

Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens)

Magali M. Willaume, Loic L. Pagès

To cite this version:

Magali M. Willaume, Loic L. Pagès. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens). Annals of Botany, 2011, 107 (4), pp.653-662. $10.1093/ab/mcq270$. hal-02652021

HAL Id: hal-02652021 <https://hal.inrae.fr/hal-02652021>

Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

6 Magali Willaume^a, Loïc Pagès^{b*}

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

3 Correlated responses of root growth and sugar concentrations to various defoliation

^a 7 Université de Toulouse; INPT; UMR 1248 AGIR; ENSAT, F-31320 Castanet Tolosan,

b 9 INRA, UR 1115 Plantes et Systèmes de culture Horticoles, F-84000 Avignon, France

* Author for correspondence. (E-mail: Loic.Pages@avignon.inra.fr)

4 treatments and rhythmic shoot growth in oak tree seedlings *(Quercus pubescens)*.

1 Original Article

Manuscrit d'auteur / Author manuscript 12

10

2

5

8 France

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **ABSTRACT**

2 *Background and Aims*

3 To understand whether root responses to aerial rhythmic growth and contrasted 4 defoliation treatments can be interpreted under the common frame of carbohydrate 5 availability; root growth was studied in parallel with carbohydrate concentrations in 6 different parts of the root system on oak tree seedlings.

7 *Methods*

8 *Quercus pubescens* seedlings were submitted to selective defoliation (removals of 9 mature leaves, cotyledons or young developing leaves) at the second flush appearance and sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

10 collected 1, 5 or 10 days later for morphological and biochemical measurements. Soluble

11 sugar and starch concentrations were measured in cotyledons and apical and basal root

12 parts.

13 *Key Results*

5 Soluble s Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch 16 concentration in cotyledons regularly decreased. Continuous removal of young leaves did 17 not alter either root growth or apical sugar concentration. Starch storage in basal root 18 segments was increased. After removal of mature leaves (and cotyledons), root growth 19 strongly decreased. Soluble sugar concentration in the root apices drastically decreased and 20 starch reserves in the root basal segments were emptied five days after defoliation, 21 illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations 22 recovered ten days after defoliation, after the end of aerial growth, suggesting a 23 recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 *Conclusions*

2 The parallel between apical sugar concentration and root growth patterns, and the 3 correlations between hexose concentration in root apices and their growth rate, support the 4 hypothesis that the response of root growth to aerial periodic growth and defoliation 5 treatments is largely controlled by carbohydrate availability.

6

Manuscrit d'auteur / Author manuscript

7 **Keywords**: apex, carbohydrate, defoliation, hexose, organ removal, *Quercus pubescens,* 8 rhythmic growth, root growth, starch.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **INTRODUCTION**

2 Many forest tree species, including oak trees, are characterized by shoot rhythmic 3 growth, manifested by a series of shoot flushes (Champagnat et al., 1986). Rapid stem and 4 leaf expansion alternate with periods of terminal bud development and apparent rest (with 5 no shoot elongation nor leaf emergence). Periodic physiological modifications in shoot 6 growth intensity linked to flushing events have been described only in aerial organs and 7 mainly for the *Quercus pedonculata* species. These studies suggest among other 8 hypotheses the influence of temporal modifications in source/sink balance and carbon 9 allocation in the aerial part of the young tree (Barnola et al., 1993, Le Hir et al., 2006). 10 Physiological changes in the apical bud indicate that their sink strength evolves over a 11 growth cycle (Alatou et al., 1989). During intense growth of a new flush, source leaves allocate most assimilates to the expanding leaves and stem rather than to the terminal apex 13 (Dickson et al., 2000, Le Hir et al, 2006), and stem carbohydrate reserves are temporarily mobilized (Alaoui-Sossé, 1994). Mobilization of carbohydrate from the root during intense 15 shoot growth has been described but considered as minor (Alatou et al., 1989).

17 Young trees are also usually subject to various damages to aerial parts. Leaves can be 18 damaged or seedlings defoliated by invertebrates or cattle grazing (Andersson, 1996). 19 Cotyledons are often eaten by predators such as jays or rodents (Kabeya, 2003, Sonesson, 20 1994). Damage and loss of leaves and stems (either sources or sinks or storage organs of 21 photosynthetate) can modify carbohydrate allocation patterns and plant development. 22 Several studies have shown some global influences of the removal of aerial parts on root 23 development. Repeated clippings of grasses affect root growth (Harradine and Whalley,

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 1981) and decrease belowground biomass (Ferraro and Oesterheld, 2002). Defoliation of 2 wheat to a single leaf reduces root growth rate and root respiration rate (Bingham and 3 Stevenson, 1993, Bingham et al., 1996). Partial canopy removal of citrus trees leads to a 4 transient reduction in root growth and a decrease in root starch reserves (Eissenstat and 5 Duncan, 1992), but carbohydrate dynamics within the root system remain unknown.

