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This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these
simulators depend on factors that tune the level of precision of the response, the gain in accuracy being at
a price of computational time. The contribution of this work is two-fold: first, we propose a quantile-based
criterion for the sequential design of experiments, in the fashion of the classical expected improvement
criterion, which allows an elegant treatment of heterogeneous response precisions. Second, we present
a procedure for the allocation of the computational time given to each measurement, allowing a better
distribution of the computational effort and increased efficiency. Finally, the optimization method is applied
to an original application in nuclear criticality safety. This article has supplementary material available
online. The proposed criterion is available in the R package DiceOptim.
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1. INTRODUCTION

Using metamodels for facilitating optimization and statistical
analysis of computationally expensive simulators has become
commonplace. In particular, the kriging-based efficient global
optimization (EGO) algorithm (Jones, Schonlau, and Welch
1998) has been recognized as an efficient tool for deterministic
black-box optimization.

The way a simulator response follows the function of interest
is called fidelity. Oftentimes, a large range of response fideli-
ties is available by tuning factors that control the complexity
of numerical methods. For instance, the precision of a finite
element analysis can be controlled by the discretization tech-
nique or the solver convergence. When the response stems from
Monte Carlo methods (which are often referred to as stochastic
simulators), accuracy (measured by the inverse of the response
variance) is proportional to sample size. Such simulators are
often called noisy simulators, since they return approximate so-
lutions that depart from the exact value by an error term that can
be considered as a random quantity.

In an optimization context, having noise in the responses
requires a proper adaptation of criteria and algorithms. Further-
more, for each simulation run, the user has to set a trade-off
between computational cost and response precision. This addi-
tional degree of freedom may greatly improve the efficiency of
the optimization but requires appropriate tools to choose this
trade-off and the ability to work with heterogeneous precisions.

Using metamodels for noisy optimization has been addressed
by several authors. Huang et al. (2006) and Forrester, Keane,
and Bressloff (2006) proposed kriging-based strategies for opti-

mization of uniformly noisy functions. However, little work can
be found in the case of heterogeneous noise. Most approaches
combining optimization and variable precision are found in the
multifidelity framework (Gano et al. 2006; Forrester, Sóbester,
and Keane 2007) but consider only two fidelity levels, the low-
fidelity model being used as a helping tool to choose the high-
fidelity evaluations.

This article proposes two contributions to this framework.
First, we define an extension of expected improvement (EI) based
on quantiles that enables an elegant treatment of both continuous
or discrete fidelities. The proposed criterion depends not only
on the noise variances from the past, but also on the fidelity of
the new candidate measurement. Second, we study a procedure
taking advantage of the possibility to choose the fidelity level at
each iteration.

In the next section, we define the “noisy” framework we
are considering and present briefly the kriging model. Section
3 describes the classical kriging-based optimization procedure
and its limitation with noisy functions. In Section 4, we propose
a new infill criterion, called Expected Quantile Improvement
(EQI), well-suited for the noisy framework, and in Section 5, we
propose a numerical trick for tuning one of the EQI parameters
to account for finite computational budgets. Section 6 describes
a procedure for online decision on precision level. Finally, this
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procedure is compared with existing kriging-based methods and
applied to an original application in nuclear criticality safety.

2. NOTATIONS AND CONCEPTS

2.1 The Noisy Optimization Problem

We consider a single objective, unconstrained minimization
problem over a compact set D. The deterministic objective func-
tion y : x ∈ D ⊂ Rd −→ y(x) ∈ R is here observed with noise,
that is, the user only has access to measurements of the form
ỹi = y(xi) + εi , where εi is assumed to be one realization of a
“noise” random variable ε. In the rest of this article, we make
the assumption that the observation noises are normally dis-
tributed, centered, and independent from one run to each other:
εi ∼ N (0, τ 2

i ) independently.

2.2 Noise in Computer Experiments

In classical experiments, noise usually accounts for a large
number of uncontrolled variables (variations of the experimental
setup, measurement precision, etc.). In computer experiments,
noise can have many sources, including modeling and discretiza-
tion error, incomplete convergence, and finite sample size for
Monte Carlo methods, see for instance Forrester, Keane, and
Bressloff (2006) or Gramacy and Lee (2010a) for a detailed
discussion.

The nature of the noise depends on the associated simulator.
When classical Monte Carlo simulations are involved in the out-
put evaluation, error is independent from one run to each other,
even for measurements with the same input variables. Such
simulators are often referred to as stochastic, and are the main
target for the method presented here. The industrial application
described in Section 7.2 belongs to this category.

Errors due to a simplification of the physics, geometry, or
meshing tend to show strong correlations, especially for simu-
lations with similar fidelities, and repeated experiments provide
the same observations. This situation has been addressed in
the multifidelity literature [see Kennedy and O’Hagan (2000)
and Qian and Wu (2008) for modeling; Forrester, Sóbester, and
Keane (2007) and Huang et al. (2006) for optimization] and is
not considered here, although many of the concepts presented
here may apply with a proper adaptation of the kriging model.

Error due to incomplete convergence can be either treated
as correlated noise or not. In Forrester, Bressloff, and Keane
(2006), it is observed that simulations tend to converge in uni-
son, which makes the partial convergence equivalent to a multi-
fidelity problem. However, when the output convergence behav-
ior varies substantially across the design space, the hypothesis
of independence of the error between runs may become rea-
sonable, especially if experiments are well spread in the design
space and different convergence levels are used.

2.3 Experiments With Tunable Precision

As mentioned in the introduction, the precision of many sim-
ulators can be tuned by the user, for instance by changing the
number of solver steps for incomplete convergence or the sample
size for Monte Carlo methods. Here, we consider that, for every

measurement, the noise variance τ 2
i = τ 2(ti) is a monotonically

decreasing function of computation time ti .
A perhaps “canonical” example of tunable precision is when

the response considered is obtained by averaging an arbitrary
number bi of independent drawings (which is a typical situation
in the framework of robust optimization for instance):

Ỹi = 1

bi

bi∑
j=1

y(xi) + εi,j , (1)

when εi,j ∼ N (0, ν2). We have then Ỹi ∼ N (y(xi), ν
2

bi
), so

τ 2(t) = ρν2/t , ρ being the time needed for a single drawing.
The value of bi chosen by the user tunes the precision of Ỹi .

