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Introduction

Summary

o Nitric oxide (NO) is a gaseous molecule that participates in numerous plant
signalling pathways. It is involved in plant responses to pathogens and develop-
ment processes such as seed germination, flowering and stomatal closure.

e Using a permeable NO-specific fluorescent probe and a bacterial reporter strain
expressing the lacZ gene under the control of a NO-responsive promoter, we
detected NO production in the first steps, during infection threads growth, of the
Medicago truncatula-Sinorhizobium meliloti symbiotic interaction. Nitric oxide
was also detected, by confocal microscopy, in nodule primordia.

e Depletion of NO caused by cPTIO (2-(4-carboxyphenyl)-4,4,55-tetramethyl
imidazoline-1-oxyl-3-oxide), an NO scavenger, resulted in a significant delay in
nodule appearance. The overexpression of a bacterial hmp gene, encoding a flavo-
haemoglobin able to scavenge NO, under the control of a nodule-specific
promoter (pENOD20) in transgenic roots, led to the same phenotype. The NO
scavenging resulting from these approaches provoked the downregulation of plant
genes involved in nodule development, such as MtCRET and MtCCS52A.
Furthermore, an Hmp-overexpressing S. meliloti mutant strain was found to be
less competitive than the wild type in the nodulation process.

e Taken together, these results indicate that NO is required for an optimal estab-
lishment of the M. truncatula-S. meliloti symbiotic interaction.

tion of stomatal closure (Neill e 2/, 2002) has also been
demonstrated, although the pathway of its synthesis in

Nitric oxide (NO) is a gaseous signalling molecule that has
been established as a major signal in mammals (Ignarro,
2000). The participation of NO in a large number of plant
signalling pathways is now well established (Grun ez al,
2006) and there is increasing evidence of its role in plant
growth and development (del Rio ez al,, 2004; Delledonne,
2005). Its involvement in seed dormancy (Bethke er 4/,
20006), germination and hypocotyl elongation (Beligni &
Lamattina, 2000), flowering (He ez al., 2004) and regula-
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plants is still a matter of debate (Moreau ez al., 2008).

The importance of NO in plants emerged from pioneering
works on plant responses to pathogens (Delledonne ez al,
1998; Durner et al., 1998). Nitric oxide signalling in the
induction of cell death, defence genes and interaction with
reactive oxygen species (ROS) during plant defence against
pathogen attack is well documented (Neill ez al, 2003;
Delledonne, 2005; Mur et al., 2006; Besson-Bard ez 4/,
2008). Nitric oxide not only plays an important role in the
plant hypersensitive response (HR), a localized programmed
cell death (PCD) that confines the pathogen to the site of
attempted infection, but also in non PCD defence (Mur
et al., 2006). Conversely, there is also evidence of its
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potential importance within pathogens. Detoxification of NO
in bacteria has been intensively investigated. Under acrobic
conditions, it occurs through the nitric oxide dioxygenase
activity of the flavohaemoglobin, which converts it to nitrate
(Gardner er al, 1998; Poole & Hughes, 2000). Bacterial
mutants lacking flavohaemoglobin are hypersensitive to NO
(Poole & Hughes, 2000) and flavohaemoglobins are impor-
tant for animal pathogens to survive host-derived NO
(Stevanin ez al., 2002; Gilberthorpe ez al, 2007; Svensson
et al., 2010). Examining the genomes of several bacterial phy-
topathogens has revealed the conservation of the hmp gene
(Mur ez al., 2006). Furthermore, mutation of the AmpX gene
from Dickeya dadantii (formerly Erwinia chrysantemi)
resulted in a significant increase in NO concentrations and
led to a resistance response of the HR type. Conversely,
expression of hmpX into Pseudomonas syringae pv. tomato
avrB suppressed the HR elicited in Arabidopsis (Boccara et al.,
2005). Such data demonstrate that the scavenging of NO by
certain pathogens is a requirement for successful infection.
Contrary to pathogenic situations, the interaction between
legumes and soil bacteria of the Rhizobiaceae leads, after
extensive recognition by both partners, to the establishment of
a symbiotic relationship characterized by the formation of
new differentiated organs called nodules, which provide a
niche for bacterial nitrogen fixation. Functional nodules result
from the combination of developmental and infectious pro-
cesses; bacteria released in plant differentiate into bacteroids
with the unique ability to fix atmospheric nitrogen via nitro-
genase activity (Long, 2001; Oldroyd & Downie, 2008).
Several studies have demonstrated the occurrence of NO
production during legume—Rhizobium symbiosis. A nitric
oxide synthase-like activity has been measured in lupine
nodules (Cueto et al., 1996). Nitric oxide complexed to
leghaemoglobin (Lb), the haemoprotein ensuring O, fluxes
to bacteroids, has been detected in soybean nodules using
electron paramagnetic resonance (EPR) (Mathieu ez al,
1998; Meakin ez al., 2007). This nitrosylleghaemoglobin
(LbNO) was mainly observed in young nodules, which led
the authors to propose a relationship between LbNO abun-
dance and nodule development and/or functioning
(Mathieu ez al., 1998). Production of NO during the early
steps of legume—rhizobia symbiosis has also been reported by
Shimoda ez al. (2005) and NO, together with auxin, has
been shown to control indeterminate nodule formation
(Pii er al., 2007). In the same way, gene expression of non-
symbiotic haemoglobin (Hb) in Lozus japonicus has been
shown to be transiently induced by the inoculation with the
symbiotic bacteria and by an NO donor (Shimoda ez 4/,
2005; Nagata et al., 2008). Although the functions of class 1
Hbs are not fully understood, they appear to play some role
in relation to NO metabolism (Igamberdiev & Hill, 2004)
and in the establishment of the symbiosis (Nagata er al,
2008). Furthermore, modulation of the NO level by over-
expression of class 1 plant Hb genes appeared to enhance
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symbiotic nitrogen fixation activity between L. japonicusand
Mesorhizobium loti (Shimoda et al., 2009). Based on the use
of a permeable NO-sensitive fluorescent probe, NO forma-
tion has been detected in bacteroid-containing cells of the
nodule fixation zone in Medicago truncatula—Sinorhizobium
meliloti functional nodules (Baudouin et a/., 2006). A wide
modulation of NO-responsive genes has been detected
during the establishment of a M. truncatula—S. meliloti func-
tioning nodule, pointing to a possible contribution of NO
to nodule metabolism (Ferrarini ez al., 2008). Moreover, the
response to NO of S. meliloti has been studied recently via a
transcriptomic approach. Among genes responding to NO,
was a flavohaemoglobin-encoding gene. An Amp mutant
displayed a higher sensitivity toward NO in culture and led
to reduced nitrogen fixation efficiency in planta (Meilhoc
et al., 2010). Together, these data indicate that NO is pro-
duced at different steps of the symbiotic process, where it
may play different roles.