6

Manuscrit d'auteur / Author manuscript

7 A detailed and dynamic analysis of the morphological responses of the root system to 8 aerial periodic growth patterns and to defoliation treatments (young leaves, mature leaves, 9 cotyledons) was already reported (Willaume and Pagès, 2006) . During intense shoot 10 growth, a transient decrease in taproot and lateral root elongation and a concomitant 11 decrease in taproot apical diameter were observed. Root growth in young oak trees or in rubber trees is sensitive to the temporal variation in the source/sink balance (Willaume and 13 Pagès, 2006; Thaler and Pagès, 1996b). Removals of source organs for carbohydrates (mature leaves, cotyledons) accentuate these root responses. On the other hand, continuous removal of sink organs (young leaves) initially maintains root elongation and branching characteristics, after which elongation slightly decreases. phenomenomenon
11
14
2
15
16
17
17

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

18 To interpret these morphological responses, a direct influence of carbohydrate 19 availability through modified allocations in plants was suggested. This hypothesis provided 20 coherent explanations for all our morphological observations and was inspired by previous 21 researches showing a strong relationship between root development and other artificial 22 modifications of carbohydrate availability. Reduction of light availability reduces root 23 growth in various species such as sunflower, rubber tree seedlings, maize or Arabidopsis 24 (Aguirrezabal et al., 1994, Thaler and Pagès, 1996a, Müller et al., 1998, Freixes et al.,

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

9

1 2002). In wheat and Arabidopsis, feeding roots with exogenous sugar can restore to a 2 certain extent root growth decreased by shading or pruning (Bingham and Stevenson, 1993, 3 Freixes et al., 2002). Variations in root growth have been linked to local changes in sugar 4 concentrations of the corresponding roots (Farrar and Jones, 1986, Freixes et al., 2002, 5 Bingham and Stevenson, 1993, Müller et al., 1998). Carbohydrates can influence root 6 development acting as substrate for metabolism, but also as regulatory signals (Sheen et al., 7 1999, Koch et al., 2000), as inferred by studies on root respiratory activity (Bingham and 8 Farrar, 1988, Bingham et al., 1996).

10 In order to better understand root response to rhythmic growth and defoliation 11 treatments, two questions must be asked. First, what are the modifications in carbohydrate

12 distribution among the different parts of a root system? Particular attention must be drawn

to apices - the growing zones a 12 distribution among the different parts of a root system? Particular attention must be drawn 13 to apices - the growing zones and the most distal root parts - and to mobilization of stored 14 carbohydrates. Second, can we demonstrate a robust link between modifications of carbohydrate allocation and dynamic variations of root growth? This would support the hypothesis that in both cases of rhythmic growth and various defoliations, root response is mainly controlled by carbohydrate availability.

18 To answer these questions, we proposed studying growth response and detailed 19 carbohydrate patterns in roots at the same time. We thus quantitatively studied temporal 20 variations in soluble sugar and starch concentration in different parts of the plant, focusing 21 on the root system: basal segments and cotyledons, known as storage sites, as well as apical 22 and subapical segments, active elongation and branching sites, respectively. The time 23 variations of carbohydrate concentrations were compared to the root growth response.

24

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **MATERIALS AND METHODS**

2 *Plant material*

3 Acorns of *Quercus pubescens* were collected from a single tree to reduce genetic 4 variation, on the Mont Ventoux, in southeastern France (44°10'N 5°17'E). Only acorns 5 around the mean weight $(3.7 \text{ g} +1.03 \text{ g})$ were used. The shells were removed and the 6 acorns were placed in a moist mixture of sieved peat and vermiculite $(2:1)$ at 24° C for three 7 days to allow germination.

9 *Growth conditions*

11 (height: 130 cm; diameter: 10 cm), filled with a mixture of sieved peat and vermiculite $(2:1).$

10 Ninety plants with at least a 5-mm-long taproot were selected and placed in PVC pots

11 (height: 130 cm; diameter: 10 cm), filled with a mixture of sieved peat and vermiculite

12 (2:1).

13 The plants were placed in The plants were placed in a growth chamber at 24° C (day) - 20° C (night), with 70% +/-5% relative humidity and 16h of daylight. Photosynthetically-active radiation averaged 200 15 μ mol.m⁻².s⁻¹. The plants were watered every day until drainage with a half-strength 16 modified Hoagland nutrient solution (Goutouly and Habib, 1996).

17

18 *Treatments: selective defoliation*

19 Although all seedlings had germinated on the same day, the day of appearance of visible 20 leaves of second flush varied between seedlings. This value was determined on an 21 individual basis and is referred to as t_0 .

8

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 Four treatments were considered. Control seedlings (24 seedlings) were left intact 2 (control). In contrast, other seedlings were manually defoliated at t_0 (when visible leaves of 3 the second flush appeared) by removing:

- 4 Mature Leaves of the first flush (ML 24 seedlings),
- 5 Cotyledons and Mature Leaves of the first flush (CML 18 seedlings),
- 6 Young Leaves (<5-mm long) of the second flush as soon as they appeared

7 (YL - 24 seedlings). This particular defoliation was applied every day until the end 8 of the experiment.

9 Seedlings reaching t_0 on the same day were distributed in equal number between the 10 different treatments. In this way, there were seedlings with various development rates in each treatment.

As a central feature of our experiments, t_0 was chosen as a time reference to study later developmental and biochemical kinetics. Time is thereafter counted from this day on.

Manuscrit d'auteur / Author manuscript

15 *Sampling and measurements*

Seedlings were sampled at three different stages $(1, 5 \text{ or } 10 \text{ days after } t_0)$. At each stage, 17 six (CML) or eight (control, ML and YL) seedlings per treatment were collected. Seedlings 18 were excavated at the beginning of the photoperiod.

associated lateral roots were scanned (resolution 600 dpi) for architectural measurements.

19 Total taproot length at excavation (L_e) was recorded. The distal 25-cm of the taproot and
associated lateral roots were scanned (resolution 600 dpi) for architectural measurements.
For each seedling, the cotyledons, t 21 For each seedling, the cotyledons, the basal zone of the taproot (50-mm long) and the 22 apical zone (10-mm long) of two white lateral roots were scanned and collected. Apical 23 (10-mm long) and subapical (remaining unbranched apical zone) taproot zones were

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 collected from half of the plants in each (stage X treatment) combination. In an 2 independent experiment, we showed that 10 mm apical segments encompass the meristem 3 and the whole elongation zone. Twelve taproots were gently marked with black ink at 4 regular intervals (# 1 mm) starting from the root apex. Pictures of the roots were taken 4 5 times at 5-h intervals. The displacement of marks from the apex showed that the length of 6 the elongation zone of the taproot averaged 7 mm long and never exceeded 10 mm (data 7 not shown). Subapical segments encompass the region where developing primordia can be 8 seen.