In this work, we make two strong assumptions: (a) the compu-
tation time, and hence the error variance, is controllable and (b)
the function τ (t) is accurately known. Although some stochas-
tic simulators, such as the one described in Section 7.2, directly
provide an accurate estimate of the output uncertainty, in most
real applications, a learning study is necessary, typically assum-
ing a (simple) parametric form for the variance. In the case of
Monte Carlo simulators and assuming small variations of the
output across the design space, we have τ 2(t) = C/t , where C
is an unknown constant that can be estimated when building the
kriging model, as described in Section 2.4.

Finally, for simulators relying on Monte Carlo or on iterative
solvers, the response corresponding to a given precision is not
obtained directly but more as a limit of intermediate responses of
lower precisions. For each measurement, the noisy response ỹi is
thus obtained as the last term of a sequence of measurements
ỹi[1], . . . , ỹi[bi], where bi ∈ N is the number of calculation
steps at the ith measurement.

Figure 1 represents two examples of response convergence.
First, the convergence of the output of the stochastic simu-
lator of Section 7.2 is drawn for its nominal design values.
Here, the variance is known accurately, and depicted by the
90% confidence interval. The curve ỹ represents the sequence
ỹ[j ], j = 1, . . . , 100. The second figure is taken from For-
rester, Bressloff, and Keane (2006) and represents the conver-
gence of an objective function (namely the L/D ratio) calcu-
lated using an Euler simulation of an aerofoil, as a function of
the number of solver steps. The response oscillates around its
final value with decreasing amplitude. Here, error variance is
not available directly and requires the specification of and in-
ferences for a parametric model for τ based on a couple of trial
responses such as this one.

2.4 The Kriging Metamodel

In this work, we use a (generalized) Gaussian process (GP) re-
gression model [as in Rasmussen and Williams (2006), chap. 2],
where y is assumed to be one realization of a random process Y
with an unknown constant trend μ ∈ R, and a stationary covari-
ance kernel k, that is, of the form k : (x, x′) ∈ D2 −→ k(x, x′) =
σ 2r(x − x′;ψ) for some admissible correlation function r with
parameters ψ . Provided that the process Y and the Gaussian
measurement errors εi are stochastically independent and that
the error variances are given, the distribution of Y (x) conditional
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Figure 1. Examples of tunable precision responses. Left: convergence of the output of MORET for its nominal design values; right: partially
converged response of a computational fluid dynamics (CFD) code. The online version of this figure is in color.

on the event Ãn = {Y (xi) + εi = ỹi , 1 ≤ i ≤ n} is

Y (x)|Ãn ∼ N (mn(x), s2
n(x)
)
, (2)

where mn(.) and s2
n(.) are, respectively, the kriging mean and

variance, given by

mn(x) = μ̂n + kn(x)T (Kn +	n)
−1(̃yn − μ̂n1n), (3)

s2
n(x) = σ 2 − kn(x)T (Kn +	n)

−1kn(x)

+
(
1 − 1Tn (Kn +	n)−1kn(x)

)2
1Tn (Kn +	n)−11n

, (4)

with σ 2 = k(x, x), ỹn = (̃y1, . . . , ỹn)T ,Kn = (k(xi , xj ))1≤i,j≤n,
kn(x) = (k(x, x1), . . . , k(x, xn))T ,	n is a diagonal matrix of di-
agonal terms τ 2

1 , . . . , τ
2
n , 1n is an n× 1 vector of ones, and

μ̂n = 1Tn (Kn +	n)−1̃yn/1Tn (Kn +	n)−11n is the best linear
unbiased estimate of μ.

As for a classical kriging model, the covariance parameters
σ 2 and ψ usually need to be estimated, using maximum likeli-
hood (ML) for instance and considering the noise variances as
known. If the noise variances are not known but a simple para-
metric functional relashionship is assumed between the τ 2

i ’s and
the ti’s, the corresponding parameters may be embedded within
the ML procedure. For instance, assuming a Monte Carlo type
behavior of the form τ 2

i = C/ti , the likelihood would depend
on C through 	n and μ̂n.

3. KRIGING-BASED OPTIMIZATION; LIMITATIONS
WITH NOISY FUNCTIONS

The EGO algorithm (Jones, Schonlau, and Welch 1998)
builds a sequential design with the goal of finding a global
minimum of a black-box function. It consists of sequentially
evaluating y at a point maximizing a figure of merit relying on
kriging, the EI criterion, and updating the metamodel after each
new observation.

In the noiseless case, with yi = y(xi) (1 ≤ i ≤ n), yn =
(y1, . . . , yn)T , Xn = {x1, . . . , xn}, and An denoting the event
Y (Xn) = yn, the improvement provided by sampling at x is de-
fined by I = max (0,min (Y (Xn)) − Y (x)), and the EI is its

expectation given by the GP model:

EIn(x) := E[(min(Y (Xn)) − Y (x))+|An]
= E[(min(yn) − Y (x))+|An], (5)

An integration by parts yields the well-known analytical ex-
pression:

EIn(x) := (min(yn) −mn(x)
)



(
min(yn) −mn(x)

sn(x)

)
+ sn(x)φ

(
min(yn) −mn(x)

sn(x)

)
, (6)

where 
 and φ are, respectively, the cumulative distribution
function and the probability density function of the standard
Gaussian law. The latter analytical expression is very conve-
nient since it allows fast evaluations of EI, and even analytical
calculation of its gradient. Now, in the context of noisy eval-
uations, (5) is not very satisfactory for at least two reasons.
First, the current minimum min(Y (Xn)) is not deterministically
known conditionally on the noisy observations, unlike the noise-
less case. Second, the EI is based on the improvement produced
by a deterministic evaluation of y at the candidate point x. Now,
if the next evaluation is noisy, Y (x) will remain inexactly known.
It would hence benefit from a new criterion taking the precision
of the next measurement into account.

In Huang et al. (2006), a heuristic modification of the EI
called Augmented Expected Improvement (AEI) is proposed for
uniformly noisy observations. The mean predictor at the train-
ing point with smallest kriging quantile is used as a surrogate
value for min(Y (Xn)), and the EI is multiplied by a penalization
function 1 − τ/

√
s2
n(x) + τ 2 to limit replications.

