala
2003; Paetkau et al. 2004; Faubet and Gaggiotti 2008), meth-
ods based on simulation of the distribution of summary
statistics (such as so-called approximate Bayesian compu-
tation, e.g., Beaumont 2007 applied to dispersal estimation
in Hamilton et al. 2005 and Becquet and Przeworski 2007)
and likelihood methods (Rannala and Hartigan 1996; Beerli
and Felsenstein 1999, 2001; de Iorio and Griffiths 2004b) that
aim to use all information in the data.

These methods seem to perform well for low migration
rates between a small number of populations, but their
performance is more generally uncertain. For example, the
evaluation of likelihood remains time consuming, so that
likelihood methods have been tested only for small net-
works of populations, and the reliability of the computa-
tions is sometimes debated (Abdo et al. 2004; Beerli 2006).
Further, all methods may rest on questionable assumptions.
For example, it has been found that “ghost” populations
unaccounted in the statistical model can affect maximum-
likelihood (ML) estimation of dispersal and mutation pa-
rameters of sampled populations (Beerli 2004; Rousset and
Leblois 2007). Thus, perennial questions (e.g., Cox 2006,

p. 170) about the benefits of likelihood analyses relative to
alternative methods remain pending.

Application of full-likelihood methods to the scenario
of localized dispersal or “isolation by distance,” relevant
for many ecological studies, has only been considered in
Rousset and Leblois (2007), and alternative methods are
still being developed (e.g., rare allele methods, Novembre
and Slatkin 2009). Rousset and Leblois (2007) described
the properties of point estimates of dispersal and muta-
tion parameters in linear habitats. The evaluation of likeli-
hood was based on the algorithms of de Iorio and Griffiths
(2004b). As evaluation of likelihood performance was time
consuming, a fast heuristic approximation known as prod-
uct of approximate conditional likelihood (PAC-likelihood,
Li and Stephens 2003) was also considered. Inferences from
PAC-likelihood surfaces appeared practically as efficient
(precise) as full-likelihood inferences, even though the PAC-
likelihood is a biased estimate of the likelihood for each
parameter point. In the present work, these results are ex-
tended to two-dimensional habitats. Further, the perfor-
mance of likelihood-based confidence intervals is analyzed.

The following general features are shared with and
further discussed in Rousset and Leblois (2007): Allelic type
data will be considered, with microsatellite data as the
intended subject of application. We envision many species
as spatial clusters of subpopulations with large immigration
probabilities within each cluster, and less dispersal among
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clusters, and we are interested in the analysis of one such
cluster. Its structure is described as a regular array of demes
of size N for which we estimate the following parameters:
a mutation rate, a number of immigrants per deme (Nm),
and a dispersal scale parameter (that of a geometric distri-
bution). We also consider the neighborhood size or equiva-
lently the product of population density and mean square
dispersal distance, the latter being a function of the two pre-
vious parameters. We will compare performance of neigh-
borhood estimation to that of variants of the method based
on regression of FST estimates to geographical distance (e.g.,
Rousset 1997; Watts et al. 2007).

Evaluation of performance involves both evaluation un-
der ideal conditions where the data are generated under the
model used as a basis for statistical analysis and evaluation of
robustness under model misspecification (e.g., Casella and
Berger 2002, p. 481). In this paper, we consider both steps.
We first evaluate performance under nearly ideal conditions
(known mutation model, known dispersal distribution), in
particular to demonstrate that we have an effective imple-
mentation of likelihood inferences. Overall, the estimation
performance may be considered excellent, with good cov-
erage of the confidence intervals, and generally small bi-
ases and small mean square errors. We nevertheless obtain
some nonideal results and show that they are inherent to
the statistical method rather than a feature of our imple-
mentation. More specifically, the algorithm used to estimate
likelihood is based on coalescent approximations, that is,
approximations for large deme size, small migration, and
small mutation probability. When applied to samples from
finite-sized populations, the statistical model thus always
appears misspecified except in the case of vanishing migra-
tion rate between arbitrarily large populations, a case that
may be of limited practical interest. The coalescent approx-
imation affects the results, as estimates of dispersal param-
eters (number of migrants and the shape parameter of the
dispersal distribution) are biased when the dispersal prob-
ability is large. Neighborhood estimation may be more ro-
bust in this respect. We also compare strict likelihood and
PAC-likelihood inferences and find that their performance
are practically equivalent.

In a second step, we evaluate performance of PAC-
likelihood inferences under conditions including misspecifi-
cation of the dispersal distribution and of mutation model,
and otherwise designed to approximate realistic conditions,
based on the study of damselfly populations by Watts et al.
(2007). We consider the effect of spatial binning of samples,
as such binning is necessary to fit data from individuals that
can be sampled from anywhere in continuous space, to the
framework of the statistical model that assumes a regular
grid of demes. As computations are also faster for small ar-
rays of demes, a coarse-grained spatial binning of samples
can also reduce the computation load compared with a fine-
grained one. But it can also induce biases or results that are
difficult to interpret. Finally, we compare neighborhood size
estimation to that achieved by previous methods and con-
clude that likelihood-based estimation can perform better
in practical conditions.

Methods
For each simulated data set, the analysis goes through three
main steps, implemented in the software Migraine and fur-
ther described in the Appendix. First, likelihoods are esti-
mated, with some error, for a number of parameter points.
Next, a likelihood surface is inferred from the likelihood
points by a classical smoothing method (Kriging). Third, pa-
rameter values of interest (the mutation and dispersal pa-
rameters used to generate the data) are tested by profile
likelihood ratio tests (profile LRTs, e.g., Cox and Hinkley
1974; Severini 2000). Profile LRTs also allow the construc-
tion of profile likelihood confidence intervals. Ideally, the
main measures of the quality of inference are the cover-
age properties of such confidence intervals for given param-
eter values. Note that this differs from coverage averaged
over a prior distribution of parameter values, as measured
in some studies (Beerli 2006; Hey 2010; Peter et al. 2010).
Only the demonstration of good coverage for fixed param-
eter values ensures good average coverage for any imper-
fectly known prior distribution or for any prior information
in the form of a likelihood surface. The coverage properties
of confidence intervals, for given parameter values, can be
assessed through the distribution of the P value of the cor-
responding profile LRTs. Ideally, this distribution is uniform;
but this comfortable ideal is rarely attained in practice and
then some consideration of the practical importance of the
biases is useful in assessing the method.

In this section, we detail the basic assumptions of the
sample simulation model and of the statistical model. In
the Appendix, we further detail the implementation of the
statistical model and the method of inference of likelihood
surfaces.