In this work, using pharmacological and genetic
approaches, we investigated the presence of NO and its
possible role(s) in the first steps of the M. truncatula—
S. meliloti symbiosis. Our data suggest that NO is required
for an optimal establishment of the symbiotic interaction.

Materials and Methods

Bacterial strains and growth conditions

Bacterial strains and plasmids are listed in Table 1.
Escherichia coli strains were propagated in Luria—Bertani
(LB) medium. Sinorbizobium meliloti strains were con-
structed and grown in LB medium supplemented with
2.5 mM CaCl, and 2.5 mM MgSO4 (LBMC). Antibiotics,
when required, were added at the following concentrations:
streptomycin 100-300 pg ml ™", tetracycline 5-10 pg ml™",
gentamycin 40 pg ml™', carbenicillin 50 pg ml™, kana-
mycin 50 pg ml ™.

To test the bacterial response to NO, S. meliloti was
grown in Vincent minimal medium (VMM: 7.35 mM
KH,POy, 5.74 mM K,HPOy 1 mM MgSO4, 18.7 mM
NH4CI, 10 mM Na, succinate, 456 uM CaCl,, 35 uM
FeCls, 4 pM biotin, 48.5 uM H3BOs, 10 pM MnSO,,
1 uM ZnSOy, 0.5 uM CuSOy, 0.27 uM CoCl,, 0.5 uM
NaMoOy, pH = 7) at 28°C. The NO donor Spermine
NONOate (SpNN) was purchased from Cayman
Chemicals Coger (CAY-82150-M100, Paris, France). A
100 mM stock solution was prepared, just before use, in
Na-phosphate buffer (0.1 M) pH 6.9 and then diluted in

the cell culture medium at the appropriate concentration.

Plants and growth conditions

Medicago truncatula cv Jemalong A17 was used, and was
cultivated as follows. Seeds of M. truncatula cv Jemalong

© 2011 The Authors
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Table 1 Strains and plasmids used in this study

Research 407

Strain or plasmid Description

Reference or source

Sinorhizobium meliloti

GMI11495 wt strain, SU-47 derived, Sm® Pobigaylo et al. (2008)
RCR2011 wt strain, SU-47 derived Rosenberg et al. (1981)
RCR2011-DsRed RCR2011 containing pDG77 E. Andrio, unpublished
GMI11549 GMI11495 hmp :: mTn5-STM-2.12.A01 A. Becker, see Pobigaylo et al. (2008)
CBT515 Rm1021 nnrR :: pvO155 Meilhoc et al. (2010)
GMI11545 GMI11495 containing pXLGD4 D. Capela, unpublished
CBT602 GMI11495 containing pBBR-hmp Meilhoc et al. (2010)
Escherichia coli
DH5a supE44 AlacU169 (@80 lacZAM15) Sambrook et al. (1989)
hsdR17 recA1 endA1 gyrA96 thi-1 relA1
Plasmids
pRK2013 Helper plasmid for triparental matings Figurski & Helinski (1979)
pXLGD4 Ditta et al. (1985)
pGEM-T Cloning vector, AmpR Promega
pBBR1MCS-5 Cloning vector, GmR derivative of pBBR1 Kovach et al. (1995)
pvVO155 Integrational plasmid with promoterless uidA gene, Kan® Oke & Long (1999)
pBBR-hmp pBBR1MCS-5 + hmp Meilhoc et al. (2010)
pDG77 Expresses DsRed under Salmonella typhimurium pTrp promoter Bringhurst et al. (2001)
pCZ962 Derived from pCZ917 cloning vector by insertion of a terminator C. Zischek et al., unpublished

upstream from facZ Tc® Amp®
psma1289-lacZ

sma7289 promoter in pCZ962 cloning vector with promoterless lacZ gene

This work

A17 were scarified with H,SOy, surface-sterilized in a bleach
solution, rinsed with sterile distilled water, germinated on
agar plates in the dark and allowed to grow on nitrogen-free
Farhieus medium in test tubes or plates (covered with pouch
paper) for 2 to 7 d before inoculation in a culture room (22—
25°C) with a 16 h light/8 h dark photocycle (all details and
medium used are described in the Medicago Handbook:
http://www.noble.org/MedicagoHandbook/). For NO detec-
tion with 4,5-diaminofluorescein (DAF-2, Sigma-Aldrich)
(Figs 1, 4), transgenic roots (Fig. 6), and quantitative reverse-
transcription polymerase chain reaction (QRT-PCR) experi-
ments (Fig. 7), S. meliloti strains were grown in liquid
LBMC medium, cells were pelleted at 2500 g, washed twice
with sterile distilled water, resuspended in sterile distilled
water to a final optical density at 600 nm (ODyg0) of 0.01,
and plants were inoculated with 200 pul of bacterial suspen-
sion per root. In all other experiments, S. meliloti strains were
grown on LBMC plates, cells were resuspended in sterile
distilled water to a final ODggo of 0.001, and plants were
inoculated with 100 pl of bacterial suspension per root.
When 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazo-
line-1-oxyl-3-oxide (cPTIO; Sigma) was used, 200 pl of a
1 mM solution prepared in sterile water was added along the
whole length of the roots, 2 h before, and 2 h after inocula-
tion, and then, every 24 h during4 d.