A more rigorous alternative, as noted by Gramacy and Lee
(2010b) and Gramacy and Polson (2011), consists of computing
the EI based on the joint distribution of (min(Y (Xn)), Y (x)) con-
ditional on Ãn; however, in this form, the EI must be estimated
by expensive Monte Carlo simulations, which makes the EI
maximization challenging.

Finally, the integrated expected conditional improvement
(IECI), proposed by Gramacy and Lee (2010b), evaluates by
how much a candidate measurement at a given point would
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affect the EI over the design space, thereby naturally taking past
and future noises into account. However, this criterion requires
a numerical integration over the design space, which can be time
consuming, especially in high dimensions.

The next section presents a class of criteria (indexed by a
parameter β tuning a quantile level) that takes into account past
and future noises with transparent probabilistic foundations and
that can be derived analytically as a function of the future point
and its associated noise level.

4. EXPECTED QUANTILE IMPROVEMENT

4.1 Definition

Our aim is to get a kriging-based optimization criterion mea-
suring which level of improvement can be statistically expected
from evaluating y at a new x with a noise of given variance
τ 2. A first question to be addressed is of decision-theoretical
nature: what does the term “improvement” mean when com-
paring two sets of noisy observations? What criterion should
be used to judge that a set of noisy observations, or the associ-
ated metamodel, is better (in terms of minimization) after the
(n+ 1)th measurement than before it?

Using only the noisy observations ỹn and ỹn+1 is a highly risky
strategy, since the noise may introduce errors in the ranking
of the observations. Here we propose to use the β-quantiles
given by the kriging conditional distribution, for a given level
β ∈ [0.5, 1): a point is declared “best” over a set of candidates
Xn whenever it has the lowest β-quantile:

x∗ = arg minx∈Xn
[qn(x)]

= arg minx∈Xn
[mn(x) +
−1(β)sn(x)]. (7)

This is the criterion also considered by Huang et al. (2006).
Now, we propose to define an improvement that is consistent

with our decision criterion: we define improvement I to be the
decrease of the lowest β-quantile, between the present step n
and the forthcoming step n+ 1:

I = (min(qn(Xn)) − qn+1(xn+1))+. (8)

Of course, like in the noiseless case, this improvement cannot
be known in advance, because qn+1 (xn+1) depends on the future
observation ỹn+1. However, thanks to the particular form of the
kriging equations, the future quantile qn+1 can be predicted, and
consequently the EI can be calculated, based on the GP model
at step n, as we show below.

In our improvement (8), we restrict attention to the observed
points (Xn and xn+1), even though a similar criterion could be
defined over the entire design space:

I =
(

min
D

(qn (x)) − min
D

(qn+1 (x))

)+
.

However, such a restriction allows simplification, yielding a
criterion in closed form.

Let us denote byQi(x) the kriging quantile qi(x) (i ≤ n+ 1)
where the measurements are still in their random form, and

define the EQI as

EQIn
(
xn+1, τ 2

n+1

)
:= E

[(
min
i≤n

(Qn(xi)) −Qn+1(xn+1)

)+ ∣∣∣∣∣Ãn
]
,

(9)

where the dependence on the future noise τ 2
n+1 appears through

Qn+1(x)’s distribution.
The randomness of Qn+1(x) conditional on Ãn is indeed a

consequence from Ỹn+1 := Y (xn+1) + εn+1 having not been ob-
served yet at step n. However, following the fact that Ỹn+1|Ãn is
Gaussian with known mean and variance, one can show that
Qn+1(.) is a GP conditional on Ãn (see proof and details in the
Appendix). Furthermore, mini≤n(Qn(xi)) is known conditional
on Ãn. As a result, the proposed EQI is analytically tractable,
and we get by a similar calculation as in (6):

EQIn
(
xn+1, τ 2

n+1

) = (min(qn)−mQn+1

)



(
min(qn)−mQn+1

sQn+1

)
+ sQn+1φ

(
min(qn) −mQn+1

sQn+1

)
, (10)

where qn := {qn(xi), i ≤ n} is the set of current quantile val-
ues at the already visited points,mQn+1 := E[Qn+1(xn+1)|Ãn] is
Qn+1(xn+1)’s conditional expectation—seen from step n, and
s2
Qn+1

:= var[Qn+1(xn+1)|Ãn] is its conditional variance, both
derived in the Appendix.

4.2 Properties

The EQI criterion has the following important properties:

(a) In absence of future noise (τ 2
n+1 = 0), the future quantile

at xn+1 coincides with the observation ỹn+1 = y(xn+1);
it follows directly thatQn+1(xn+1)|Ãn = Yn+1|Ãn, so the
EQI is equal to the classical EI with a plugin of the kriging
quantiles for min(yn).

(b) In absence of past noise (for the n first observations),
min(qn) is equal to the minimum of the observations,
min(yn).

(c) In absence of both past and future noises, the EQI is then
equal to the classical EI.

The parameter β tunes the level of reliability wanted on the
final result [which plays a similar role as the power parameter
of the generalized improvement of Schonlau, Welch, and Jones
(1998)]. With β = 0.5, the design points are compared based on
the kriging mean predictor only, without taking into account the
prediction variance at those points, while high values of β (i.e.,
near to 1) penalize designs with high uncertainty, which is a
more conservative approach. Hence, with a high β, the criterion
is more likely to favor observation repetitions or clustering, to
locally decrease the prediction variance, while with β = 0.5,
the criterion can be expected to be more exploratory.

The future noise τ 2
n+1 also strongly affects the shape of the

EQI. Indeed, a very noisy future observation can only have a
very limited influence on the kriging model. Then, the only way
to get a nonzero improvement is either to sample where qn(x) is
minimum if this point is not in Xn (the lowest quantile will then
be chosen on the set Xn+1 instead of Xn, which will bring an
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Figure 2. Actual function, kriging, and corresponding EQI for three future noise levels and two quantile levels. The bars of the upper graph
show the noise amplitude (±2 × τi). The online version of this figure is in color.

improvement even if qn+1 = qn), or to sample at the current best
point, which may decrease its uncertainty and brings a small but
measurable improvement. On the contrary, if τ 2

n+1 is very small,
the EQI behaves like the classical EI, making the well-known
trade-off between exploration and exploitation.

Figure 2 illustrates the dependence of the EQI on both
τ 2
n+1 and β. The actual function is y(x) = 1

2 (sin(20x)/(1 + x) +
3x3cos(5x) + 10(x − 0.5)2 − 0.6), the initial design consists of
five equally spaced measurements, with noise variances equal
to 0.02.