Dispersal Models for Sample Simulation
Samples have been simulated by the IBDsim program
(Leblois et al. 2009). Two dispersal distributions have been
considered, a geometric dispersal model similar to the one
of the statistical model and the Poisson reciprocal gamma
model (Chesson and Lee 2005). The latter distribution is
Gaussian-looking at short distances, but power-tailed, and
can therefore have a high kurtosis. Its two parameters γ < 0
and κ determine the power γ−1 of the tail, and the second
moment σ2 = −κ/[2(1 + γ)]. We vary σ2 in our simula-
tions by varying κ for fixed γ = −2.15, whereby the axial
kurtosis varies between 20.1 and 22.5.

Exact Control of Number of Migrants
Absorbing boundaries are assumed, so that the demes near
edges typically receive fewer immigrants since they have
fewer close neighboring demes. The actual number of immi-
grants thus differs from the number of emigrants deduced
from the forward distribution. Such discrepancies are easily
detected by the statistical estimation of number of immi-
grants. Then, one needs to control the number of immi-
grants in the sample simulation rather than simply let it be
a complex function of the forward distribution and of habi-
tat edge effects. Hence, in both sample simulations based
on the geometric distribution and in statistical analysis, the
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Nm parameter is defined to give the maximal (over demes)
expected number of immigrants in a deme whatever the
edge effects. This differs from simulations in Rousset and
Leblois (2007) and will be included as an option in future
versions of the IBDsim program. On the other hand, no at-
tempt was made to control Nm values in our sample simula-
tions based on the Poisson reciprocal gamma distribution. In
the latter simulations, the immigration rate in most demes
was > 0.8, a situation where no demic structure would be
recognized in practice.

Geometric Dispersal
The scale parameter g describes the geometric decrease,
with distance between demes, of the pairwise forward im-
migration probabilities. In two dimensions, forward proba-
bilities decrease according to relative values of g|x|+|y|/[(1+
δx0)(1 + δy0)], x and y being the axial dispersal distances in
each dimension (not both zero), and δij = 1 if i = j and
= 0 otherwise (Kronecker’s notation). As described above,
the forward dispersal probability is adjusted such that the
maximal expected number of immigrants in a deme has
a known preset value and that the deme of origin of im-
migrants is chosen according to the relative values of the
forward dispersal probabilities.

The Neighborhood Parameter
The classical neighborhood size parameter is defined as
Nb ≡ 2Dσ2 in linear habitats and Nb ≡ 2Dπσ2 in two-
dimensional habitats, where in this paper, D is a density of
haploid equivalents (in the same way as N is a number of
haploid equivalents). For geometric dispersal, the Dσ2 term
is deduced from Nm and g, as 2Nmσ2

cond, where σ2
cond is the

second moment, in unbounded space, of axial dispersal dis-
tance conditional on dispersal. Thus, for two-dimensional
habitats,

σ2
cond =

1

2

∑x=∞
x=0

∑y=∞
y=0 (x2 + y2)gx+y

∑x=∞
x=0

∑y=∞
y=0 gx+y − 1

=
1 + g

(2 − g)(1 − g)2
=

Nb

2πNm
(1)

and for linear habitats,

σ2
cond =

∑x=∞
x=1 x2gx

∑x=∞
x=1 gx

=
1 + g

(1 − g)2
=

Nb

2Nm
. (2)

Note that Nb depends on the distance unit in linear habitats
and that the above equation only holds if the distance unit
is one lattice step in the statistical model.

Dispersal in the Statistical Model
A geometrical dispersal model is assumed in likelihood com-
putations. Its exact meaning differs from that of the geo-
metrical dispersal model assumed in sample simulations. In
the likelihood computations, g describes the decrease of the
expected number of immigrants with distance, whereas in
the sample simulation, g describes the decrease in forward
immigration rates. Such discrepancies cannot be generally
avoided because the likelihood computations are based on

a limit process where all dispersal probabilities among differ-
ent demes are infinitesimally small and considers only one
parameter Nm where the sample simulation considers the
two parameters N and m separately.

In particular, the edge effects cannot be treated identi-
cally in both algorithms. In the likelihood computations, we
assumed the number of immigrants between pairs of demes
is a function of their relative position only and not of their
position relative to the edge of the habitat; whereas in the
sample simulation algorithm, it is determined by computa-
tion of backward dispersal probabilities from forward prob-
abilities (as is usual), and this depends on the position of the
two demes relative to the edges of the lattice. Further details
and a numerical example are given in the Appendix, illus-
trating that the discrepancies between the two algorithms
may be small.

Mutation Models
The default mutation model considered in sample simula-
tions was a symmetric K-alleles model (KAM) with 10 alle-
les. A one-step stepwise mutation model (SMM), also with
10 alleles, was also considered in some sample simulations.
The KAM was assumed in all likelihood computations.

Sampling Design
Two-hundred data sets are analyzed for each simulation
condition. Each data set includes 10 independent loci. In the
two-dimensional case, square habitats of 4 × 4 or 10 × 10
populations are simulated, and 10 diploid individuals are
sampled at each of 8 demes, two in each corner, that is, at
positions (1,1) and (2,2) in one corner and symmetrically
in the other corners. In this way, both adjacent and distant
populations are sampled, which should facilitate estimation
of the scale of dispersal. On the other hand, this design may
highlight edge effects. In linear-habitat cases, samples of 10
individuals were taken in each subpopulation for arrays of
four populations; at positions 2–8 (or 2–16, cases [5], [6],
[25], [26]) by steps of 2 for 16 populations; and at positions
40–58 by steps of 2 for 100 populations.

Results

Minimal Misspecification
Full Likelihood
The correctness of the confidence intervals can be examined
graphically by looking whether the empirical cumulative
distribution function of P values aligns (or not) with a 1:1 di-
agonal line. These distributions are shown for all simulation
conditions in the Supplementary Material online for details.
Figure 1 (left) illustrates a good result. Deviations from the
diagonal are tested by the Kolmogorov–Smirnov test (“KS”
inset in each subplot). Four subplots are presented, one for
each of the canonical parameters and one for Dσ2. Also
shown below each subplot are the relative (except for g)
bias and root mean square error (RMSE) of each ML estima-
tor (the same numbers are reported in table 1, case [1]). It
may be observed, and this will also be true when confidence
intervals have incorrect coverage that the bias and RMSE
of Nμ and Nm are small by practical standards. The Dσ2
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FIG. 1. Distributions of P values of likelihood ratio tests in cases [1] (left) and [2] (right).

relative bias and RMSE can be very large. This will typically
occur when the data show no evidence of isolation by dis-
tance (and therefore when arbitrarily large Dσ2 estimates
may be obtained). In general, the distribution of 1/(Dσ2)
estimates is much closer to Gaussian, which make compar-
isons of bias and RMSE more meaningful. For this reason, the
relative bias and relative RMSE reported in figures and tables
are those of 1/Nb.