For competition assays, plants were inoculated with a
1:1 mixwure of wild-type (wt) and mutant strains
(ODgpp = 0.001). In order to verify that the number of cells
used for inoculation with each strain were identical, CFUs
were determined for each strain. To determine the relative
proportions of nodules occupied by mutant or wt bacteria,

© 2011 The Authors
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the wt strain contained a plasmid (pXLGD4) constitutively
expressing the B-galactosidase enzyme. After 3 wk, nodules
were wounded and incubated (1 h) in Z’ buffer (0.1 M
Na,HPO,/NaH,PO, pH 7.4, 10 mM KCl, 1 mM
MgSOy) containing 1.5% of glutaraldehyde under vacuum.
Nodules were then washed three times in Z’ buffer and incu-
bated in the same buffer containing potassium ferricyanide
(5 mM) and X-gal (0.8% in dimethylformamide). Incubation
was performed under vacuum at room temperature (90 min)
and then at 37°C (90 min). Blue-stained nodules corre-
sponding to nodules infected by GMI11545 (wt) and pink
nodules corresponding to nodules infected by the mutant
strain were counted. For each competition test, 50 —100
nodules from 10-20 plants were analysed, and the mean
value of the percentage of nodule occupancy was calculated
for each strain. When cPTIO was used in the test, nodules
were taken at 4 wk instead of 3 wk after inoculation because
of the delayed nodulation.

Plasmid constructions

The binary vector pKm43GW-rolD::GFP (Van de Velde
et al., 2006) was modified by replacing the green fluorescent
protein (GFP) with a red fluorescent protein (RFP) reporter
cassette under the control of the rolD promoter to facilitate
the analysis by confocal microscopy with the cell permeable
4,5-Diaminofluorescein diacetate (DAF-2DA) fluorescent
probe (excitation 495 nm, emission max ¢. 515 nm; Sigma-
Aldrich) and the selection of transgenic roots. The RFP
cassette was amplified by PCR from the pK7RWG2 vector
(htep://gateway.psb.ugent.be) with the primers DsRedX and

New Phytologist (2011) 191: 405-417
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(f)

Fig. 1 Detection of nitric oxide (NO) during infection threads growth
by confocal laser scanning microscopy. The green fluorescence of
the DAF-2DA was observed during root hair infection in the
‘shepherd's crooks’ (a-b) and during infection threads progression
(c—f). Plants were inoculated with a Sinorhizobium meliloti strain
tagged with constitutive red fluorescent protein (RFP). (a), (c) and (f)
were obtained from the merged pictures of the two fluorescents
markers over the bright field. (b) and (d) correspond to (a) and (c)
without bright field; (e) shows an higher magnification of IT. The
plants in (f) were pretreated with 1 mM of cPTIO (2-(4-
carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide) for
45 min. The arrow on (c) indicates the nucleus. In the acquisition
settings used for the experiment, autofluorescence of the infection
thread was negligible. Furthermore, the cPTIO treatment
significantly reduced the fluorescence (f). The typical fluorescence
emission spectra of the DAF probe was also confirmed (Data not
shown). Data are from five independent experiments (n = 43) and
pictures shown are representative of the different conditions. Bars,
(a—d,f) 10 um, (e) 5 um.

DsRedS containing, respectively, a Xhol and Sadl restriction
site and cloned in the pKm43GW-rolD by using these two
restriction sites to get the pKm43GW-rolD::RFP.

The promoter from MENOD20 (Accession: AC136953.17;
GenBank accession no. X99467) (2050 bp) was amplified
with the specific primers a74F and a74R containing the
corresponding attB recombination sites. The promoter
region was recombined into pDONR-P4-P1 (Invitrogen).
The Muldsite Gateway Three-Fragment Vector Construct
kit (Invitrogen) was used to fuse the promoter region with
the GUS gene (from pDONR207-GUS) or the Amp
gene (from pDONR207-Amp) and the T35S terminator
(from pENTR-R2-T35S8-L3) in the pKm43GW-rolD-RFP
vector. The hmp gene was amplified from S. meliloti geno-
mic DNA with the specific primers a76F and a76R.

New Phytologist (2011) 191: 405-417
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The bacterial NO biosensor was constructed as follows.
The promoter of the S. meliloti gene smal289 was amplified
by PCR with the following primers: OCB744 and OCB745
containing the Psd and Xbal restriction sites, respectively.
The PCR amplification was performed using genomic DNA
of strain GMI11495 as a template. The amplified fragment
(410 nucleotides) was ligated in pGEM-T (Promega). The
cloned S. meliloti DNA region was verified by DNA
sequencing. The pGEM-T plasmid containing the 5741289
promoter was then digested with Xbal and Psd, and ligated
into the Xbal and PsA digested pCZ962 plasmid containing
the promoterless /acZ gene. Plasmids (pCZ962 with or
without the smal289 promoter) were introduced in
S. meliloti strains (GMI111495, CBT515, CBT602) by tri-
parental mating using pRK2013 as a helper, and subsequent
selection for antibiotic resistance.

B-galactosidase activity assay

Sinorhizobium meliloti cells were grown to exponential
phase at 28°C in VMM. At ODgg = 0.2, Spermine
NONOate (0 or 25 pM) was added to the cultures which
were then incubated at 28°C. After 1.5 h incubation,
ODggo was measured and aliquots (1 ml) of the cultures
were centrifuged. The pellets were immediately frozen in
liquid nitrogen and stored at —20°C. B-Galactosidase assays
were performed on the thawed samples as described previ-
ously (Miller, 1972).

B-galactosidase and B-glucuronidase detection
in planta

For B-galactosidase detection, plants were inoculated with
strains GMI11495 (wt), CBT515 (n#nrR), or CBT602
(hmp*™) carrying the plasmid pSma1289-lacZ or with strain
GMI11495 carrying the empty plasmid. Six days after inoc-
ulation, plant roots were incubated (1 h) under vacuum, in
Z’ buffer containing 1.5% glutaraldehyde. Roots were then
washed three times in Z’ buffer and incubated (room tem-
perature) in Z’ buffer containing potassium ferricyanide
(5 mM) and X-gal (0.8% in dimethylformamide) for 90 min
or for alonger period when the staining was too weak.