9 The different samples were scanned and immediately immersed in liquid nitrogen, 10 temporarily stored at –18°C, separately freeze-dried and ground to a fine powder for further analysis. Dried samples were weighed on an analytical balance (Sartorius Genius ME215P, Germany).

13 All pictures taken were further analyzed using image analysis software (ImageJ, National Institutes of Health, USA, http://rsb.info.nih.gov/ij/).

16 *Volume calculation and choice of units*

17 Apical root segments were considered as a stack of 10 cylinders of different lengths and 18 diameters. Dimensions for volume calculation were measured using Image J on scanned 19 pictures. For very small pieces (\leq 1mg) such as apices, volume calculation is more accurate 20 than weight measurement with the available equipment (repeatability error: 1% and 10%, 21 respectively). Concentrations were thus calculated relative to volume $(\mu g.mm^{-3})$ in apical segments and relative to weight (μ g.100 μ g DW⁻¹) for other samples. Since volumetric mass 23 in apical segments was 0.1 mg.mm⁻³ $(+/- 0.01)$, both units approximately correspond 24 without supplementary conversion.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 *Morphological traits*

2 The length of the apical unbranched zone of the taproot (L_{AUZ}) , the distance between the 3 taproot apex and the point of insertion of each lateral root i (Di), and the length of all 4 laterals (Li) were measured on the pictures of the distal taproot samples of seedlings 5 collected ten days after t_0 (Figure 1).

7 Taproot growth rates

8 Taproot growth rates were individually estimated from morphological measurements on 9 seedlings collected ten days after t_0 .

10 The Length of the Apical Unbranched Zone (LAUZ) is linearly linked to mean taproot 11 growth rate during the preceding days (Aguirrezabal et al., 1994, Pagès and Serra, 1994,
12 Lecompte et al., 2001) and especially over the last 24 hours (Pagès et al., 2010). To
13 interpret this correlation, the author Lecompte et al., 2001) and especially over the last 24 hours (Pagès et al., 2010). To interpret this correlation, the authors have established that the minimum time lag between 14 the passage of a root apex at a given point and the emergence of a lateral root at this point 15 is constant. We refer to this as the minimum time lag before branching (T_{BB}) . In an 16 independent study, we showed that T_{BB} in young oak trees was around 4.5 days (see 17 Willaume and Pagès (2006), Material and Methods)

18 The taproot Growth rate ten days "After t_0 " (G_A) was thus calculated as

19 $G_A = L_{AUZ}/T_{BB}$

20 The mean taproot Growth rate "Before t_0 " (G_B) was deduced from the time elapsed 21 between sowing of the seedling and $t_0(A_0)$ and the estimated taproot length at $t_0(L_0)$:

 $G_{\rm B} = L_{0}/A_0$

6

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 The taproot length at t_0 (L_0) was the difference between the total taproot length 2 measured at excavation (L_e) and an estimation of taproot growth between t_0 and the time of Manuscrit d'auteur / Author manuscript 3 excavation, i.e., ten days. 4 $L_0 = L_e - 10 * G_A$ 5 These relationships were validated on an independent experiment in which young oak 6 trees were grown under the same conditions and submitted to the same treatments, but were 7 placed in root boxes so that the root system was visible. Measured taproot growth rate was 8 compared to taproot growth rate calculated with the method presented here. The estimation 9 error was lower than 10% on G_A and lower than 5% on G_B . 10 ¹¹

11 Age and growth rate of lateral roots

12 The age from emergence A_i of each

13 was estimated from the distance betw

14 and the estimated taproot growth rate.

15 If D_i < (10 * G_A), i.e. the lateral root

1 The age from emergence A_i of each lateral root i located on the sampled taproot segment was estimated from the distance between the taproot apex and its point of insertion (D_i) , and the estimated taproot growth rate. If $D_i < (10 * G_A)$, i.e. the lateral root i emerged after t₀, Then $A_i = D_i / G_A - T_{BB} = (D_i - L_{AUZ}) * T_{BB} / L_{AUZ}$ If $D_i > (10 * G_A)$, i.e. the lateral root i emerged before t₀, 18 Then $A_i = 10 + (D_i - 10^* G_A)/G_B - T_{BB}$ Manuscrit d'auteur / Author manuscript 19 Only lateral roots that emerged after t_0 (A_i < 10) were further considered. The mean 20 growth rate of each lateral root (G_i) was estimated from its measured length (L_i) and 21 estimated age. 22 $G_i = L_i / A_i$ 23

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 By comparison with measurements in root observation boxes, the estimation error was 2 lower than 10% for the age of lateral roots and never exceeded 0.1 cm.day⁻¹ for mean 3 growth rate.

4

Manuscrit d'auteur / Author manuscript

5 *Soluble sugar and starch concentration.*

6 Soluble sugar and starch concentration measurements were performed by enzyme-7 coupled colorimetric assay on microplates (Gomez et al., 2007). Soluble sugar 8 concentration was measured on whole samples for apical zones and on an aliquot (8 mg) 9 for other organs. Starch concentration was measured on residual aliquot powders of basal 10 root segments and cotyledons.

 11 12 The soluble sugar extraction method was adapted from Gomez et al. (2002). Each sample was placed in 1 ml methanol and 300 μ l chloroform for 20 min at +4 $\rm{°C}$. After centrifugation (10 min, 12000g, $+4^{\circ}$ C), 750 µl supernatant was dried under vacuum. The extracts were covered with 5 mg of polyvinylpolypyrrolidone (PVPP) for purification, and suspended in 750 μ l of ultra pure water. Supernatant collected after centrifugation (10 min, 17 12 000g, $+4$ °C) was used for assays.