Figure 1 (right; case [2] in table 1) presents a less satisfy-
ing result. The only difference with the previous example is
that m is 0.1 rather that 0.01. In this and further simulations,
there are three possible sources of nonideal performance
inherent to the statistical model: 1) departure from coales-
cence assumptions (m being large or N being small); 2) spa-
tial edge effects: They are expected when m is large, and g
is intermediate (for low g, immigration probabilities are af-
fected only in the outermost demes; for g = 1, the sample
simulation model and the statistical model are the island
model, both with the same immigration rate, so the edge
effects are correctly specified). For given number of demes,
edge effects should also be most visible in two-dimensional
lattices because a higher fraction of populations are at the
edge of the habitat; 3) estimates are at the boundary of the
parameter space. This can occur for g and then the expected
distribution of LRT P values is not uniform. Not only LRTs
for g but also for other parameters can be affected (Self and
Liang 1987).

The first two effects should disappear as N increases and
m, μ decrease for fixed Nm, Nμ. The first effect (depar-
ture from coalescent assumptions for high m) is best singled
out under an island model, that is, when g is fixed to 1 in

sample simulation and in statistical analyses. These simu-
lations clearly show better inferences of a fixed Nm value
with N increasing from 80 to 40, 000 and m decreasing from
m = 0.5 to m = 0.001 (cases [3] vs. [4]). To illustrate what
these changes in RMSE mean, fig. 2 shows the likelihood sur-
faces for the samples that yielded departures from parame-
ter values closest to the RMSE values and of the same sign
as the bias.

Under isolation by distance, the effect of the coalescent
approximation is illustrated by comparison of cases [14]
and [2] (N increasing from 40 to 40,000) and by comparison
of cases [5] and [6] (N increasing from 400 to 40,000), al-
though in both comparisons the third effect (g estimates at
the boundary) may also affect performance more strongly
when m is larger. Figure 3 shows the convergence of dis-
tributions of P values to uniform distributions in the last
comparison. The same convergence is observed is the two
previous comparisons (see Supplementary Material online
for distributions of P values).

We can roughly rank different simulations according to
the expected magnitude of the different effects from low-
est to highest. Low m values are illustrated by cases [7]–[13]
and [19], and the estimator biases are indeed small.

For g = 0 (stepping stone model, cases [12] and [13]),
the distribution of the LRT for g = 0 is expectedly not uni-
form. The theoretical asymptotic distribution of the LRT P
value is a mixture 1:1 of a χ2 with 1 degree of freedom and
of a probability mass at 0. The observed mass at 0 actually
departs from 1/2 (see cases [12] and [13] in Supplementary
Material online for details), which is a general phenomenon
(e.g., Pinheiro and Bates 2000, p. 87; Hey 2010). The profile
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LRTs for the other parameters appear unaffected, but this is
not a general expectation (Self and Liang 1987).

When g approaches 1 (and neighborhood size ap-
proaches infinity), the same parameter boundary effects on
g are encountered (case [20]; similar results are also ob-
tained with 50 loci by PAC-likelihood, not shown). Further,
numerical issues affect tests of large values of the neighbor-
hood size (∼ 1011 for g = 0.99999). A way to circumvent
this problem is to change the scale of uniform sampling of
parameter points and of Kriging (i.e., uniform sampling of
σ2

cond, see Appendix). Although this solves most of the nu-
merical issues, the distribution of P values for Nb is distorted
in the same way as that for g.

Conversely, the highest biases are expected for high m
values (fig. 4). The largest Nm bias in tables 1 and 2 is for
m = 0.5 in a linear array of 100 demes (case [18]), and other
cases with m > 0.1 show large distortions of the distribu-
tion of P values. For intermediate m values (0.01 6 m <
0.1) relatively large Nm biases may still be observed, but dis-
torsions of P value distributions are generally less obvious,
except in some cases where misspecification of spatial edge
effects can also contribute (in particular, case [16]).

PAC-likelihood
The PAC-likelihood approximation can easily be compared
with the likelihood analysis when the latter is feasible
(cases [21]–[40] in the same order as comparable strict like-
lihood analyses [1]–[20]). In all cases, their performance is
very similar, except that PAC-likelihood estimates of the
mutation rate appear unbiased or downward biased while
strict likelihood ones show a slight positive bias (fig. 5).
Some additional PAC-likelihood analyses were considered
for 10×10 lattices (cases [41]–[43]) and demonstrate good
performance. Case [42] is identical to case [22] except that a
larger array was considered. Expectedly, the spatial edge ef-
fects are reduced and indeed no longer apparent in this case.

Misspecification Effects and Comparison with
Moment-Based Method
In this section, we consider three sources of misspecifica-
tion: the spatial binning of samples, the mutation process at
marker loci, and the shape of the dispersal distribution. We
also compare the performance of likelihood-based inference
to a simple regression method for estimation of neighbor-
hood in such conditions of misspecification.

The algorithms considered in this work rest on the defini-
tion of distinct demes. However, in natural populations, in-
dividuals are not clearly clustered in demes. It is tempting to
analyze such populations as made of a large number of small
breeding patches though there are computational limits to
the number of demes that can be considered in practice. A
straightforward method of clustering is according to regu-
lar spatial bins. It is therefore necessary to know how such a
clustering can affect inferences. In particular, it is not neces-
sarily obvious what are the parameter values to be estimated
(the estimands) from the binned data.

For samples from a regular array, a putative estimand for
Nm is the number of immigrants in each spatial bin, that is,
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FIG. 2. Examples of likelihood surfaces for cases [3] (top) and [4] (bottom). The surfaces are inferred from 1,024 points as described in the Appendix.
In both cases, the parameter values where 2Nμ = 0.4 and 2Nm = 80, but the bottom case illustrates the much higher RMSE of 2Nm estimates
for low N, large m cases. The likelihood surface is shown only for parameter combinations that fell within the envelope of parameter points for
which likelihoods were estimated. The cross denotes the maximum.

the sum of the numbers of immigrants within each deme,
reduced by the number of immigrants exchanged among
demes within a bin. The estimand neighborhood size could
be invariant with respect to bin size (in linear habitats, this
holds provided that spatial distance is still measured in the
original units not in number of bin widths). For mutation,
one may assume that the estimand is the bin population size
times mutation probability. In the Appendix, we show that
such predictions do not always work well, in particular for
Nm and g, and that the effects of binning may also depend
on the distribution of samples among bins. In general, it may
be difficult to make sense of Nm and g estimates.