We can see that the choice of the future noise level has a
substantial influence on the criterion. With small noise variance,
the EQI behaves like the classical EI, with highest values in
regions with high uncertainty and low mean predictions. With
higher noise variances and high quantiles, the criterion becomes
very conservative since it is high only in the vicinity of existing
measurements. Withβ = 0.5, the EQI is high even for the largest
variance. However, here five curves out of six return similar
optimal locations (i.e., x near 0.4 or 0.6), which indicates that
the influence of τ and β may not be critical during the first
optimization steps.

4.3 EQI as a Function of Computational Time

EQI measures the effect of a new measurement with vari-
ance τ 2

n+1, while we defined in Section 2 a measurement at
location xi as depending on a computational time ti . In our
framework of tunable precision, two cases have to be distin-
guished. Let tn+1 be the computational time used at iteration
n+ 1. At unsampled locations, the EQI criterion is simply eval-
uated with τ 2

n+1 = τ 2(tn+1). At existing observations, a different

value has to be used, if not, the EQI would estimate the value of a
new measurement with variance τ 2(tn+1), instead of estimating
the value of improving the existing measurement. To compute
this value, we use the fact that it is equivalent for the kriging
model to have several measurements at the same point with in-
dependent noises or a single equivalent measurement which
is the weighted average of the observations (see the online
supplementary material for proof). For instance, let ỹi,1 and
ỹi,2 be two measurements with noise levels τ 2

i,1 and τ 2
i,2, respec-

tively. They are equivalent to

ỹi,eq = τ−2
i,1 ỹi,1 + τ−2

i,2 ỹi,2

τ−2
i,1 + τ−2

i,2

, (11)

with variance τ 2
i,eq the harmonic mean of τ 2

i,1 and τ 2
i,2, namely,

1

τ 2
i,eq

:= 1

τ 2
i,1

+ 1

τ 2
i,2

=⇒ τ 2
i,eq = τ 2

i,1τ
2
i,2

τ 2
i,1 + τ 2

i,2

. (12)

Now, we want to measure the effect of improving a mea-
surement with initial error variance τ 2(ti) until the vari-
ance τ 2(ti + tn+1) is reached. This is equivalent, in terms of
the kriging model, to taking a new measurement with noise
variance:

τ 2(ti → ti + tn+1) := τ 2(ti)τ 2(ti + tn+1)

τ 2(ti) − τ 2(ti + tn+1)
. (13)

This formula is obtained from (12), with τ 2
i,eq = τ 2(ti + tn+1),

τ 2
i,1 = τ 2(ti) and τ 2

i,2 = τ 2(ti → ti + tn+1). Hence, at xi , EQI
may be evaluated with τ 2

n+1 = τ 2(ti → ti + tn+1).
The next section proposes a numerical trick for tuning tn+1 to

account for finite computational budgets.
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5. OPTIMIZATION WITH FINITE COMPUTATIONAL
BUDGET

It is well known that the EGO algorithm is a so-called myopic
strategy, since its criterion EI always considers the next step as if
it were the last one. However, for most computer experiments,
the total computational budget is bounded and prescribed by
industrial constraints such as time and power limitations. In the
deterministic framework, this results in a limited (given) num-
ber of observations for optimization. It has been shown [Mockus
(1988) followed by Ginsbourger and Le Riche (2010)] that tak-
ing into account the finite budget may modify the optimization
strategy and improve significantly its efficiency.

Here, the concept of finite budget is particularly critical, since
each observation requires a trade-off between accuracy and ra-
pidity, and in general, the user has to trade-off between the total
number of observations and their precision. In linear modeling,
this problem is typical of the theory of optimal designs (Fedorov
and Hackl 1997), with the notable difference that we face it here
within a sequential strategy, and a nonlinear (kriging) model.

The computational constraint implies that the sum of all com-
putational times is fixed to a given budget, say T0. At step n, the
remaining budget for optimization is Tn+1 = T0 −∑n

i=1 ti .
The EQI criterion allows taking into account such computa-

tional budget in the choice of the new candidate observations.
Indeed, the future noise level τ 2

n+1, which is a parameter of
EQI, will stand here for the finite budget. Given a computa-
tional budget Tn+1, the smallest noise variance achievable (i.e.,
the largest precision) for a new measurement is τ 2(Tn+1), and
τ 2(ti → ti + Tn+1) at xi (1 ≤ i ≤ n), assuming that all the re-
maining budget will be attributed to this measurement. Note that
in the course of the optimization process, the remaining bud-
get decreases, so τ 2 (Tn+1) [respectively, τ 2(ti → ti + Tn+1)]
increases with n.

Then, we propose to set τ 2
n+1 = τ 2(Tn+1) [respectively,

τ 2(ti → ti + Tn+1)] for the EQI calculation, meaning that the
EQI will measure the potential improvement if all the remaining
budget would be attributed to the next observation. Of course,
the actual budget tn+1 for the next observation may be a lot
smaller than Tn+1, so the optimization does not stop after one
step. With this setting, the new experiment is chosen knowing
that even if all the budget was used for a single observation, its
noise variance would not decrease below a certain value.

Consequently, the EQI will behave differently at the begin-
ning and at the end of the optimization. When the budget is high,
EQI will tendencially be higher in unexplored regions, since it
is where accurate measurements are likely to be most efficient
(the EQI will actually be almost similar to a classical EI). At
the end of the optimization, however, when the remaining time
is small, the EQI will be small in unexplored regions since even
if the actual function is low, there is not enough computational
time to obtain a lower quantile than the current best one. In
that case, the EQI will be highest close to or at the current best
point(s) and favor local search.

6. ALLOCATION OF RESOURCES

This section proposes two algorithmic schemes based on EQI.
First, the baseline approach is described, where a fixed time is

allocated at each iteration; then, a strategy is proposed to take
advantage of the response convergence monitoring to dynami-
cally adapt the budget to each measurement.

6.1 Constant Allocation

First, we assume that the computational budget T0 can be
divided in elementary time steps te so that T0 = N × te. An
elementary step can correspond to a given number of solver
iterations for partial convergence, or to a number of drawings
for stochastic simulators. An algorithm with constant allocation
will then proceed to attribute each of the N elementary time
steps to either generate new measurements or improve accuracy
on existing ones.