For B-glucuronidase detection, roots 5 d post-inoculation
(dpi) and 13 dpi transformed with pKm43W-pENOD20-
GUS were incubated for 1 h in acetone 90% (diluted
in a phosphate buffer: Na,HPO,4, NaH,PO4 0.1M pH =
7.4) at —20°C. Roots were then washed twice in the phos-
phate buffer and incubated at room temperature, protected
from light, in phosphate buffer containing potassium ferri-
cyanide (0.5 mM) and X-gluc (0.5 ng ml™") for 3 h and
16 h.

The roots were observed by optical microscopy (Axioplan
imagin2; Zeiss). Pictures were taken with an AxioCam
(Zeiss) and acquired with the corresponding software.

© 2011 The Authors
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Agrobacterium rhizogenes root transformation and
inoculation

The construct pKm43GW-pENOD20-/mp was introduced
into Agrobacterium rhizogenes strain Arqual (Quandt ez al.,
1993). Medicago truncatula plants were transformed
with Agrobacterium rhizogenes, as described by Boisson-
Dernier et al. (2001). Control plants were transformed with
A. rhizogenes containing the pKm43GW-pENOD20-GUS.
Selection of hairy roots took place 21 d after transforma-
tion. Plants were screened for transgenic roots by RFP with
a MZFLII stereomicroscope (Leica, Wetzlar, Germany).
One transgenic root per plant was retained, and the com-
posite plants were transferred onto agar plates containing
modified Fahrieus medium without nitrogen. Plants were
inoculated 3 d after transfer.

Measurement of NO production

The NO produced by both the wt and transgenic hairy
roots, and released into the detection medium, was mea-
sured using the fluorescent probe DAF-2. At various times,
the fluorescence of DAF-2T, the reaction product formed
from DAF-2 and NO, was measured using a microplate
reader spectrofluorimeter (Cary Eclipse; Varian, Les Ulis,
France), excitation wavelength 495 nm/emission wave-
length 515 nm. Plants were pooled into groups of seven to
nine plants, and the roots were put into 3 ml of detection
medium: 10 mM Tris-KCl detection buffer (DB: 10 mM
Tris-HCI pH 7.4, 10 mM KCI) in the presence of 10 uM
DAF-2 fluorescent probe. The roots were protected from
light with tinfoil while the leaves were left in contact with
air and light, allowing the photosynthesis to take place.
Production of NO was measured at 10, 30, 60 and 90 min
after the addition of the DAF-2 probe into the detection
medium. Blank assays contained detection medium without
plants.

Confocal microscopy

Experiments were performed on young entire roots and
fresh nodule slices (100 pwm) obtained with a vibratome
1000 Plus (Labonord, Templemars, France). Plant material
was then incubated for 30 min in the dark in 100-500 pl
of DB containing 10 pM DAF-2DA the cell permeable
analog of DAF-2 probe (Sigma-Aldrich). Plant tissues were
subsequently washed for 30 min with DB and then
mounted between slide and coverslip in DB for observation.
When cPTIO was used, plant tissues were preincubated for
45 min in DB containing 1 mM of cPTIO, subsequently
labelled with DAF-2DA and washed three times during
20 min with DB. The formation of DAF-2T following the
NO reaction with DAF-2DA was visualized using a Zeiss
LSM 500 confocal laser microscope upon excitation at

© 2011 The Authors
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488 nm with an argon 2 laser. Dye emission was recorded
using a 505-530 nm band-pass filter coupled with a
515 nm long-pass filter. Autofluorescence was judged negli-
gible at all steps before acquisition with the DAF-2DA
probe. Data acquisition settings (laser power, pinhole size,
filters, detectors settings and scan conditions) were identical
in all experiments. Images were processed and analysed using
the Zeiss LSM510 META software and Adobe Photoshop.

Total RNA isolation, reverse transcription and gene
expression analysis

For the cPTIO treatment used to identify NO-regulated
genes, plantlets were grown on plates and then, at 4 d post-
inoculation, were treated with 200 pl of 1 mM of cPTIO
for 8 h. A control assay was not treated with cPTIO.
Furthermore, in order to obtain a higher concentration of
RNA from nodule primordia, a 2 cm region of the root in
which most of the nodule primordia appear was harvested.
To localize this root infection zone (IZ), we marked the posi-
tion of the primary root apex on the day of the inoculation.
Four days later, the IZ was mainly located around this mark.
Aproximately 100-200 mg of plant material (root) were
ground in liquid nitrogen and total RNA was isolated using
Trizol Reagent (Invitrogen). The integrity of total RNA was
checked on agarose gels and its quantity as well as purity
was determined spectrophotometrically. About 500-1500
ng of RNA was used as a template for reverse transcription
reaction in 20 pl reaction volume using the Omniscript
RT Kit (Qiagen). Quantitative real-time RT-PCR was
carried out using the qPCR Mastermix Plus for SYBR
Green I reagent (Eurogentec, http://www.eurogentec.com).
Reactions were run on the Chromo4 Real-Time PCR
Detection System (Bio-Rad) and quantification was per-
formed with the Opticon Monitor analysis software v. 3.1
(Bio-Rad). Each reaction was set up in three technical repli-
cates. For each reaction, 5 pl of 100-fold-diluted cDNA and
0.3 pM primers were used. The initial denaturing time was
10 min, followed by 40 PCR cycles at 95°C for 10 s, and
60°C for 1 min. The specificity of the amplification was
confirmed by a single peak in a dissociation curve at the end
of the PCR reaction. Data were quantified using Opticon
Monitor 2 (M]J Research, Waltham, Massachusetts, USA)
and analysed with RqPCRBase, an R package working on R
computing environment for analysis of quantitative real-
time PCR data (T. Tran & F. Hilliou, unpublished). The
mRNA levels were normalized against three constitutively
expressed endogenous genes, Mr27 (Mtr.27459.1.51_s_at)
(Van de Velde er al, 2006) and two genes (Mtr.10324.
1.81_at; Mtr.31250.1.51_at) selected as reference genes
because of their stable expression profile in different micro-
array results (Benedito ez 4/, 2008). The PCR reactions for
each biological replicate were performed in triplicate. For
each experiment, the stability of the reference genes across
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samples was tested using GENORM software (Vandesompele
et al., 2002). The absence of genomic DNA contaminations
in the RNA samples was tested by PCR analysis of all samples
using oligonucleotides bordering an intron in the glutathione
synthetase gene of M. truncatula. The gene-specific primers
used are listed in the Supporting Information, Table S1.