To evaluate performance in a biologically relevant set-
ting, we considered conditions broadly similar to those of

two-dimensional analyses of the damselfly metapopulation
described by Watts et al. (2007). This damselfly scenario
can also serve as a basis for a realistic comparison between
likelihood- and moment-based methods of inference. We
have first simulated data sets with samples taken along four
lines in a rotationally symmetric pattern forming the four
tips of a cross. This mimics sampling along small streams in
the original study. The neighborhood value Nb = 200π and
mutation rate 2Nμ = 0.01 approximate the moment and
likelihood estimates from the damselfly data. An array of
40×40 demes is simulated and analyzed as arrays of 20×20,
10 × 10, or 5 × 5 spatial bins (table 3, cases [46]–[48]).
Even by PAC-likelihood, the analysis for the larger array is
computationally intensive, so the sample size considered
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FIG. 3. Convergence of distributions of P values for increased N. The two cases differ only in N, m, and μ values for identical Nm and Nμ. N = 40
(case [5]) on the left and 40, 000 (case [6]) on the right.

(10 loci genotyped in 200 individuals) is smaller than in the
original study. This still requires about 15 CPU days per sam-
ple on ∼2.5 GHz core processors (i.e., 7.5 CPU years in total
for case [46]). The values tested by likelihood ratio are the
estimands, that is, the true Nb value, and mutation proba-
bility times bin population size for Nμ.

FIG. 4. Relationship between dispersal probability and bias of esti-
mated number of migrants for all cases in table 1.

Effects of Binning
For 20 × 20 binning (case [46]), estimator performance
is consistent with expectations, with good coverage of the
confidence intervals. The same conclusions are supported
by analyses as 10×10 and 5×5 arrays (cases [47] and [48]).
In the latter case, a distorsion of P values becomes more
apparent as well as a relative bias of 0.14 for 1/Nb. This
distorsion may be in part due to the fact that many g es-
timates are at the boundary. This, and the high RMSE of
g estimates (see case [65] in table 4, Appendix), may itself
be due to the difficulty of estimating spatial effects when
only a small range of distances are represented in the binned
data.

Additional Effect of the Dispersal Distribution
To assess the effect of the dispersal distribution, the Pois-
son reciprocal Gamma distribution (Chesson and Lee 2005)
is now used for the simulation of samples as described
in the Methods section. Deme size was N = 50 as in
case [46]. Cases [49]–[51] illustrate three different values
of neighborhood size, the intermediate one being 200π
as in case [46]. Good estimation of the neighborhood is
achieved in all three cases (fig. 6, top, shows a typical
profile likelihood surface in case [46]). However, for the
largest neighborhood value the distribution of the LRT
departs from ideal behavior if the spatial scale of sam-
pling is not extended. In that case, more distant sam-
ples taken from a 80 × 80 lattice were also simulated
(case [52]).
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FIG. 5. Comparison of biases by strict likelihood (all cases in table 1) and PAC-likelihood (first 20 rows of table 2). A point (case [20] by likelihood,
[40] by PAC-likelihood) with huge 1/Nb bias is not shown in the last panel.

Additional Effect of Stepwise Mutation
Finally, the same demographic simulation conditions
were also considered for markers evolving under a SMM
(cases [54]–[57]). Nμ estimates are roughly halved, as

previously observed for the SMM in Rousset and Leblois
(2007) or even lower (case [57]; fig. 6, bottom, shows a
typical profile likelihood surface in this case). Accordingly,
the gene diversity is low. This implies that there may be little

Table 3. Alternative Dispersal and Mutation Models.

Parameters Bins Relative Nμ Relative 1/Nb

Bias RMSE KS Test Bias RMSE KS Test

40 × 40 array, N = 50, m=0.5, g = 0.5, μ = 1 × 10−4 (Geometric distribution)
[46] 20 × 20 0.0069 0.15 0.42 −0.036 0.35 0.19
[47] 10 × 10 0.0054 0.15 0.39 0.017 0.42 0.058
[48] 5 × 5 0.0011 0.14 0.079 0.14 0.56 0.00011

Array N κ Nb μ (Reciprocal Poisson Gamma distribution)
[49] 40 × 40 50 0.92 126 1 × 10−4 10 × 10 −0.032 0.16 0.14 0.048 0.14 0.86
[50] 40 × 40 50 4.6 628 1 × 10−4 10 × 10 −0.0073 0.16 0.32 −0.068 0.27 0.12
[51] 40 × 40 50 23 3140 1 × 10−4 10 × 10 −0.0056 0.15 0.8 −0.46 0.9 8 × 10−4

[52] 80 × 80 50 23 3140 1 × 10−4 10 × 10 0.016 0.19 0.22 −0.18 0.83 0.013
[53] 80 × 80 50 23 3140 1 × 10−4 20 × 20 0.015 0.18 0.21 −0.23 0.79 0.44

Stepwise mutation
[54] 40 × 40 50 0.92 126 1 × 10−4 10 × 10 −0.54 0.55 ND 0.067 0.16 0.13
[55] 40 × 40 50 4.6 628 1 × 10−4 10 × 10 −0.54 0.55 ND −0.11 0.34 0.34
[56] 80 × 80 50 23 3140 1 × 10−4 10 × 10 −0.72 0.73 ND −0.4 0.83 0.56
[57] 80 × 80 50 23 3140 1 × 10−4 20 × 20 −0.72 0.73 ND −0.37 0.79 0.32
[58] 80 × 80 50 23 3140 5 × 10−4 10 × 10 −0.75 0.75 ND −0.28 0.73 0.4
[59] 80 × 80 50 23 3140 5 × 10−4 20 × 20 −0.75 0.75 ND −0.28 0.69 0.18

NOTE.—In the 40 × 40 array, samples were taken at positions (6,20) to (10,20), and in rotationally symmetric positions (20 samples of 10 individuals in total). In the
80× 80 array, samples were at positions (11,40) to (19,40) by steps of two, and at rotationally symmetric positions. “ND” (not done) tests means that tests would be
highly significant but were not performed as they would have required estimating the likelihood of points far from the top of the likelihood surface at the detriment
of computations for inference about Nb.
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FIG. 6. Examples of profile likelihood surfaces for cases [46] (top) and [57] (bottom). The surfaces are inferred from 1,024 points as described in
the Appendix. In each case, the sample that yielded estimation errors closest to the RMSE values and of the same sign as the bias were selected
(hence, they exhibit positive Nb estimation error since 1/Nb estimates are negatively biased, table 3). In both cases, 2Nμ = 0.01; Nb = 628 (top)
or 3,140 (bottom). The likelihood profile surface is shown only for parameter combinations that fell within the envelope of parameter points for
which likelihoods were estimated. The cross denotes the maximum.

information for other parameters, contributing to the Nb
bias and also to as many as two-third of g estimates being
at the boundary (not shown). In additional simulations
(cases [58] and [59]), the true mutation rate was 5-fold
increased, and the number of loci increased to 20, resulting
in slightly improved Nb estimation.