18

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

19 The starch extraction method was adapted from Gomez et al. (2003). Residual powder 20 was washed successively with 1 ml methanol and 200 µl ethanol (used for storage), and 21 then dried under vacuum. Powder was suspended in 500 µl of ultra-pure water, and starch 22 was dispersed by autoclave $(1h, 2 \text{ bars}, 110^{\circ}\text{C})$. Starch was then hydrolyzed with an 23 amyloglucosidase solution (1h30 in a water bath at 56°C). Supernatant collected after 24 centrifugation (10 min, 12000g, +4°C) was used for assays.

1

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

2 Glucose, fructose and sucrose concentrations were quantified, one after the other, by 3 spectrophotometric measurement of NADH production. Extracts were diluted to obtain a 4 final sugar concentration appropriate for the calibration standard (0 to 0.2 g/L for glucose, 5 fructose and sucrose). Correctly diluted extract (150 µL) and an ATP-NAD solution (100 6 µL) were loaded on ELISA microtiter plates with 96 wells. Twenty µL of a glucose-6- 7 phosphate-dehydrogenase solution, 20 µL of a phospho-glucose isomerase solution, and 20 8 µL of an invertase solution were successively added with a minimum 2h time lag. 9 Absorbance at 340 nm was measured between each addition (MP reader: Multiskan Ascent 10 –Labsystems, Finland). The successive increases in absorbance were interpreted as the appearance of NADH⁺, directly proportional to the successive transformations of the soluble sugars in the extract. For starch extracts, only glucose concentration was measured and converted. It should be mentioned that sucrose concentrations in cotyledons were missing. phenomenomenology

11

14

15

16

17

17

17

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

16 As expected, glucose and fructose concentrations were highly correlated (Freixes et al., 2002), regardless of the organ (r between 0.87 and 0.94). They were thus further pooled as 18 hexose concentration.

20 *Data analysis*

 19 All data analyses and statistical tests were performed using R software $(R: A$ Language 22 and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, http://www.r-project.org/). Student t-tests (p< 0.05 or p<0.01) or Kolmogorov-

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 Smirnov tests (p< 0.01) were performed to compare means. Tests for correlation between 2 paired samples used Pearson's product moment correlation coefficient (p< 0.05). 3 Homogeneity of variances was checked using Bartlett's tests (p< 0.05).

5 **RESULTS**

7 *Mean taproot growth rate*

8 On control seedlings, mean growth rate after t_0 were not significantly different -although 9 lower- from growth rate before t_0 . Removal of mature leaves (ML) and removal of both 10 cotyledons and mature leaves (CML) decreased the mean taproot growth rate by at least 11 50%. Taproot growth rate was not altered by the removal of young leaves (YL).

12

4

6

Lateral root growth rate (Figure 2)

Distribution of growth rate of lateral roots (LR) was skewed (Figure 2). In control seedlings, 75% of LR had growth rates lower than 0.5 cm. day^{-1} , but some LR reached rates close to 1 cm.day⁻¹ (Figure 2a). Median and distribution were not significantly altered by the removal of young leaves (Figure 2d).

18

19 Distribution of LR growth rate significantly tended towards lower values when source 20 organs were removed. On ML seedlings, less than 5% of LR grew faster than 0.5 cm. day^{-1} . 21 Median growth rate of LR was 2.5 times lower than in control seedlings, and 70% of LR 22 had a mean growth rate lower than 0.2 cm. day^{-1} (Figure 2c). In CML seedlings, median LR 23 growth rate was less than 1/5 of the control and 80% of LR had a mean growth rate lower 24 than 0.2 cm.day⁻¹ (Figure 2b).

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

9

1 *Soluble sugar concentration of taproot and LR apices* (Figure 3)

2 In control seedlings, hexose concentrations one day after t_0 averaged 10.4 μg.mm⁻³ in 3 taproot apices (Figure 3a) and $16.3 \, \mu$ g.mm⁻³ in LR apices (Figure 3b). Hexose 4 concentration decreased five days after t_0 by around 30%. Sucrose concentration one day 5 after t₀ averaged 4.6 μg.mm⁻³ in taproot apices (Figure 3c) and 4.4 μg.mm⁻³ in LR apices 6 (Figure 3d). It significantly decreased by 55% in taproot apices, but not significantly in LR 7 apices. In taproot apices, hexose and sucrose concentrations recovered unequally: the 8 variance of sugar concentrations was significantly increased ten days after t_0 (Figures 3a-c).

10 In YL seedlings, neither hexose nor sucrose concentration varied significantly over time, 11 regardless of the apices considered. Soluble sugar concentration was always equal or higher 12 than in other treatments (Figure 3) and was often close to the concentration in control seedlings.

In CML seedlings, hexose and sucrose concentrations were lower than in control seedlings as soon as day 1 after t_0 both in taproot (Figure 3a, b) and LR apices (Figure 3b, 17 d). Early responses in ML seedlings were weaker than in CML seedlings and significant 18 only for hexose concentration in LR apices (Figure 3b). Both ML and CML seedlings had 19 very low sugar concentrations in apices five days after t_0 (maximum: 1.2 μ g.mm⁻³ for 20 hexose and 1.9 μg.mm⁻³ for sucrose). The trend toward recovery on day 10 was incomplete 21 and highly variable (Figure 3).

22 Sucrose and hexose had comparable patterns. Their concentrations in apices were highly 23 correlated $(r^2=0.67$ and 0.77 for taproot and LR apices, respectively).