At step n, a budget n× te < T0 has already been spent on
the measurements, so Tn+1 = T0 − n× te. The EQI criterion is
maximized over D with τ 2

n+1 = τ 2(Tn+1) at unsampled locations
and τ 2

n+1 = τ 2(ti → ti + Tn+1) at xi (1 ≤ i ≤ n). Once the new
point xn+1 is chosen and the measurement is made, the kriging
model has to be updated, by either adding xn+1 to Xn if xn+1 /∈
Xn or by replacing the previous values of ỹi[bi] and τ 2

i [bi] by
ỹi[bi + 1] and τ 2

i [bi + 1], respectively, in the kriging equations.
The trade-off between precision and number of measure-

ments is here determined by EQI, depending if it is maximum at
a sampled or an unsampled design. Taking the finite budget into
account affects the trade-off, since with large budget it is more
exploratory, hence likely to be maximum at unsampled points,
while with small budget it is more likely to be maximal at
existing points (see Figure 2, EQI with β = 0.9 and τ 2 = 0.1 or
0.01).

Note that this procedure allows the (closely related) problem
of optimization of a homogeneously noisy function to be ad-
dressed, considering that each observation requires a constant
time te and has a constant noise variance ν2. At each optimiza-
tion step, the user has the option of either sampling at a new
location or duplicating an existing measurement, so allocating
all the remaining budget to a measurement means performing
N − n replications at this point, hence leading to the situa-
tion described in Section 2.3 [Equation (1)]. In that case, it is
straightforward to get τ 2(ti → ti + Tn+1) = ν2

N−n = τ 2(Tn+1),
so the criterion is written similarly at sampled and unsampled
locations. Thus, in this framework, the procedure simplifies to
maximizing at each step EQIn(., ν2

N−n ).

6.2 Online Allocation

The constant allocation strategy of the previous section per-
forms N − n0 EGO iterations, and each requires the running
of an inner optimization loop for the maximization of the EQI,
which can be very time consuming. Hence, the elementary time
step te must be chosen to be large enough to limit the number of
EQI optimizations (otherwise choosing the next measurement
could take more time than performing it!). Typically, with par-
tial convergence or stochastic simulators, te must be chosen to
be much larger than a single solver iteration or drawing, re-
spectively. This limitation can greatly hinder the flexibility and
potential of tunable precision, since it reduces the possibilities of
a quasi-continuum of fidelities to a few discrete precision levels.
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Table 1. EQI algorithm with online resource allocation

- Build initial design Xn0 , generate observations ỹn0 using Tn0 computational time, fit kriging model
- Set n = n0 and Tn = T0 − Tn0

while Tn > 0
- Choose new design point xn+1 that maximizes EQIn

(
., τ 2(Tn)

)
- Generate ỹn+1[1] with one time increment on xn+1

- Augment design and response: Xn+1 = {Xn, xn+1
}
, (̃yn+1)T = [(̃yn)T ỹn+1[1]

]
- Update kriging with Xn+1, ỹn+1 and τ 2

n+1 = τ 2(te)
- Set Tn+1 = Tn − te, j = 1, and tn+1 = te
while EQIn+1

(
xn+1, τ 2(tn+1 → tn+1 + Tn+1)

)
> γEQIn

(
xn+1, τ 2(Tn)

)
- Improve measurement: generate ỹn+1[j + 1] by adding one time increment
- Replace ỹn+1[j ] by ỹn+1[j + 1] in ỹn+1, set τ 2

n+1 = τ 2(tn+1 + te) and update kriging
- Set Tn+1 = Tn+1 − te, j = j + 1, and tn+1 = tn+1 + te

end while
- Set n = n+ 1

end while

Here, we propose a heuristic for dynamically choosing the
computational resource given to an experiment. A simple way
to do so is to monitor the evolution of the EQI at the current
observation point. Indeed, instead of maximizing the EQI after
each te is spent, we will choose an observation point and allocate
several time steps on it until a criterion is met. As for the constant
allocation case, the EQI is updated after each step, by replacing
the previous values of response and noise ỹi[bi] and τ 2

i [bi] by
ỹi[bi + 1] and τ 2

i [bi + 1], respectively, in the kriging equations,
and by replacing the future noise level τ 2(ti → ti + Tn+1) by
τ 2(ti + te → ti + Tn+1 − te).

By construction, the updated EQI tends to decrease when
computation time is added, since (a) the kriging uncertainty
reduces at the observation point and (b) EQI decreases when
τ 2(ti → ti + Tn+1) increases. However, if the measurement
converges to a good (small) value, EQI can increase temporarily.
Conversely, if the measurement converges to a high value, EQI
decreases faster. Hence, we can define a (“point switching”)
stopping criterion for resource allocation based on EQI. If the
EQI decreases below a certain value, carrying on the calcula-
tions is not likely to help the optimization, so the observation
process should stop and another point should be chosen. Here,
we propose the interruption of a measurement and search for
a new point when the current value of the EQI is less than a
proportion of the initial EQI value (i.e., the value of EQI when
starting the measurement process at that point), for instance
50%.

The sequence of this new procedure is as follows: first, find
xn+1 = arg maxx∈D(EQI(x), τ 2(Tn+1)), store the corresponding
value EQI(xn+1), τ 2(Tn+1)) as reference, and then invest ele-
mentary measurements at this point until the EQI with updated
data falls under a given proportion γ ∈]0, 1[ of the reference
value. The operation of choosing the most promising point is
then started again and so on until the total computational budget
has been spent. Note that the final number of measurements and
EQI maximizations are not determined beforehand but adapts
automatically to the budget and resource distribution, and may
be a lot smaller than the number of steps N (especially with small
γ ). The algorithm is presented in pseudo-code form in Table 1.
For conciseness, this algorithm does not consider the case where
xn+1 ∈ Xn, which requires different treatement, as in Section
6.1. In the examples in Section 7, xn+1 ∈ Xn is considered.