Comparison with Moment-Based Estimates
Alternative estimators of 1/Nb are obtained as the regres-
sion slope of estimates of pairwise FST/(1−FST) to logarithm
of distance (Rousset 1997) or of the pairwise statistic ê

comparing pairs of individuals as described in Watts et al.
(2007). We consider only the ê method below but similar
results were obtained with FST/(1 − FST). The 1/Nb estima-
tors can be compared in terms of the ratio of their mean
square errors and, as expected from a likelihood method,
PAC-likelihood has lower error. Moreover, this discrepancy
persists when alternative dispersal distributions and muta-
tion models are considered.

For case [46], the ratio of MSEs is 0.66. Accordingly, the
moment-based confidence intervals should be wider (fig. 7).
However, they tend to be conservative (being often too
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FIG. 7. Distributions of estimates and confidence intervals for Nb, by
the spatial regression method and by PAC-likelihood, for case [46].
The horizontal line marks the true parameter value.

short when the Nb estimate is small), as previously shown
for this and related methods (Leblois et al. 2003; Watts et al.
2007) and accentuated by the present small sample sizes.

With the alternative dispersal model, the ratios are 0.27,
0.36, 0.34, and 0.46 for the four cases [49]–[52], so that the
moment method appears comparatively worse for more re-
stricted dispersal.

In case [58], where stepwise mutation is also considered,
the ratio is 0.55.

According to these results, the PAC-likelihood analysis of
the original damselfly data for the two-dimensional habitat
should provide a more accurate and reliable estimate and
confidence interval for Nb than previous moment-based
analyses. Still, the results are not very different from previ-
ous estimates: 1,110 (interval 600–3,625) by PAC-likelihood
(analyzed as a 24×14 array) versus 753 (interval 319–3,162)
by FST-based methods (Watts et al. 2007). They concur with
the previous conclusion that the genetic estimates are only
slightly higher that the demographic estimate (Nb = 555,
Watts et al. 2007).

Discussion
We have presented an effective software implementation
of likelihood inference under a two-dimensional model of
isolation by distance and investigated the performance of
inferences based on likelihood ratios in both the one- and
the two-dimensional spatial models. Our results illustrate
both the strengths and imperfections of such inferences:
In most cases, estimators have low bias and, given the rel-
atively small sample sizes considered, low MSE. These re-
sults are consistent with those of Rousset and Leblois (2007).
When compared with a preexisting method for estima-
tion of neighborhood, the likelihood-based estimation of
neighborhood appears to be substantially more efficient
and its confidence intervals to be more reliable, even when
complicating factors such as the misspecification of the

dispersal distribution and the binning of samples are taken
into account.

However, considering the distributions of P values of LRTs
underlines small but statistically detectable effects such
as the small negative bias of PAC-likelihood estimates of
mutation rate. Further, the assumptions inherent in the sta-
tistical model (low m, large N, and an approximate account-
ing of spatial edge effects) affect estimation of the Nm and g
parameters. For m = 0.5, we found more than 2-fold rel-
ative bias in number of migrants. This could be expected
from consideration of the infinite island model. In this sim-
ple case, the expected FST for N = 80 and m = 0.5 is
(1−m)2/[(1−m)2 +N{1− (1−m)2}] ≈ 0.004, whereas
the classical low-Nm approximation 1/(1 + 2Nm) (for hap-
loid N) is ≈ 0.012. The coalescent approximation fits the
actual FST for a higher Nm value than the true one, so that
Nm estimates derived from the coalescent model should be
biased upward. Under isolation by distance, short-distance
differentiation can be approximated by island model expec-
tations, and we again expect, and observe, upward-biased
Nm estimates. Since programs such as Migrate (Beerli and
Felsenstein 1999, 2001) or Lamarc (Kuhner 2006) are based
on the same coalescent approximations as de Iorio and Grif-
fiths’ algorithms, the same biases should be encountered, at
least when the same type of molecular markers is consid-
ered. Inference methods based on a Dirichlet distribution for
allele frequencies, as follows from Wright’s (1937) diffusion
formula, should be affected by the same type of biases. This
was observed by Faubet et al. (2007, p. 1160) when assess-
ing the method of Wilson and Rannala (2003) on samples
drawn from populations with small N and large m.

In order to better identify other possible causes of non-
ideal performance, we have first assumed that the dispersal
distribution and the mutational process were known. We
have then relaxed these assumptions and have also consid-
ered the effects of the spatial binning of samples. Both the
misspecification of the dispersal distribution and spatial bin-
ning can bias the estimation of the dispersal parameters in
complex ways that may render such estimates practically
meaningless. However, in general neighborhood size esti-
mation appeared robust (see also Rousset and Leblois 2007
for a linear habitat), except when the subpopulations that
are binned together already exhibit a substantial fraction of
the differentiation found among the most distant subpop-
ulations. In simulations jointly considering misspecification
of the dispersal distribution, of the mutation model, and
the effect of a milder but realistic spatial binning, the mu-
tation process mainly affected Nμ estimation but not Nb
estimation.

The fact that neighborhood estimation appears robust
implies that likelihood inference performs in the same way
as a spatial regression method that would simultaneously
estimate the neighborhood size from the increase in differ-
entiation with distance (which does not rest on a coales-
cent approximation) and that would estimate Nm from the
level of small-scale differentiation. Likelihood inference of
Nb may actually be more robust than the regression method
as the latter does not account for spatial edge effects.
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For example, in case [39] (a 10×10 array with samples
taken in the corners), the regression method has an approx-
imately 3-fold bias (details not shown), whereas the likeli-
hood method has correct coverage.

We did not consider the effect of a so-called continu-
ous population structure, where individuals can settle any-
where in a continuous habitat (Felsenstein 1975; Barton
et al. 2002). However, in such a case, the neighborhood pa-
rameter is best defined by considering the random walk of
ancestral lineages over the finite or countable positions
of ancestors rather than over continuous space, so that
continuous-space models can actually be understood as
discrete-space models (Robledo-Arnuncio and Rousset
2010), akin to the lattice models considered in the present
work. In this respect, we do not expect important differ-
ences between the estimands in the two classes of models.
In both discrete- and continuous-space models, the neigh-
borhood parameter depends on the product of an effective
mean square dispersal distance σ2

e and of an effective pop-
ulation density parameter De. σ2

e is defined as the asymp-
totic increase in mean square displacement per unit of time
of a particle performing this random walk, and De is de-
fined from the asymptotic rate of encounter of ancestral lin-
eages that each perform the same random walk and do not
coalesce when they meet each other. The estimand neigh-
borhood size defined in this way is a good predictor of the
moment method performance (Robledo-Arnuncio and
Rousset 2010).