Results

NO is produced in infection threads and nodule
primordia

To detect NO during the early steps of the M. truncatula—
S. meliloti interaction, we used the cell-permeable NO-
specific fluorescent probe, DAF2-DA (Kojima ez al., 1998).
Between 2 dpi and 6 dpi, the formation of the fluorescent
triazol derivative, DAF-2T, was visualized in infection
threads (ITs). For all these experiments, roots were inocu-
lated with a S. meliloti DsRed strain harbouring the pDG77
vector, which exhibits a constitutive red fluorescence. A yel-
low colour from the merging of the two fluorescent markers
occurred (Fig. 1a—d) in the infection pockets, where rhizobia
are enclosed within an apoplastic space created by root hair
tip curling (the so-called ‘shepherd’s crooks’) upstream of
the IT. Interestingly, the red fluorescence from the bacteria
and the green fluorescence from the DAF probe did not
overlap along the ITs (Fig. 1c—e). On a higher magnification
(Fig. 1e), the DsRed-labelled bacteria can be visualized in
the centre of the I'T surrounded by the green fluorescence. In
Fig. 1(c) and (d), we can observe the position of the nucleus
close to the IT tip indicating that the IT is growing as men-
tioned by Fournier ez al. (2008). To validate the specificity
of the green fluorescence observed, the roots were treated
with the NO scavenger (cPTIO). The cPTIO treatment
extinguished the fluorescence and further established that it
was representative of NO production (Fig. 1f).

To confirm the presence of NO in the infection threads of
M. truncatula root hairs, and to ascertain whether bacteria
respond to the presence of NO in this environment, we con-
structed a reporter plasmid (psmal289-lacZ) carrying a
transcriptional /acZ fusion to the S. meliloti smal289 gene
promoter. The smal289 gene was chosen since it is known to
be upregulated by NO via the NO-specific regulator NnrR
(de Bruijn et al., 2006; Meilhoc ez al., 2010). As expected, in
free-living conditions, expression of the reporter fusion,
assessed by measuring B-galactosidase activity, was up-
regulated approx. 15-fold in the presence of the NO donor
spermine NONOate (25 uM) in the wt strain. By contrast,
no significant upregulation of the reporter fusion was
observed in an zzrR mutant, or in a wt strain carrying the
empty vector pCZ962 (Fig. 2). Thus, this strain was used as
a NO biosensor strain. The bacteria carrying the reporter
fusion were used to inoculate M. zruncatula plantets, and
expression of the fusion was assessed, 6 d post-inoculation,
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by X-Gal staining and microscopic analysis of the roots.
Blue-stained bacteria entrapped in ‘shepherd’s crooks’ of
root hairs (Fig. 3) were detected on roots inoculated with the
wt strain, whereas no staining was observed with the nnr7R
mutant or with the wt strain carrying the empty vector
pCZ962 (data not shown). Also, no staining was detected
when we used a S. meliloti strain overexpressing the flavohae-
moglobin Hmp from plasmid pBBR-MCS5 (Meilhoc ez al,
2010). Together, these results confirm that NO is present in
the infection pockets and infection threads, and indicate that
bacteria respond to NO in infection pockets.
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Fig. 2 Expression of the sma1289-lacZ fusion in Sinorhizobium
meliloti cultures. Wild type (wt) (GMI11495) or nnrR (CBT515) S.
meliloti strains carrying the sma1289-lacZ fusion, and the wt strain
harbouring the empty plasmid (pCZ962) were grown to exponential
phase (ODggo 0.2). 3-Galactosidase activity was measured on
cultures grown 1.5 h without (open bars) or with (tinted bars)

25 uM spermine NONOate. Three independent experiments were
performed. The mean (+ mean deviation) is shown on the graph.

18

Fig. 3 Nitric oxide (NO) detection in Medicago truncatula root hairs
using the nitric oxide (NO) biosensor Sinorhizobium meliloti strain.
The M. truncatula roots were inoculated with the wild-type (wt)

S. meliloti strain harbouring the sma1289-lacZ fusion. Roots were
stained for 12 h for p-galactosidase activity detection. Observations
were made with an optical microscope (200x). Approximately 25
roots were observed between 4 d and 6 d after inoculation. Two
representative images are shown. We typically observed two or
three stained curls per root (arrows), a number consistent with the
number of infection events (four of five per root, as estimated using
GMI11545, a wt strain constitutively expressing lacZ).
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The DAF-2T fluorescence was also observed 4 dpi in the
bumps of the root infection zone in the region of infection
thread progression. To more precisely localize this NO
production, we carried out confocal microscopic analysis on
fresh root slices (100 um) from the infection zone (Fig. 4).
All the pictures showed the fluorescence in dividing cortical
cells of the nodule primordia (Fig. 4a,b). At the same time,
we also detected NO production in lateral root primordia
(data not shown), as described in lateral root development in
tomatoes (Correa-Aragunde ez al., 2004). As expected, this
green fluorescence was significantly diminished by treating
root slices with cPTIO (Fig. 4¢,d). These results show that

NO is present in the early stages of the symbiotic interaction.

NO is necessary for efficient competitiveness of
S. meliloti

To determine whether the NO detected at early steps of
symbiosis is involved in the infection process, we used an
approach to deplete the NO levels. For this, we first tested
the ability of the S. meliloti hmp™* strain to compete with
the wt strain for nodule occupancy. Medicago truncatula
plants were coinoculated with a mixture (1 : 1) of the wt
and hmp"" strain. To differentiate nodules occupied by each
strain, the wt harboured plasmid pXLGD4, which displays
a constitutive and strong B-gal activity. Nodules occupied
by the wt and Amp™™ strains could thus be numbered after

addition of X-Gal by counting blue and white nodules,
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respectively. In control experiments, the wt strain harbouring
pXLGD4 was mixed (1 : 1) with either the empty wt strain,
or the wt strain carrying the empty vector pPBBR-MCS5.