7. EXPERIMENTS

7.1 Comparison to the Augmented Expected
Improvement Procedure

The strategy proposed in Section 6.2 is compared with the
AEI method as proposed in Huang et al. (2006) for the opti-
mization of homogeneously noisy experiments, which has al-
ready been found to be very competitive compared with other
local or global optimizers such as the revised simplex search
(Humphrey and Wilson 2000) or DIRECT (Gablonsky and
Kelley 2001). Both EQI and AEI heuristics are compared with
the classical EI, using a noisy kriging model (as in Section 2.4)
and with the minimal value of the observations replaced by
the minimum of the kriging mean at the observations, which
can be considered as the baseline approach. As test problems,
we employed two analytical benchmark problems, the d = 6
dimensional Hartman function (Dixon and Szego 1978) and the
d = 5 dimensional Ackley function (Ackley 1987).

Hartman:

y(x) = −1

1.94

⎡⎣2.58+
4∑
i=1

Ci exp

⎛⎝−
6∑
j=1

aji
(
xj − pji

)2⎞⎠⎤⎦
(14)

with: C =

⎡⎢⎢⎢⎢⎣
1.0

1.2

3.0

3.2

⎤⎥⎥⎥⎥⎦ , a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.00 0.05 3.00 17.00

3.00 10.00 3.50 8.00

17.00 17.00 1.70 0.05

3.50 0.10 10.00 10.00

1.70 8.00 17.00 0.10

8.00 14.00 8.00 14.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1312 0.2329 0.2348 0.4047

0.1696 0.4135 0.1451 0.8828

0.5569 0.8307 0.3522 0.8732

0.0124 0.3736 0.2883 0.5743

0.8283 0.1004 0.3047 0.1091

0.5886 0.9991 0.6650 0.0381

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Table 2. Summary of the test problem configurations

Function Initial design size n0 Budget T0 τ

Ackley 25 points 500 steps 0.05
Ackley 50 points 1000 steps 0.2
Hartman 60 points 1200 steps 0.2

Ackley: y(x) = −20 exp

⎛⎝−0.2

√√√√ 1

d

d∑
i=1

x2
i

⎞⎠
− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp(1).

(15)

Both functions are normalized so their design region D
is [0, 1]d and their standard deviation (SD) is 1.0 over D.
Their minima are zero for Ackley and −1.94 for Hartman.
Gaussian noise ε ∼ N (0, 10τ 2) is added to the analytical func-
tions. An ordinary kriging model (constant trend) with Matern
5/2 anisotropic covariance function is used for both functions.

To model a tunable fidelity framework while allowing a fair
comparison between methods, each noisy measurement ỹi is
taken as the average of several function evaluations as described
in Section 2.3. For the AEI procedure, which is designed for ho-
moscedastic noise, 10 time steps are used for each observation,
so the noise variance is τ 2. For the EQI procedure, the noise
variance potentially varies between 10τ 2 and 10τ 2/T0.

For both methods, the initial design sets are chosen as Latin
hypercube sampling (LHS) designs with maximin criterion, and
are generated using 10 time steps for each observation. The
total optimization budget is chosen to be equal to two times the
budget needed to generate the initial design set. Two versions of
EQI are tested, with β = 0.5 (decision based on kriging mean
only) and with β = 0.9; the criteria are referred to as EQI.50 and
EQI.90, respectively.

Several budgets and noise levels are tested. The different con-
figurations are summarized in Table 2. The noise level τ can be
compared to objective function SD, which is one for both func-
tions. With τ = 0.2, the optimization problem can be considered
as very noisy. The total budget is deliberately chosen to be very
small since it may correspond to typical situations in real-life
applications.

For each configuration, 40 initial designs and observations are
generated to account for randomness in the LHS designs and
the observations. The kriging parameters are estimated only at
the initial step, using the R package DiceKriging (Roustant,
Ginsbourger, and Deville 2011), so all the methods use the
same models. Sequential parameter reestimation is not done
here so the algorithms can be compared in terms of prediction
variance or quantile (otherwise, the model with larger range and
lower process variance would typically have a lower prediction
variance, regardless of the design sets).

The current minimizer for AEI or EQI.90 is x∗ =
arg min1≤i≤nqn(xi), and arg min1≤i≤nmn(xi) for EQI.50 or
EI. The optimization performances are compared based on
y(x∗) (actual value at x∗) and sn(x∗) (kriging SD), which are
represented using boxplots on Figure 3.

Figure 3. Boxplots of actual value (y) and kriging SD (sn) at x∗ for
the different methods on (1) the Ackley function with τ = 0.05 and
500 steps, (2) the Ackley function with τ = 0.2 and 1000 steps, and (3)
the Hartman function with τ = 0.2 and 1200 steps. The online version
of this figure is in color.
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Table 3. Computational time allocation during optimization

Number of distinct measurements Time steps at x∗

Configuration (Function, initial design, budget, τ ) EQI.50 EQI.90 AEI EI EQI.50 EQI.90 AEI EI

Ackley, 25 points, 500 steps, 0.05 76 70 45 44 6 6 43 40
Ackley, 50 points, 1000 steps, 0.2 72 63 87 98 21 64 15 11
Hartman, 60 points, 1200 steps, 0.2 130 118 117 103 5 8 23 38

For the Ackley function, with τ = 0.05, EQI outperforms
AEI in terms of actual value and kriging uncertainty at x∗.
The choice of β = 0.5 provides the best results. With τ = 0.2,
AEI provides the best results in terms of optimization (y(x∗)).
However, sn(x∗) is significantly lower for EQI.90 than for the
other methods, which illustrates the tendency of this method to
reduce uncertainty at the expense of exploration.

For the Hartman function, EQI slightly outperforms the two
other methods in terms of y(x∗). In terms of kriging uncertainty,
EI and AEI are clearly less efficient than EQI. The difference
between the strategies β = 0.5 and β = 0.9 appear clearly;
indeed, with β = 0.5, the choice of the best design is made
on the kriging mean only; on the other hand, with β = 0.9,
observations with high uncertainty are penalized so sn(x∗) is
always small.

Table 3 shows the average number of distinct measurements
and the average number of time steps at x∗. Even though EI and
AEI use uniform allocation, their values are not constant because
some measurements are repeated (i.e., criteria are maximal at
existing measurements during optimization). For instance, the
first row and last column of the table indicates that for EI, there
is on average four repeated measurements at x∗.

For the small budget and small noise on the Ackley function,
the online allocation of Section 6.2 resulted with more measure-
ments than for AEI and EI. Here, online allocation was used to
improve exploration by having more measurement locations and
resulted in better performance in terms of y(x∗) (see Figure 3).
On the contrary, for the large budget and large noise, it resulted
in accurate measurements at x∗ to the detriment of exploration.
For the Hartman function, the number of measurements is al-
most equivalent for all methods.