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1

6

2 *Soluble sugar concentration of subapical taproot segments* (Figure 4)**.**

3 In control and YL seedlings, neither hexose nor sucrose concentration varied 4 significantly over time and averaged 11.6 and 2 μ g.100 μ g DW⁻¹, respectively (Figure 4). 5 Soluble sugar concentrations were always equivalent or higher than in the other treatments.

7 In ML seedlings, hexose concentration on day 5 after t_0 was less than $1/15$ of 8 concentration at t_0 + 1. Sucrose concentration also dramatically dropped by 90%. Recovery 9 in hexose concentration ten days after t_0 was highly variable between individuals (from 1.1) 10 to 12 μ g DW⁻¹). Sucrose concentration recovered more systematically and reached values equivalent to day 1.

Soluble sugar concentration decreased considerably from day 1 after t_0 on CML seedlings $(3.2 \text{ µg.100µg } DW^{-1}$ and $0.5 \text{ µg.100µg } DW^{-1}$ for hexose and sucrose, respectively) and was still lower five days after t_0 . Recovery ten days after t_0 was weak for hexose, whereas sucrose concentrations reached values equal to the control. 11

12

13

14

15

15

17

17

17

17

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

Hexose and starch concentration of cotyledons (Figure 5)

18 Hexose concentration significantly decreased over time (ANOVA, p<0.05) in equal 19 proportion on ML and control seedlings (Figure 5). Hexose concentration remained constant in YL seedlings. Starch concentration decreased over time (ANOVA, $p<0.05$) in the same way in the control, ML and YL seedlings. Cotyledons collected at t_0 on CML 22 seedlings had hexose and starch concentrations equivalent to those of cotyledons of other treatments one day later (Figure 5). 24

Manuscrit d'auteur Author manuscript

22

22

23

24

24

24

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 *Soluble sugar and starch concentration of basal taproot segments*

2 (Figure 6)

3 Regardless of the treatment, basal segments had low hexose concentration on day 1 (1.4 4μ g.100µg DW⁻¹ on average; Figure 6). It did not vary over time in YL seedlings and 5 progressively increased in control seedlings until it reached 4.2 μ g.100 μ g DW⁻¹ on day 10. 6 In ML and CML seedlings , hexose concentration in basal root segments increased 7 considerably but unequally between days 5 and 10.

9 Sucrose concentration on day 1 after t_0 averaged 8.5 μ g.100 μ g DW⁻¹, which was 10 relatively high compared to more distal root segments but quite variable between 11 treatments, gradually decreasing from YL, control, CML and ML seedlings, respectively. 12 For YL and control seedlings, sucrose concentration remained constant over time. On day 13 5, it was decreased by 2/3 for ML seedlings and even more drastically in CML seedlings (between 0.1 and 0.9 μ g.100 μ g DW⁻¹). On day 10, sucrose concentration in defoliated seedlings recovered higher values equivalent to other treatments.

17 Mean starch concentration one day after t_0 was 4.3 μ g.100 μ g DW⁻¹. It remained 18 unchanged for control seedlings between days 1 and 5 after t_0 , and then decreased by 50% 19 on day 10. Starch concentration also remained constant for YL seedlings between days 1 20 and 5 after t_0 but, in contrast, increased by 50% on day 10. Starch concentration steeply 21 decreased for ML and CML seedlings between day 1 and 5, reaching a mean value of 0.5 22 μ g.100 μ g DW⁻¹, and did not recover on day 10.

8

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 *Relation between hexose concentration and estimated growth rate.*

2 Figure 7 shows relationships between hexose concentration and estimated growth rate of 3 the taproots (Figure 7a) and sampled LR (Figure 7b) only for seedlings collected ten days 4 after t_0 . As expected from previous observations, the highest sugar concentrations and 5 highest growth rate were observed on YL seedlings, whereas the lowest sugar 6 concentrations and lowest growth rate were found on CML seedlings. ML and control 7 seedlings showed mixed and intermediate results. Hexose concentration in the apices was 8 significantly correlated to estimated growth rate in taproot $(r^2=0.31, p=0.02)$ and in LR $(1)^{2}$ (r²=0.40, p=1.6.10⁻⁷). Since sucrose concentration was highly correlated to hexose in the 10 apices, sucrose was also significantly correlated to taproot growth rate $(r^2=0.30, p=0.03)$ and LR growth rate $(r^2=0.28, p=2.3.10^{-5})$.

Taproots exhibited a steeper regression slope than LR (respectively 0.08 and 0.02). For a given soluble sugar concentration, taproots grew faster. One of the major differences between taproots and LR was their apical diameter, so influence of apical diameter was 16 checked. Correlation between apical diameter and root growth rate was highly significant $(17 \text{ (r}^2=0.67, \text{ p} < 2.2.10^{-16}, \text{ figure 8})$ whereas hexose concentration and diameter were not 18 correlated $(r^2=0.03, p=0.14)$.

19 Therefore, a unique explanatory model was fitted for all apices, accounting for the 20 influence of hexose concentration *(H),* apical diameter *(D)* and their interaction (*H.D)* on 21 root growth rate *(G).*

22 $G = \alpha H + \beta D + \gamma (H.D) + \varepsilon$

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

6

1 This model adequately explained the overall variability in growth rate $(r^2=0.92,$ $p \le 2.2.10^{-16}$, figure 9) and validated the different effects. Intercept value was excluded 3 because non significant (p=0.78).