The competition experiment revealed a lower competi-
tiveness of the hmp*™* strain compared with the wt (31.6%
vs 68.4% nodules occupancy, respectively; P < 0.05 accord-
ing to Student’s #test) whereas in control experiments, all
strains were as competitive as the wt (Table 2). Even when
the competition experiment was done with a 1 : 3 mixture
of the wt vs hmp*™, the hmp™™ strain still remained signifi-
cantly less competitive (36.5%, n = 1). It has been shown
that overexpression of Amp in bacteria can lead to elevated
concentrations of superoxide and peroxide (Gilberthorpe
et al., 2007; McLean ez al., 2010). To rule out the possibil-
ity that such an effect is responsible for the lower
competitiveness of the hmp** strain, the coinoculation of wt
and Amp"" strains was repeated in the presence of the NO
scavenger (cPTIO). In these conditions, the wt and Amp*™
strains recovered a similar competitiveness. This confirmed
that the low competitivity of the hmp"* strain was indeed
the result of its greater ability to degrade NO. These results
therefore indicate that NO production has a positive effect
on the early steps of bacterial infection.

NO is necessary for optimal nodule formation

To investigate the role of NO in the establishment of the
symbiotic interaction, we first tested the effect of the NO

observed on fresh slices (100 um) of the root infection zone. The roots slices on (b) and (d) were pretreated with 1 mM of cPTIO (2-(4-
carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide) for 45 min before the treatment with the DAF-2DA probe. Each picture is
composed by the DAF fluorescence and transmission micrographs. In pictures (a) and (b), DAF fluorescence was observed in dividing cells of
the nodule primordium. The cPTIO treatment reduced significantly the fluorescence (c,d) which confirmed the specificity of the fluorescence.
Root slices analysed without incubation with the DAF-2DA probe did not show autofluorescence in our acquisition settings. The typical
fluorescence emission spectrum of the DAF probe was also confirmed (Data not shown). Data are from four independent experiments

(n = 48) and pictures shown are representative of the different conditions. Bars, 50 pm.
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Table 2 Nodulation competitiveness of wild type (wt) and flavo-
haemoglobin (hmp™™*) over-expressing strain

Per cent of Total number
cPTIO nodule of nodules
treatment occupancy (number of

Strain tested® (1 mMm) (+ SE) experiments)
wt - 51.3 (x2.3) 136 (2)
wt (pBBR-MCS5) - 47.0 (x0.3) 121 (2)
hmp** - 31.6 (+4.9) 481 (6)
hmp** + 51.2 (¥2.1) 183 (3)

The strains indicated were tested in competition against the wt
strain harbouring the plasmid pXLGD4 ina 1 : 1 ratio.

scavenger cPTIO on the nodulation ability of M. truncatula
plants inoculated by the S. meliloti wt strain. The plants
grown in tubes were treated by addition of 1 mM cPTIO
on the whole length of the root 2 h before and 2 h after
inoculation, and then every 24 h for 4 d. Appearance of
nodules was then monitored. The results show that the NO
depletion caused by cPTIO treatment led to a significant
delay (3—4 d) in nodule appearance (Fig. 5a). Similarly,
plant inoculation with the Amp*™ strain led to a slight but
significant delay in nodule formation (Fig. 5b).

To corroborate these results, transgenic hairy roots
overexpressing the bacterial smp gene, encoding a flavohae-
moglobin able to scavenge NO, were obtained. To avoid
any effect on root development, the Amp gene was
expressed under the control of a nodule specific promoter
pMENOD20. As described in the literature (Vernoud
etal, 1999), we observed the expression of the
pMtENOD20-GUS construction in dividing inner cortical
cells corresponding to the site of nodule primordium from
the fifth day of nodule development (see the Supporting
Information, Fig. S1). However, compared with the results
of Vernoud ez al. (1999), we did not observe glucuronidase
(GUS) staining in associated root hairs displaying shep-
herd’s crook curling. Detection of NO by fluorescent
microscopy with DAF2-DA revealed a decrease of fluores-
cence on the Hmp-overexpressing transgenic nodule slices
compared with the control transgenic nodules (Fig. 6a).
Using a spectrofluorometric method, we estimated a 40%
reduction of the NO production in hairy roots overex-
pressing the Hmp protein compared with the control hairy
roots at 5 dpi (Fig. 6b) as well as at 13 dpi (data not
shown). In addition, the overexpression of Amp under the
control of this promoter significantly delayed the nodula-
tion (Fig. 6¢), with a 28% reduction in the number of
nodules compared with the control transgenic roots. This
result is in line with the results demonstrated with cPTIO
treatment (Fig. 5a) or when plants were inoculated with the
hmp** S. meliloti strain (Fig. 5b). These results show that
decreasing the NO level results in a delay in the nodulation
process.
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Fig. 5 Nodulation phenotype on roots treated with cPTIO (2-(4-
carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide) or
inoculated with hmp-overexpressing Sinorhizobium meliloti strain.
(a) Medicago truncatula roots were either untreated (solid line) or
treated with 1 mM cPTIO 2 h before, 2 h after and every 24 h
during 4 d after inoculation with the wild-type (wt) S. meliloti strain
(dotted line). Three independent series of 18 plants were tested for
each condition. The average nodule number at each time-point was
calculated for each experiment. The results shown are the mean

(+ mean deviation) of the three independent experiments. (b)
Number of nodules formed by on M. truncatula roots 12 d post-
inoculation by the wt (GMI11495, tinted bar) or the hmp-
overexpressing strain (hmp**, open bar) S. meliloti strains. Three
independent series of 20 plants were done. The results shown are
the mean (+ SE) of the three experiments. Asterisk indicates a
statistically significant difference (Student's t-test, P < 0.05).