It is interesting to note that for the Ackley function with
τ = 0.05 and the Hartman function, the average number of time
steps at x∗ is smaller for EQI than for EI and AEI but sn(x∗) is
also smaller (see Figure 3), which is counter intuitive. For EQI,
the small sn(x∗) is obtained because the measurements form a
cluster around x∗.

7.2 Application to a 2D Benchmark From Nuclear
Criticality Safety Assessments

In this section, the optimization algorithm is applied to the
problem of safety assessment of a nuclear system involving
fissile materials. The benchmark system used is an interim
storage of dry PuO2 powder into a regular array of storage
tubes. The criticality safety of this system is evaluated through
the neutron multiplication factor (called k-effective or keff),
which models the nuclear chain reaction trend: keff > 1 implies

an increasing neutron production leading to an uncontrolled
chain reaction, and keff < 1 is the safety state required for fuel
storage.

The neutron multiplication factor depends on many param-
eters such as the composition of fissile materials, operation
conditions, geometry, etc. For a given set of parameters, the
value of keff can be evaluated using the MORET stochastic
simulator (Fernex et al. 2005), which is based on Markov chain
Monte Carlo (MCMC) simulation techniques. The precision
of the evaluation depends on the amount of simulated particles
(neutrons), which is tunable by the user.

When assessing the safety of a system, one has to ensure
that, given a set of admissible values D for the parameters x,
there are no physical conditions under which the keff can reach
the critical value of one. The search for the worst combination
of parameters x defines a noisy optimization problem which
is often challenging in practice, due to the high computational
expense of the simulator. An efficient resolution technique for
this problem is particularly crucial since this optimization may
be done numerous times.

In this article, we focus on the maximization of keff with
respect to two parameters, the other possible inputs be-
ing fixed to their most penalizing values (based on expert
knowledge):

(a) d.puo2, the powder density, with original range [0.5, 4]
g·cm−3, rescaled to [0, 1],

(b) d.water , the density of water between storage tubes, with
range [0, 1], which accounts for the possible flooding of
the storage (leading to an interstitial moderation of the
neutrons interacting from a storage tube to another one).

Hence, to agree with previous notations, we set x =
(d.puo2, d.water) and y(x) = −keff(x). Simulation time is as-
sumed to be proportional to the number of neutrons simulated
(the entry cost of a new simulation being neglected). Since the
simulator is based on Monte Carlo, the variance of the keff esti-
mate is exactly inversely proportional to the number of neutrons.
The variance slightly varies with input parameters, but this de-
pendence can be considered negligible here.

For practical considerations, the optimization space D is dis-
cretized in a 75 × 75 grid, and for each new measurement, the
EQI maximization is performed by an exhaustive search on
the grid. The incremental time step te is defined by the sim-
ulation of 4000 particles, which takes about half a minute on
a 3 GHz CPU. The response noise SD can take values be-
tween 5.67 × 10−2 (one time step) and 4.01 × 10−3 (200 time
steps).
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Figure 4. Optimization results for a T = 100 budget. The x-axes correspond to d.puo2 and the y-axes to d.water . Triangles represent the
inital measurements and circles the added ones; the markers are proportional to computational time. The online version of this figure is in color.

To evaluate the efficiency of our algorithm, all 5625 points of
the grid have been evaluated with high precision, which gives an
accurate estimation of the shape [represented in Figure 4(A)],
minimal value, and minimizer x∗ of the function. With this ac-
curate dataset, we find that x∗ = [0.1892, 0.0811] and f (x∗) =
−0.9847.

The keff range is approximately [0.3, 1.0], so with one
time step, the measurement 95% confidence interval length is
4 × 0.0567 = 0.226, which is about 30% of the response range.
With 200 time steps, this length is 2% of the range. We consider
a computational budget of T0 = 100, which corresponds to a
single observation with SD of 5.7 × 10−3. This can be consid-
ered as a very small budget regarding the problem complexity.
The initial design consists of a 20-point random design (with
optimized maximin distance), with one time step used for each
measurement (so 20% of the budget is allocated to the initial
design).

The kriging fit is made using the R package DiceKrig-
ing (Roustant, Ginsbourger, and Deville 2011). The chosen
model has a constant trend (ordinary kriging) and Matern
5/2 anisotropic covariance function. The covariance parame-
ters are reestimated after each new observation.

Figure 4 shows the contour lines of the actual response, the fi-
nal kriging (mean, SD, and 90th percentile), and measurements.
During optimization, 14 measurements have been added with
time steps varying from 1 to 36. The best design point found is
x∗ = [0.189, 0.068], has a kriging SD of 0.0071 and is almost
equal to the actual minimizer. Here, approximately one third of
the computational budget is allocated to ỹ(x∗). The final kriging
[Figure 4(B) and 4(D)] is relatively accurate, even though the
SD remains high in all the regions with high response values

(top left quadrant). In the region of the optimum, the kriging
90th percentile [Figure 4(C)] is almost equal to the actual
function.

8. CONCLUSION AND PERSPECTIVES

In this article, we have proposed a quantile-based EI for the
optimization of noisy back-box simulators [available in the R
package DiceOptim Ginsbourger, Picheny, Roustant, with con-
tributions by C. Chevalier and Wagner 2012)]. This criterion
allows an elegant treatment of heterogeneous noise and takes
into account the noise level of the candidate measurements. In
the context of simulators with tunable fidelity, we proposed an
online procedure for an adapted distribution of the computa-
tional effort. One of the advantages of such procedure is that it
guards against the allocation of too much time to poor designs,
and focuses more effort on the best ones. Another remarkable
property of this algorithm is that, unlike EGO, it takes into ac-
count the limited computational budget. Indeed, the algorithm
is more exploratory when there is much budget left and favors
a more local search when resources are scarce. The online allo-
cation optimization algorithm was first compared with existing
methods on two analytical benchmark functions and was found
to be very competitive. Finally, it was applied to an original
application in nuclear criticality safety, the Monte Carlo crit-
icality simulator MORET5. The algorithm showed promising
results, using coarse measurements for exploration and accu-
rate measurements at best designs. Future work may include a
deeper comparison of the EQI to other criteria for point selec-
tion on an extended benchmark of test functions, analysis of the
effect of online allocation compared with a uniform allocation
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strategy, and an adaptation of the algorithm in the case of cor-
related errors.