4 Introducing the treatment as a factor (δ_i) only slightly improved the global model $(1)^{2}$ (r²=0.94, p<2.2.10⁻¹⁶) and factor effects were not significant (p>0.1 whatever the treatment)

7 **DISCUSSION**

8 *Variations of root growth in agreement with other experiments.*

9 Growth rate estimations in the present experiment were consistent, even in magnitude,

10 with the conclusions of a similar experiment on *Quercus pubescens* at the same stage, but

11 grown in root boxes (Willaume and P with the conclusions of a similar experiment on *Quercus pubescens* at the same stage, but 11 grown in root boxes (Willaume and Pagès, 2006). It substantiates the further comparison 12 between current carbohydrate results and dynamic morphological results obtained in root 13 observation boxes (Willaume and Pagès, 2006). Nevertheless, taproot growth rates before t_0 were slightly but not significantly lower in observation boxes (1.5 cm.day⁻¹) than in pots $(1.9 \text{ cm/day}^{-1})$. Growth conditions in observation boxes have already been reported to be 16 more restrictive for root development than in pots (Neufeld et al., 1989) or in fields 17 (Lecompte et al*.*, 2001).

subapical segments.

Relationships between growth rate and sugar concentrations in apical and

subapical segments.

Apical segments and subapical segments, as very active zones of growth and cellular

division, had high soluble sugar concentra Apical segments and subapical segments, as very active zones of growth and cellular division, had high soluble sugar concentration (up to 30 μ g.mm⁻³) comparable with

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 concentrations in maize apices (Mollier, 1999, Müller et al., 1998), but higher than in 2 wheat or Arabidopsis apices (Bingham and Stevenson, 1993, Freixes et al., 2002).

3

4 Rhythmic growth alters carbohydrate distribution in the plant. During the development 5 of the second flush, most photoassimilates exported from first flush leaves are allocated 6 upward to developing stems and leaves of the new flush (Dickson et al., 2000). This 7 modification in carbohydrate allocation lowered sugar concentration even in very distal 8 organs such as root apices (control seedlings). These decreases in sugar concentration in 9 apices were approximately concomitant with the reductions in growth rate and apical 10 diameter already observed (Willaume and Pagès, 2006).

12 Defoliation of the first flush (ML and CML seedlings) removed carbohydrate sources needed for the second flush development (Dickson et al., 2000), lowering carbohydrate availability in the plant and amplifying variations in apical responses. By removing cotyledons in addition to mature leaves (CML) even less carbohydrates were available: decrease in sugar concentration in the apices was greater and earlier than in ML seedlings. 17 Nevertheless, growth was not yet significantly affected one day after defoliation (Willaume 18 and Pagès, 2006), contrary to hexose concentration in apices. After reducing carbohydrate 19 availability through shading, Müller et al. (1998) also observed on maize that local sugar 20 concentration decrease may precede the decrease in root elongation rate. They suggested 21 that changes in carbon availability influence root elongation through a developmental 22 process rather than an immediate stress effect. In the same way, when aerial growth ends 23 (t₀+10 days), soluble sugar concentration recovered higher and variable values, while root 24 growth only started resuming (Willaume and Pagès, 2006). Recovery of sucrose was more

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 complete. Differences between hexose and sucrose dynamics may be due to their different 2 functions: since sucrose is mainly a transport form, it may be first to reach the root tips 3 when availability recovers.

5 Unlike other treatments, YL seedlings showed a relatively steady state both in soluble 6 sugar concentration and in taproot growth (Willaume and Pagès 2006). Cutting the very 7 young leaves (<5mm long) removes sink organs and prevents radical shifts in 8 photoassimilate allocation upward to the developing stem and leaves of the new flush 9 (Dickson et al., 2000). Less organs competes for photoassimilate: only the remaining 10 terminal aerial apex (Le Hir et al., 2006) and root apices. Supply from first flush leaves was then sufficient to maintain high and constant carbohydrate concentration in roots.

4

Manuscrit d'auteur / Author manuscript

Large mobilization of stored carbohydrates

 12 The quantities of carbohydrates stored in oak seedlings are considerable for a few weeks old plant. Acorns at germination were heavy (on average of $1.1+\div 0.2$ g DW) compared to 16 other large seeds (Kitajima, 2003). Cotyledons store large quantities of non-structural 17 carbohydrates and particularly starch (Kabeya, 2003). We also confirmed here that oak 18 seedlings (like others large -seeded species) invest in a relatively large reserve in taproots, 19 even at early growth stages during first flush development (Kitajima, 2003, Kabeya, 2003). But both storage pools were not mobilized in the same way.

 Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript 21

In cotyledons, starch and hexose slowly decreased between the three different stages. Cotyledons continue to supply carbohydrates to the young plant for the development of the

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 second flush (Barnola et al., 1993), even if their export became minor after expansion of 2 the first leaves (Myer and Kitajima, 2007; Kennedy et al;, 2004).

3

Manuscrit d'auteur / Author manuscript

4 Carbohydrates stored in basal segments were mobilized during second flush 5 development. In control seedlings, high sucrose concentrations on day 10 suggest important 6 flow of carbohydrates between aerial and root parts at the end of aerial growth. 7 Mobilization of starch was partial and occurred relatively late (between days 5 and 10). The 8 strong aerial sinks mainly used carbohydrates exported from leaves of the first flush and 9 starch reserves from the first flush stem (Alaoui-Sossé, 1994), whereas mobilization in the 10 roots was moderate.

processed in the set of the set of the 17 set of 17 and 17 set of 17 and 17 There was no supplementary depletion of starch from cotyledons in defoliated seedlings 13 compared to control seedlings. Mobilization in basal roots was faster and more important after mature leaves removal. In response to defoliation treatments, cotyledon had a limited role as a source of carbohydrate supply, whereas root storage was much more important and affected, despite smaller stored quantities. This has also been observed in *Quercus* 17 *crispula (*Kabeya, 2003), *Quercus Robur* (Andersson, 1996) and seven neotropical species 18 (Myers and Kitajima, 2007). It highlights that non structural carbohydrates (starch and 19 sugars) stored in cotyledons but more especially in roots are of critical importance for 20 young seedlings stress tolerance and juvenile survival (Myers and Kitajima, 2007).