Depletion of NO affects transcript level of genes
involved in nodulation process

To further investigate the involvement of NO in this pro-
cess, we measured the expression levels of genes known to
be associated with nodule development and potentially
regulated by NO. We first analysed the expression of
MtCREI, a gene encoding a cytokinin receptor involved
in the early symbiotic interaction (Gonzalez-Rizzo ez al.,
20006) as it was shown to be NO regulated in M. truncatula
(Ferrarini et al., 2008). The qRT-PCR experiments per-
formed either on inoculated plants treated with ¢PTIO
(during 8 h) or on transgenic hairy roots overexpressing the
Hmp protein (Fig. 7a,b) showed that NO depletion down-
regulates the expression of MrCREI. This result therefore
confirms that NO upregulates the expression of MrCRE],
and further points to the presence of NO during the early
steps of nodule development.

© 2011 The Authors
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Fig. 6 Nitric oxide (NO) measurement and nodulation phenotype
on transgenic hairy roots overexpressing the Sinorhizobium meliloti
Hmp flavohemoglobin under the control of the nodule specific
promoter pMtENOD20. (a) Representative confocal microscopic
pictures obtained from observation with DAF-2DA probe of
transgenic Hmp-overexpressing and control glucuronidase (GUS)
nodules slices (11 d post-inoculation). Bar, 100 pum. (b)
Quantification of the NO levels by spectrofluorimetric method. The
Hmp-overexpressing and control (GUS) transgenic roots were
incubated with nonpermeant DAF2 probe to measure the NO
produced and released in the medium. Results presented from roots
5 dpi.n = 68 and n = 62 for pMtENOD20-GUS (tinted bar) and
pPMtENOD20-hmp (open bar), respectively. Asterisk indicates a
statistically significant difference (Student's t-test, P < 0.05). (c)
Number of nodules induced by the wild-type S. meliloti strain on
transgenic Hmp-overexpressing and control hairy roots measured
11 d post-inoculation. Three independent experiments were done
with a number of plants, n = 78 for pMtENOD20-GUS (tinted bar),
and n = 69 for pMtENOD20-hmp (open bar). Asterisk indicates a
statistically significant difference (Student's t-test, P < 0.05).

We then measured the expression levels of several well-
studied genes associated with various infection and nodule
developmental stages: MtRR4, MtNIN, MtN6, MtENOD40
and MtCCS52A (Pichon et al., 1992; Charon et al., 1997,
Cebolla ez al., 1999; Vinardell ez 2/, 2003; Gonzalez-Rizzo
et al., 2006). Only one of them, MtCCS524, displayed a
lower expression level upon NO depletion by either cPTIO

© 2011 The Authors
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Fig. 7 Effect of nitric oxide (NO) modulation on transcripts level of
genes involved in symbiotic interaction. (a) Real-time reverse-
transcription polymerase chain reaction (RT-PCR) analysis of
MECRET, MtNIN and MtCCS52A genes on inoculated roots (4 d
post-inoculation) treated with (open bars) or without (tinted bar)
1 mM of cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl
imidazoline-1-oxyl-3-oxidec) during 8 h. (b) Real-time RT-PCR
analysis of MtCRE1, MtNIN and MtCCS52 genes on hmp-
overexpressing (open bars) and control (tinted bars) transgenic hairy
roots 11 d post-inoculation. For these two analyses, at least three
independent experiments were performed. Asterisk indicates a
statistically significant difference (Student's t-test, P < 0.05)
compared with the control. A dot indicates a statistically significant
difference between P < 0.05 and P < 0.1 (Student's t-test)
compared with the control.

or Hmp overexpression (Fig. 7 and data not shown) sug-
gesting that the gene expression could be induced by the
NO production observed at this stage. During nodule
organogenesis, the cell cycle-switching gene M:CCS524
triggers selected cells within the primordium to switch from
mitotic cycles into endoreduplicating cycles (Cebolla ez al,
1999; Vinardell et al, 2003). These data therefore
strengthen the role of NO in nodule development.

Discussion

In previous work, we showed that NO is present in late
stages of nodule development (Baudouin ez 4/, 2006). The
results presented here clearly show that NO is also present
in the first steps of the M. truncatula—S. meliloti symbiosis,
that is, in the root hair infection pockets as well as in the
nodule primordium, clearly pointing to a role of this reac-
tive nitrogen species in the early exchange of signals
between the two partners. They are in agreement with
previous reports of NO detection on M. sativa or
L. japonicus roots a few hours after inoculation by the
respective microsymbionts and further indicate that NO
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production occurs at different steps during the nodulation
process (Shimoda et al, 2005; Pii et al, 2007; Nagata
et al., 2008). Furthermore, in each step the NO observed
might have specific functions.

In order to evaluate the role of NO, a strategy could have
been to diminish the NO production and analyse the conse-
quences on the symbiotic steps. However, although
numerous studies demonstrate the importance of NO in
plants, NO synthesis pathway(s) are yet to be deciphered.
Preliminary indications pointed out the possible implica-
tion of an NO synthase-like enzyme in M. truncatula—S.
meliloti interaction (Baudouin ez al, 2006). However, the
MtNoal gene (the orthologue of AtNoal) recently identi-
fied in M. truncatula is not involved in NO production
(Pauly ez al., 2010). In addition, recent evidence demon-
strates that both plant and bacterial nitrate reductase and
the electron transfer chains are responsible for NO produc-
tion in M. truncatula—S. meliloti nodules (Horchani et al.,
2011). However, the NO source(s) during the first steps of
the interaction remain(s) to be identified. Therefore to
reduce NO levels in both bacteria and plant cells, we first
used an S. meliloti strain overexpressing a flavohaemoglobin
(Hmp) (Meilhoc ez al., 2010), a well-characterized NO-
scavenging enzyme. Second, to assess the role of NO during
the nodule primordium development, we generated trans-
genic hairy roots of M. truncatula expressing the S. meliloti
flavohaemoglobin Amp gene under the control of a nodule-
specific promoter. As reported by Mishina et /. (2007) in
Arabidopsis, this strategy was efficient in reducing the NO
levels during the nodulation process and allowed us to
observe effects both on bacterial infection and nodule
development. We first observed a lower competitive ability
of the Amp*" strain compared with the wild type.
Moreover, expression of Hmp from either the plant or bac-
terial side, or the early addition of the NO scavenger
cPTIO to plant roots, led to delayed nodulation. In agree-
ment with these observations, Pii et 2/ (2007) described
that early addition of cPTIO reduced the M. truncatula
nodule number. Together, these results provide convincing
evidence that NO is involved in the establishment of the
M. truncatula—S. meliloti symbiosis, where it plays a positive
role in the nodulation process.