A corollary of robust neighborhood estimation and non-
robust Nm estimation is that algorithms based on coales-
cent approximations are not most appropriate to infer the
shape of the dispersal distribution. A dedicated study of in-
ference of the shape of the dispersal distribution in a wider
family of distributions would either be plagued by the effects
of the coalescent approximation or should confine itself to
scenarios of low dispersal probability, compared with our fo-
cal population scenarios, which would strongly restrict its
usefulness.

This study has been focused on isolation by distance as
it is a widespread phenomenon that has been little consid-
ered in a likelihood framework. However, this is a compu-
tationally challenging problem, and simpler problems can
very easily be handled within the current software imple-
mentation. Estimation of the mutation rate parameter for a
single population can be performed in seconds, and remark-
ably even the single locus confidence interval have prac-
tically perfect coverage in this case (not shown). Analyses
under an island model are also fairly straightforward.

From the present results, likelihood inferences appear
feasible in moderately sized networks of populations, and
they are more efficient than moment-based method in
some realistic conditions. Nevertheless, the validity of in-
ferences is affected in complex ways by many factors and
may need to be analyzed in a case-by-case basis. Further
progress in algorithms and refined approximation tech-
niques would be necessary to raise full-likelihood tech-
niques as a general-purpose method of analysis of spatial
genetic data, in particular if accurate confidence intervals

are sought. This will surely encourage consideration of al-
ternative methods to derive estimates and confidence in-
tervals. A general alternative is the one based on simulation
of summary statistics, more or less similar to currently de-
veloped ABC techniques (Beaumont et al. 2002; Marjoram
and Tavaré 2006). In the latter perspective, it is worth em-
phasizing that coalescent approximations matter, and thus
sample simulation programs based on such approximations
may be misleading. More speculatively, the PAC-likelihood
estimators could be considered as efficient summary statis-
tics, though improvements in computation power and in
the processing of simulated distributions will be necessary
to make this a practical option.

Supplementary Material
Supplementary material is available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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Appendix

Algorithms and Implementation
Likelihood and PAC-Likelihood Computation
The likelihood for individual parameter points is estimated as
the average value of a statistic over independent realizations
of possible ancestral histories of a sample, which distribution
is generated by an absorbing Markov chain with the allelic
state in the common ancestor as the absorbing state (e.g.,
Griffiths and Tavaré 1994; de Iorio and Griffiths 2004a; de Io-
rio and Griffiths 2004b). In particular, the likelihood compu-
tations rest on the computation of de Iorio and Griffiths’ π̂
terms,whichareapproximationsfortheprobability π thatan
additional gene sampled from a population is of a given allelic
type, conditional on the allelic counts of a previous sample.
The π̂s may be viewed as biased estimates of the πs, and im-
portance sampling techniques, where the π̂s also affect the
distribution of realizations of the Markov chain, are used to
obtain an unbiased estimate of the likelihood (see de Iorio
and Griffiths 2004b for a more detailed description).

This algorithm differs from those based on long runs of a
recurrent Markov chain, which is the better known Markov
Chain Monte Carlo type of algorithms considered in Migrate
(Beerli and Felsenstein 1999, 2001, Lamarc (Kuhner 2006)
or in the IM suite of programs (Hey and Nielsen 2004; Hey
2010). Therefore, the lingering issue of assessing the conver-
gence of a recurrent Markov chain does not arise. On the
other hand, the estimator of likelihood may not be con-
sistent for certain choices of the absorbing Markov chain
(Stephens and Donnelly 2000), but this problem is not ap-
parent in the present work.
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An elementary modification of the likelihood estima-
tion algorithm, which however saves a substantial fraction
of computation time, is to perform the final likelihood
computation when the ancestral history reaches the two-
lineages states by using standard formulas for identity in
state in migration matrix models, taken in the coalescent
limit (e.g., de Iorio et al. 2005) rather than by the Markov
chain method. This was implemented here.

The average computational burden for each ancestral
history increases with the number of events (mutation, mi-
gration, coalescence) in each history and with the amount
of computation for each event. Both increase with the
number of demes. The π̂s can be obtained as the solution
of a linear system Aπ̂ = b, where each dimension of the
A matrix is the number of subpopulations. In large arrays of
demes, the computation time of this step can be reduced
by using an iterative method (preconditioned conjugate
gradient algorithm) for solving the linear system, provided
approximate initial values are easy to compute. For linear
habitats, the solution of the system defined by a pentadiag-
onal subset of elements of A was used as the starting point
(Rousset and Leblois 2007). In two-dimensional habitats,
the solution for the A matrix for the island model (g = 1,
other parameters unchanged) is used as a starting point as
it can be efficiently computed using the Sherman–Morrison
formula (Bartlett 1951).

Although networks of more that 100 populations were
considered in this study, one CPU year or more may be nec-
essary to analyze a typical sample in this context. Because
the estimation of likelihood in different parameter points
proceeds independently, such an analysis can easily be
performed in a much shorter time on a computer grid. Still,
it is unpractical to analyze hundreds of samples in such con-
ditions. A fast alternative in such cases is the PAC-likelihood
method. In the incarnation previously described in Cornuet
and Beaumont (2007) and Rousset and Leblois (2007), PAC-
likelihood uses de Iorio and Griffiths’ π̂ as estimates for the
corresponding π, without any recourse to the importance
sampling methodology to correct for any resulting bias. The
computation time of PAC-likelihood increases more slowly
with the number of demes because it is independent of the
number of possible events in the history of the sample. In
particular, for fixed number of demes, the differences in
computation time between likelihood and PAC-likelihood
estimation increases when a large number of migration
events occur in the realized ancestral histories that is
when Nm increases. Rousset and Leblois (2007) found that
PAC-likelihood could by 500 to 1,000 times faster than
likelihood, but the difference can be larger depending on
Nm values. In many of the simulations of table 3, parameter
points with Nm values of 500 or more had to be considered,
and only PAC-likelihood computation was feasible for such
points.

Likelihood Surface Estimation
Smoothing of Likelihood Estimates. A likelihood surface
is inferred from likelihood estimates in different points.
The smoothing technique known as Kriging (e.g., Cressie

1993; Zimmerman and Stein 2010) was used in de Io-
rio et al. (2005) and Rousset and Leblois (2007) for that
purpose and is still used in this paper. However, com-
pared to previous works, the implementation of Kriging
had to be optimized in order to yield good confidence
intervals. The Kriging predictor function depends on covari-
ances between response values at different distances in pa-
rameter (predictor variables) space, and these covariances
are described by a covariance family and some covariance
parameters.

The covariance parameters are now estimated by so-
called generalized cross-validation (Golub et al. 1979),
using the Matérn covariance family, which includes a
smoothness parameter ν . In general, the estimated ν was
the maximum allowed value (i.e., 4) in our estimation
procedure, which generates smooth likelihood surfaces,
as expected. In cases [52]–[59] (table 3), a high minimal
allowed value (ν = 3.9) had to be imposed to obtain consis-
tently good results. However, it is always wise to begin with
less constrained ν estimation, as this might reveal problems
with the points subject to smoothing.