 Manuscrit d'auteur / Author manuscript 21

22 In spite of this important mobilization of root storage in ML and CML treatments, apical 23 and subapical sugar concentration decreased: either the carbohydrates remobilized were 24 allocated to aerial growing parts in priority, or the quantities were too small to supply all of

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 the plant parts. In YL seedlings carbohydrates produced by first flush leaves were on the 2 contrary totally available for root or supplementary storage (as noticed in basal roots).

4 *Correlations between hexose concentration, apical diameter and growth rate.*

5 The concomitance in the dynamic patterns of root growth rate and apical sugar 6 concentration support the hypothesis of the major influence of carbohydrates on these 7 growth responses. Variations in sugar concentration are concordant with the hypothesis of a 8 source/ sink competition allocating resources in priority to the developing aerial parts to the 9 detriment of organs such as root apices. The role of carbohydrate availability in growth response may be directly nutritional but may also involve the signaling properties of sugars on root growth (Sheen et al., 1999, Koch et al., 2000, Freixes et al., 2002).

3

Manuscrit d'auteur / Author manuscript

Furthermore, growth rate is very well described by a simple model matching apical diameter and local sugar concentration, i.e., a model including both the influence of sink size and its activity. Apical diameter indeed defines the size of the meristem and can be 16 seen as an estimator of the number of cells able to divide: it thus indicates the potential 17 maximum growth rate (Thaler and Pagès, 1999; Lecompte et al., 2001). Sugar 18 concentrations act here as a supplementary limiting factor, thus defining the actual growth

19 rate. Comparable relationships between local sugar concentration and root growth have

19 been described for Arabidopsis (F rate. Comparable relationships between local sugar concentration and root growth have been described for Arabidopsis (Freixes et al., 2002) and wheat (Bingham and Stevenson, 21 1993) with other experimental ways of modifying carbohydrate availability (sugar-enriched 22 media, shading, pruning to a single leaf). Sugar concentrations were instantaneous

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 measures, whereas growth rates were estimations over the last few days. This difference 2 could explain part of the remaining variability.

3

Manuscrit d'auteur / Author manuscript

4 Contrasted defoliation treatments may induce antagonistic variations of other 5 components (e.g., on hormones or water potential), that may also modify root growth. For 6 instance, removal of young leaves or removal of cotyledons took out organs producers of 7 auxin (Bhalerao et al, 2002; Ljung et al, 2001), an hormone acting on root growth control. 8 But for these two treatments, morphological responses and modifications of sugar 9 concentration in apices are antagonistic. This statement corroborates that the role played by 10 hormones is only secondary and that local sugar concentration is the most important driver of root growth control in response to periodic growth and defoliation treatments.

13 *Conclusion*

 12 14 Correlation between local hexose concentration in the growth zone and root elongation rate, and concomitance of variations in sugar concentration and variations of growth rate, support the hypothesis advanced in previous interpretations of a strong influence of 17 carbohydrates in the morphological response of roots to rhythmic growth and aerial organs removals.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 *Acknowledgements*

2 We thank Valérie Serra, Josiane Hostaléry and José Fabre for technical support, and 3 Norbert Turion for providing acorns. This work was supported by the Conseil Régional 4 Provence-Alpes-Côte d'Azur.

5

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **LITERATURE CITED**

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

- 1 **Gomez L, Rubio E, Lescourret F. 2003**. Critical study of a procedure for the assay of starch in ligneous plants. *Journal of the Science of Food and Agriculture*, **83**: 11 2 starch in ligneous plants. *Journal of the Science of Food and Agriculture,* **83**: 1114- 3 1123. 4 **Goutouly JP, Habib R. 1996**. Diurnal and spatial variations in NO3- uptake capacity in

5 peach trees. Agronomie, 16: 337-345.
 Harradine AR, Whalley RDB. 1981. A comparison of the root growth, root morphology

7 and 5 peach trees. *Agronomie,* **16**: 337-345. 6 **Harradine AR, Whalley RDB. 1981**. A comparison of the root growth, root morphology
	- and root response to defoliation of Aristida ramosa R.Br. and Danthonia linkii 8 Kunth. *Australian Journal of Agricultural Research,* **32**: 565-574.
	- **Kabeya D. 2003**. The role of roots and cotyledons as storage organs in early stages of 10 establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. *Annals of Botany*, **92**: 537-545.
	- **Kitajima K. 2003**. Impact of cotyledon and leaf removal on seedling survival in three tree
- 13 species with contrasting cotyledon functions. *Biotropica*, **35**: 429-434.

14 **Kennedy, P.G., Hausmann, N.J., Wenk, E.H. & Dawson, T.E. 2004.** The in

15 seed reserves for seedling performance: an integrated approach u Kennedy, P.G., Hausmann, N.J., Wenk, E.H. & Dawson, T.E. 2004. The importance of seed reserves for seedling performance: an integrated approach using 16 morphological, physiological, and stable isotope techniques. *Oecologia*, **141**:547- 17 554
	- 18 **Koch E.K, Ying Z.,Wu Y Avigne W.T., 2000.**Multiple paths of sugar-sensing and a 19 sugar/oxygen overlap for genes of sucrose and ethanol metabolism. *Journal of*
- 20 *experimental botany*, **51**: 417-427.