APPENDIX: ONE-STEP AHEAD CONDITIONAL
DISTRIBUTIONS OF THE MEAN, VARIANCE, AND

QUANTILE PROCESSES

Let xn+1 be the point to be visited at the (n+ 1)th step,
τ 2
n+1 and Ỹn+1 = Y (xn+1) + εn+1 the corresponding noise vari-

ance and noisy response, respectively. We will now discuss the
properties of the kriging mean and variance at step n+ 1 seen
from step n.

Let Mn+1(x) := E[Y (x)|Ãn, Ỹn+1] be the kriging mean func-
tion at the (n+ 1)th step and S2

n+1(x) := var[Y (x)|Ãn, Ỹn+1] the
corresponding conditional variance.

Seen from step n, both of them are ex ante random processes
since they are depending on the not yet observed measurement
Ỹn+1. We will now prove that they are in fact GPs |Ãn, as well as
the associated quantile Qn+1(x) = Mn+1(x) +
−1(β)Sn+1(x).

The key results are that the kriging predictor is linear in the
observations and that the kriging variance is independent of
them, as can be seen from (3) and (4). Writing

Mn+1(x) =
⎛⎝ n∑
j=1

λn+1,j (x)Ỹj

⎞⎠+ λn+1,n+1(x)(Y (xn+1) + εn+1),

(A.1)
where

(λn+1,.(x))

:=
(

kn+1(x)T + (1 − kn+1(x)T (Kn+1 +	n+1)−11n+1)

1Tn+1(Kn+1 +	n+1)−11n+1
1Tn+1

)
× (Kn+1 +	n+1)−1,

it appears thatMn+1 is a GP |Ãn, with the following conditional
mean and covariance kernel:

E[Mn+1(x)|Ãn]

=
n∑
j=1

λn+1,j (x)ỹi + λn+1,n+1(x)mn(x) (A.2)

and

cov[Mn+1(x),Mn+1(x′)|Ãn]
= λn+1,n+1(x)λn+1,n+1(x′)

(
s2
n

(
xn+1)+ τ 2

n+1

)
. (A.3)

Using the fact thatQn+1(x) = Mn+1(x) +
−1(β)Sn+1(x), we
observe that seen from the nth step, Qn+1(.) is a GP as sum of
a GP and a deterministic process conditional on Ãn. Finally,

E[Qn+1(x)|Ãn]

=
n∑
j=1

λn+1,j (x)ỹi + λn+1,n+1(x)mn(x) +
−1(β)sn+1(x),

(A.4)

cov[Qn+1(x),Qn+1(x′)|Ãn]
= λn+1,n+1(x)λn+1,n+1(x′)

(
s2
n(xn+1) + τ 2

n+1

)
, (A.5)

and the values used in the EQI are

mQn+1 = E[Qn+1(xn+1)|Ãn] (A.6)

s2
Qn+1

= var
[
Qn+1(xn+1)|Ãn

]
= (λn+1,n+1(xn+1)

)2 (
s2
n(xn+1) + τ 2

n+1

)
. (A.7)

Now, we show that we can writemQn+1 and s2
Qn+1

as a function
of the kriging values at step n. Indeed, as can be shown in the
fashion of Emery (2009), the mean, variance, and weights of the
kriging updated with an additional measurement ỹn+1 performed
at xn+1 with variance τ 2

n+1 are equal to

mn+1(x) = mn(x) + cn(x, xn+1)

s2
n(xn+1) + τ 2

n+1

(̃yn+1 −mn(xn+1))

(A.8)

s2
n+1(x) = s2

n(x) − cn(x, xn+1)2

s2
n(xn+1) + τ 2

n+1

(A.9)

λn+1(x) =

⎡⎢⎢⎢⎣
λn(x) − cn(x, xn+1)

s2
n(xn+1) + τ 2

n+1

λn(xn+1)

cn(x, xn+1)

s2
n(xn+1) + τ 2

n+1

⎤⎥⎥⎥⎦ , (A.10)

where cn is the kriging covariance, equal (for ordinary
kriging) to

cn(x, x′) = k(x, x′) − kn(x)TK−1
n kn(x′)

+
(
1 − kn(x)K−1

n 1n
) (

1 − 1TnK−1
n kn(x′)

)
.

1TnK−1
n 1n

(A.11)

Then, noting that cn(x, x) = s2
n(x) and that setting ỹn+1 =

mn(xn+1) implies mn+1(x) = mn(x), (A.6) and (A.7)
simplify to

mQn+1 = mn(xn+1) +
−1(β)

√
τ 2
n+1 × s2

n(xn+1)

s2
n(xn+1) + τ 2

n+1

(A.12)

s2
Qn+1

=
[
s2
n(xn+1)

]2
s2
n(xn+1) + τ 2

n+1

. (A.13)

SUPPLEMENTARY MATERIALS

Equivalent measurement for two noisy observations at the
same point: Proof of equivalence between including two
independent noisy observations at the same point in the krig-
ing equations and including a single equivalent observation.
(pdf file)
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Comment: Properties and Practicalities of the
Expected Quantile Improvement

Alexander I. J. FORRESTER

Faculty of Engineering
and the Environment
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Southampton SO17 1BJ, UK

(Alexander.Forrester@soton.ac.uk)

The expected quantile improvement (EQI) of Picheny et al.
(2013) is an extension of the expected improvement (EI) se-
quential sampling criterion for selecting experiments that can
be performed at varying levels of accuracy (yielding varying
degrees of noise). It is an elegant formulation that reduces to
the original EI in the absence of noise. This comment will first
examine the properties of the EQI, following on from the dis-
cussion in Picheny et al. The effect of each control parameter,
which essentially determines to what extent the EQI departs
from the EI, is briefly investigated using a one-dimensional test
function. Following this I will consider the EQI in the context
of solving practical engineering problems; looking at the as-
sumptions made about the convergence properties of simulators,
which are key to the success of the method, and at implementa-

tion issues, including the efficient application of computational
resources.

1. PROPERTIES OF THE EQI

The EQI depends on the choice of quantile β, the estimate of
the future noise τ 2

n+1, the estimates of the kriging hyperparame-
ters, and the past noise τ 2

1,...,n. The past noise is not necessarily
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