We do not present specific checks of the accuracy of the
smoothing step here, as in the end what matters are the
properties of confidence intervals. When these had poor
properties, it was repeatedly checked that the Kriging steps
were not the cause of concern by increasing the density
of likelihood points considered. Failure of Kriging can also
easily be detected on individual data sets from a diagnos-
tic plot of the residual errors of prediction, provided by the
program.

All algorithms used for Kriging and cross-validation are
described in Nychka (2000) and implemented in the fields
package (Fields Development Team 2006) of the R statisti-
cal software (R Development Core Team 2004). However,
numerical issues related to the inversion of nearly singular
matrices led us to independently reimplement these
algorithms. A C++ library interfaced with R is distributed
along our main software to perform Kriging. Likelihood
surface prediction may be very poor when extrapolation
is made out of the range of parameter values of Kriged
points. For this reason, the predictor was only applied to
parameter points within the convex envelope of the Kriged
points. Convex envelope computations were performed
using the rcdd package (Geyer and Meeden 2008). All the
analyses described in this study (estimation of likelihood
in individual points by de Iorio and Griffiths’ algorithms,
Kriging, graphical output of likelihood and profile likeli-
hood surfaces as shown in figs. 2 and 6) can be performed
with the Migraine software, a C++ executable, without
knowledge of Kriging nor of the R language. Migraine is
free open source software. Its current distribution page
is http://kimura.univ-montp2.fr/∼rousset/Migraine.htm.
Multiple parameter tests are implemented in this software
but not further discussed here.

Computation Settings
The settings described in this section apply to all simulations
unless mentioned otherwise.
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Exploration of Parameter Space. Final likelihoods are es-
timated from 1,024 points, obtained in two steps. In the
first step, 512 parameter points are sampled uniformly. For
samples simulated under the geometric dispersal model, the
initial range of parameter values explored is one-third to
three times the parameter value for Nμ and Nm and 0–0.999
for g. For samples simulated under a SMM, the initial Nμ
bounds were further halved. For samples simulated under
the Poisson reciprocal gamma dispersal model, the initial
2Nm range was one-third to three times Nb/π (which coin-
cides with the initial 2Nm range under the geometric model
when g = 0.5).

Likelihoods are estimated for the first 512 points, and for
one every 30 of them, a second replicate estimate is com-
puted. A likelihood surface is inferred from these likelihoods
by Kriging (including a cross-validation step), and a convex
envelope putatively including the whole P = 0.001 confi-
dence region (and possibly extending beyond the original
parameter ranges) is constructed. The parameter space in
which the convex envelope is defined is the same as for
Kriging. Another envelope extending z times as far from the
barycenter of the original envelope is defined for given z. In
most simulations, 512 additional points were sampled ap-
proximately uniformly within the extended envelope with
z = 2. In the latest simulations (in particular, cases [52]–
[59]), a slightly more involved procedure was used, where
half of the points are sampled uniformly within the enve-
lope with z = 1.1 and the other half in the envelope with
z = 2. Either way, these procedures appears very efficient
in that most of the points sampled in this way are indeed
on the “top” of the likelihood surface and contribute to the
computation of final likelihood ratio tests and confidence
regions.

In the second step, the likelihood for the 512 additional
points are estimated, with again replicates for one every
30 of them, and a likelihood surface is inferred by Kriging
from all 1,024 points (including a new cross-validation step).
The effect of additional points from a third iteration was
repeatedly checked and found to have no impact on the
conclusions.

Other Settings. In most cases, for each locus and each pa-
rameter point, the likelihood estimate is obtained from 30
replicates of the absorbing Markov chain (i.e., 30 possible
ancestral histories) or 30 replicates of the PAC-likelihood
algorithm. In cases [52]–[59], only five replicates of the IS
or PAC-likelihood algorithms were computed for each locus
and each parameter point, as preliminary simulations sug-
gested that this was sufficient.

Specific Settings for Large g. If the true g value is 0.99999,
uniform sampling of hundreds of g values is unlikely to gen-
erate g values large enough, so that ultimately no predicted
likelihood value will be available for the true g value or for
the true neighborhood value. Various ad hoc corrections
of the sampling of parameter points could be considered.
Here, we performed uniform sampling of ln(σ2

cond) rather
than g. Kriging was performed on the same variable. This
parameterization could be more generally useful when there

is a plateau of high likelihood values for large values of the
neighborhood size, which is expected for samples simulated
under high neighborhood values.

Comparison with Moment-Based Inferences. Likelihood-
based inferences of neighborhood size were compared with
moment-based ones (e.g., Rousset 1997; Vekemans and
Hardy 2004; Watts et al. 2007) as implemented in the soft-
ware Genepop, version 4.1 (Rousset 2008), wherein con-
fidence intervals are constructed by the ABC bootstrap
method (DiCiccio and Efron 1996).

Misspecification Effects Due to the
Coalescent Approximation
Samples are simulated under an exact backward generation-
by-generation algorithm, where no “large N” approximation
is used. Deme size N, forward migration probabilities, and
mutation probability u are all distinct parameters, whereas
the estimation algorithm is based on limit results for large
N, small backward immigration probabilities, and small u.
In the sample simulation program, edge effects can be ac-
counted for in a simple mechanistic way by computing
the backward dispersal distribution in a focal deme as the
relative forward migration probabilities from every deme
(including the nonimmigration probability from the focal
deme itself), where the forward probabilities are identical
from any deme. But this cannot be done in the estimation
algorithm, as the coalescent model does not depend on the
nonimmigration probability but only of number of immi-
grants (product of deme size and immigration probabilities)
from other demes. To put it another way, in the coalescent
limit, the forward nonmigration rate is the limit value of
N(1 − m) as N → ∞ and m → 0; this is infinitely larger
than any immigration rate from other demes and cannot be
used to define a backward probability distribution.

This means that the statistical model is intrinsically mis-
specified when applied to samples generated by the exact
backward algorithm. One way to overcome this discrepancy
is to simulate samples under coalescent assumptions, and
this case has been considered. However, an extended assess-
ment of performance under such conditions would not give
any idea of the implications of misspecification for analy-
ses of data from populations where dispersal probabilities
are not vanishingly low. Therefore, we more generally con-
trolled the number of immigrants according to the rules de-
scribed in the main text.