What could be the function of NO in the nodulation pro-
cess? It has been suggested that NO produced by bacterial
pathogens could protect them against oxidative stress
encountered during host infection (Gusarov & Nudler,
2005). Similarly, NO could thus be produced by rhizobia in
the early stages of symbiosis in order to counteract the oxida-
tive stress encountered during infection (Pauly ez al., 2006).
Interestingly, it appears that NO is produced very early in
the infection process, as soon as infection pockets are
formed. Both cell-permeable NO-specific fluorescent probe
and NO biosensor bacterial strain indicate that bacteria
respond to NO in infection pockets. However, in this study,
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we cannot conclude what from the plant or the bacteria is
involved in this NO synthesis. Furthermore, detection of
NO along the infection threads but not within bacteria
during the IT growth suggests that NO production at this
step is mainly from the plant partner, and/or that bacterial
system(s), including the flavohaemoglobin Hmp, prevent(s)
NO accumulation inside bacteria (Meilhoc et al., 2010). In
the Vibrio fischeri-Euprymna scolopes symbiosis, host-derived
NO has an important role during the initiation of symbiotic
colonization where it is hypothesized to serve as a specificity
determinant (Davidson er al., 2004). It has been suggested
that NO in this case could be a signal that prepares the mi-
crosymbiont for stronger NO stress occurring later in the
symbiotic process (Wang er al, 2010). Similarly, in the
Rhizobium-legume symbiosis, early production of NO
could serve to induce the expression of bacterial genes that
could be necessary to adapt bacteria to NO encountered
later on during symbiosis. The lower competitiveness of the
hmp*" strain compared with the wt is an argument in favour
of a role of this NO production during the infection process.

The question remains whether or not NO synthesis by
the plant is directly induced by the microsymbiont. In
L. japonicus and M. sativa, Nagata et al. (2008) observed
a transient NO production on roots only when the
plants were inoculated with their own specific symbiotic
partners (Mesorhizobium loti and S. meliloti, respectively).
Furthermore, this increase in NO was accompanied by the
transient induction of the expression of a class 1 Hb-encod-
ing gene which could be responsible for subsequent NO
decrease. It was suggested that class 1 Hb might be involved
in the development of symbiosis in L. japonicus (Shimoda
et al, 2009). The same authors also reported that the
number of nodules formed on transgenic hairy roots over-
expressing LjHbI was increased compared with those
formed on untransformed hairy root from the same plant
(Shimoda ez al., 2009). These results appear contradictory
to the present work where we observed a reduced number
of nodules per plant when depleting NO concentrations
using either Amp overexpression or the NO scavenger
cPTIO. This could be caused by: (1) the different models
and approaches used, including the expression of hmp from
different promoters (i.e. a nodule-specific promoter in our
work vs the strong and constitutive p35S promoter in
Shimoda’s work); (2) a putative specific role played by the
class I Hb to promote the initial infection process; and/or
(3) the need for a set concentration range of NO for
successful establishment of the symbiotic relationship.

The detection of NO in dividing cortical cells of the
root, not yet invaded by the rhizobial cells within nodule pri-
mordia, shows that NO could also play a direct role in nodule
organogenesis. Nitric oxide was also detected in lateral
root primordia as previously described in tomato plants
(Correa-Aragunde er al., 2004), which suggests that it could
have a similar function in these two different developmental
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processes. The role of NO in nodule development is
underlined by the effect of NO depletion on the expression of
genes known to be involved in this process. A first target
appears to be MtCRE1, which has been shown already as an
NO responsive gene (Ferrarini er al, 2008). This gene
encodes a cytokinin receptor, which regulates the early
symbiotic interaction between M. truncatula and S. meliloti,
by modulating both the progression of the infection and the
formation of nodule primordia (Gonzalez-Rizzo er al.,
20006); its expression was localized in nodule primordia
(Lohar ez al., 20006). It has been proposed that cytokinin, as a
key differentiation signal for nodule organogenesis, might be
a ‘secret agent’ of the symbiotic interaction (Frugier ez al,
2008). Thus, in regulating cytokinin perception, NO may
control the nodulation process. Moreover, as NO has been
put forward as an intermediate in cytokinin signalling in
Arabidopsis (Tun et al., 2008), an amplification loop may
exist. The proposed event cascade involving the response
regulator MtRR4 and the downstream MNNIN and
MtENODA40 functions (Frugier ez al, 2008) was not
affected by the cPTIO treatment, pointing to the existence of
other signalling routes functioning downstream of MtCRE1
and controlling nodule development. The effect of the
decrease in the NO content on the expression of the
MrCCS52A genes may also contribute to explain the positive
role of this signalling molecule on the nodulation process.
MtCCS52A, which is involved in the transition of mitotic
cycles to endoreduplication cycles, is indeed required for sym-
biotic cell differentiation in M. truncatula nodules (Vinardell
et al., 2003). These results are in line with a previous report
on the NO-induced modulation of the expression of cell cycle
regulatory genes during lateral root formation in tomato
plants (Correa-Aragunde ez al., 2006).

In conclusion, the results presented here show that NO is
required for an optimal establishment of the M. truncatula—
S. meliloti symbiosis, and suggest that it could have functions
in both bacterial infection and nodule development. Indeed,
enhancing NO scavenging activities, both at the plant and
microsymbiont levels, resulted in a delay in nodule forma-
tion and a weaker bacterial infectivity. They point to a
potential link between cytokinin and NO signalling during
the nodulation process. In addition, they emphasize a differ-
ence with the role of NO in pathogenic interactions, where it
mainly activates plant defence reactions.
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