These rules have the following effects under the geo-
metric dispersal model. In the estimation algorithm, the
expected number of immigrant genes (haploid deme size
times dispersal probability) from any given subpopula-
tion to some focal deme d is a given Nm value times
g|x|+|y|i(x, y)/G, where i(x, y) = 1/[(1 + δx0)(1 + δy0)],
and G is the maximum value, over all demes each taken
as the focal one d, of

∑
k 6=d g|x|+|y|i(x, y). For example, in

case [1] (a 4 × 4 array of demes of haploid size N = 400,
m = 0.01, and g = 0.5), the expected numbers of mi-
grant genes within each deme are 4, 2.477, or 3.169, de-
pending on whether the deme is in the central square, in
the corners, or in another edge position, respectively. In
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the sample simulation, the expected number of immigrant
genes from any given subpopulation to some focal deme d is
deme size times the backward immigration probability. The
latter probability can be written in the form

g|x|+|y|i(x, y)m/G
∑

k 6=d g|x|+|y|i(x, y)m/G + (1 − m)
, (3)

where m is the forward dispersal probability, and
∑

k 6=d(∙)
denotes a sum over source demes k distinct from the focal
deme d. For the maximizing focal deme, the denominator
is 1 and the number of immigrants from each other deme
is Nmg|x|+|y|i(x, y)/G as in the estimation algorithm. For
case [1], these numbers of immigrants are 4, 2.486, or 3.176
in each of the three types of demes defined above. If no cor-
rection were applied in order to control the maximal Nm,
they would be 2.427, 1.506, or 1.925 (i.e., G = 2.427/4).

Effects of Binning
A good understanding of the effects of binning on inferences
is obtained when a rule is given to generate estimands that
are shown to be estimated with low bias and ideally good
coverage of confidence intervals. For example, bin popula-
tion size times mutation probability is a good Nμ estimand
as the estimates have low bias relative to this value. Depar-
tures from this rule in the simulations can be attributed to
the PAC-likelihood bias rather than to binning per se. How-
ever, for the dispersal parameters, no rule was found that
correctly predicts all estimands in all cases investigated. For
example, the expected number of immigrants in a bin is not
always the correct Nm estimand. Nevertheless, we can de-
duce estimands for binned data from the estimands of the
moment-based regression method: the estimand Nm is de-
duced from the inferred FST between the nearest bins, and
this appears to work well. Indeed, this may not only account
for the effects of binning but also for deviations from the
large N, low m approximation. Likewise, the Nb estimand
can be deduced from the increase of differentiation with dis-
tance in the binned data, and the g estimand can then be
deduced from Nm and Nb.

However, there are several drawbacks with these predic-
tions. First, they can be derived from simple analytical argu-
ments in some cases, but must otherwise be generated by a
regression analysis of binned data with a large number of loci
and are not uniquely related to the true parameter values
only but may also depend on the sampling design as shown
below. Second, the Nb estimand derived from the slope of
the regression may not be a valid prediction in conditions
where the regression method is expected to poorly estimate
Nb. For example, the regression method does not account
for edge effects in contrast to the likelihood method. Pe-
ripheral demes receive fewer immigrants and thus are more
differentiated than central demes, which biases regression
Nb estimates downward when samples are taken from pe-
ripheral demes. In fact, it is both more easily interpretable
and overall a more accurate prediction to assume that the
estimand Nb is the true Nb value. The following examples
illustrate these conclusions.
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Under an island model, different results are expected
whether only populations are binned or whether samples
are binned too. As an illustration of the first case, consider
an array of 10 × 10 populations binned into a 5 × 5 ar-
ray, but samples come from nonadjacent populations and
therefore go into different bins. A standard FST analysis of
the binned data will yield the same FST and Nm estimates
as that of the original data because the binned samples are
indistinguishable from the original samples, and FST estima-
tion per se does not use any extra information. By contrast,
when (say) pairs of samples are binned too, the FST esti-
mates are halved, so that Nm estimates are roughly 1/2
plus twice the original value. As an illustration, we recon-
sidered the simulation conditions of case [39] (2Nm = 8,
g = 0.5, and Nb = 100.531 in a two-dimensional habitat).
For bins covering two lattice units, wherein pairs of samples
are binned, the estimand is 2Nm = 16 (or more exactly
16.5) according to the island model argument, and then
from equation (1), g = 0.357. By contrast, if four of the eight
sampled populations are taken at position (3,3) and rota-
tionally symmetrical positions rather than at position (2,2)
and rotationally symmetric positions, samples are no longer
binned when populations are binned. Simulations condi-
tions are otherwise identical to the previous ones, but the
estimand is 2Nm = 8. Simulation results (case [60] vs. [61])
confirm this predicted contrast. For Nb, if true values are
taken as the estimands, estimation is poor as shown in the
table. However, performance is also poor when estimands
are deduced from the regression analysis (not shown). In
this case, regression estimates are affected by edge effects,
as samples come from peripheral demes even in the absence
of binning.

This example shows that the effects of binning may be
difficult to predict as they are affected by the sampling de-
sign, and all the more so as in real data analyses, different
number of samples may fall in different bins. The following
simulations and all those reported in table 3 incorporate the
latter feature.

For the simulation conditions of case [44] (m=0.025,
2Nm = 20, g = 0.5, and Nb= 120 in a linear habitat), a
regression analysis of a 2,000-loci data set shows that the fit-
ted differentiation between adjacent bins of four demes is
only slightly lower than that between adjacent demes (es-
timated FST≈ 0.035 vs. 0.040). The slope of the regression
against geographical distance (in bin width units) is roughly
4-fold increased, which is indeed expected from the mere
effect of the change of spatial scale (equivalently, the Nb
estimand is invariant if distance is always measured in the
same spatial units). For simplicity, in the analysis of likeli-
hood performance, we assumed that the Nm estimand was
unchanged by binning (thereby expecting a small positive
bias) and that Nb estimand is the true Nb value, only 4-fold
reduced by the change of scale. All these predictions are well
supported (case [62]).

A similar analysis was conducted in conditions closer
to the damselfly example. Estimands were deduced from a
regression analysis of a 2,000-loci data set for three binning
levels. The estimand Nb inferred in these three cases devi-

ated at most by 43% from the true value (in particular, in
two dimensions, the regression is relative to logarithm of
distance and a change of spatial scale has no effect on the
regression slope). On the other hand, there was an almost 6-
fold variation of the Nm estimands from the true Nm value
(up to 297 vs. 50, as shown on the left of table 4). As above,
in the analysis of likelihood performance, we varied the Nm
estimand as given by the regression analysis but fixed the Nb
estimand to the true value as shown in the table.

The predictions are again well supported (cases [63]–
[65]), although some distorsion of P values is observed for
g (maybe because many estimates are at the boundary) and
becomes evident for the other dispersal parameters under
the highest level of binning.

These results show that the effects of binning on like-
lihood inferences of dispersal parameters are largely pre-
dictable from its effect on spatial regression analyses when
the latter are meaningful. However, the effects on Nm and
g are complex. In the main text, we consider only Nb and
Nμ estimates, where Nb estimands are taken to be the true
values.
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