21 **Le Hir R, Leduc N, Jeannette E, Viemon**

sucrose and ABA concentrations an

changes in a rhythmically growing

229 229-238.
 Lecompte F, Ozier-Lafontaine H, Pagès

26 dynamic 21 **Le Hir R, Leduc N, Jeannette E, Viemont JD, Pelleschi-Travier S. 2006**. Variations in sucrose and ABA concentrations are concomitant with heteroblastic leaf shape 23 changes in a rhythmically growing species (Quercus robur). *Tree Physiology,* **26**: 229-238.
	- 25 **Lecompte F, Ozier-Lafontaine H, Pagès L. 2001**. The relationships between static and 26 dynamic variables in the description of root growth. Consequences for field 27 interpretation of rooting variability. *Plant & Soil,* **236**: 19-31.
	- 28 **Mollier A. 1999**. *Croissance racinaire du maïs (Zea mays L.) sous déficience en* 29 *phosphore. Etude expérimentale et modélisation*. PhD Thesis, Université Paris XI-Orsay, Paris.
	- 31 **Müller B, Stosser M, Tardieu F. 1998**. Spatial distributions of tissue expansion and cell division rates are related to irradiance and to sugar content in the growing zone of 33 maize roots. *Plant, Cell and Environment,* **21**: 149-158.
	- 34 **Myers, J. A. and Kitajima, K. 2007**. Carbohydrate storage enhances seedling shade and 35 stress tolerance in a neotropical forest. *Journal of Ecology* **95**: 383-395.
		- 37 observations on intact entire root systems. *Plant and Soil,* **117**: 295-298.
		- **Pagès L, Serra V. 1994**. Growth and branching of the taproot of young oak trees a 39 dynamic study. *Journal of Experimental Botany,* **45**: 1327-1334.
		- Pagès L., Serra V., Draye X., Doussan C., Pierret A., 2010. Estimating root elongation rates from morphological measurements of the root tip. *Plant and Soil* 328, 35-44
		- 42 **Sheen J, Zhou L, Jang J. 1999**. Sugars as signaling molecules. *Current Opinion in Plant* 43 *Biology,* **2**: 410-418.
- **186 Neufeld HS, Durall DM, Rich PM, Tingey DT. 1989**. A rootbox for quantitative observations on intact entire root systems. *Plant and Soil*, 117: 295-298.
 Pagès L, Serra V. 1994. Growth and branching of the taproot o 44 **Sonesson LK. 1994**. Growth and Survival after Cotyledon Removal in Quercus-Robur 45 Seedlings, Grown in Different Natural Soil Types. *Oikos,* **69**: 65-70.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 Thaler P, Pagès L. 1996a. Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate 2 seedlings (Hevea brasiliensis) show parallel responses to photoassimilate
3 availability. *Physiologia Plantarum*, 97: 365-371. 3 availability. *Physiologia Plantarum,* **97**: 365-371.

Thaler P., Pagès L. 1996b. Periodicity in the development of the root system of young rubber trees. Relationship with shoot development. *Plant Cell Environ*. **19**, 56-64 5 rubber trees. Relationship with shoot development. *Plant Cell Environ.* **19**, 56-64

- 6 **Thaler P., Pagès L. 1999.** Why are laterals less affected than main axes by homogeneous 7 unfavourable physical conditions ? A model-based hypothesis. *Plant and Soil,* **217:** 8 151-157.
9 **Willaume M, Pa**
- Willaume M, Pagès L. 2006. How periodic growth pattern and source/sink relations affect 10 root growth in oak tree seedlings ? *Journal of Experimental Botany,* **57**: 815-826.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

2 **Figure 1**

1

3 Schematic representation of a distal taproot segment and associated laterals. Dotted 4 arrows are lengths measured on scanned images; solid arrows are estimated lengths. L_{AUZ} is 5 the Length of the Apical Unbranched Zone of the taproot, L_e is the total taproot length at 6 excavation, L_i is the Length of the Lateral Root i, D_i is the distance between taproot apex 7 and point of insertion of Lateral Root i (D_i) , L_0 is the estimated taproot length at t_0 . 8 **Figure 2** Histograms of estimated lateral root growth rate $(cm.day⁻¹)$ 10 a) Control: no leaves removed ¹¹ b) CML: Removal of Cotyledons and Mature Leaves

¹¹ c) ML: Removal of Mature Leaves

¹³ d) YL: Continuous removal of Young Leaves

¹⁴ Values on each histogram are the median growth rate

values with the same le c) ML: Removal of Mature Leaves 13 d) YL: Continuous removal of Young Leaves Values on each histogram are the median growth rate for the corresponding treatment; values with the same letter indicate non-significant differences (crossed Kolmogorov -Smirnov test, *P*<0.01). **Figure 3**

18 Mean (+/- sd) hexose and sucrose concentration of: (a, c) taproot apices (n=45), (b, d) 19 lateral root (LR) apices (n=180), collected at different times after t_0 (1, 5, 10 days) for control (\Box), YL (\blacksquare), ML (\odot) and CML (\bullet) seedlings, respectively. In a graph, values with 21 the same letter indicate non-significant differences (crossed Student t-test, *P*<0.05). 22 Control: no leaves removed; CML: Removal of Cotyledons and Mature Leaves ML: Removal of Mature Leaves; YL: Continuous removal of Young Leaves

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **Figure 4**

2 Mean (+/- sd) hexose and sucrose concentration of taproot subapical segments (n=45) 3 collected at different times after t_0 (1, 5, 10 days) for control (\Box), YL (\blacksquare), ML (\circ) and CML 4 (●) seedlings, respectively. In a graph, values with the same letter indicate non-significant 5 differences (crossed Student t-test, *P*<0.05).

6 **Figure 5**

7 Mean (+/- sd) hexose and starch concentration of cotyledons (n=90) collected at 8 different times after t₀ (0, 1, 5, 10 days) for control (\square) , YL (\square) , ML (\circ) and CML (\bullet) 9 seedlings, respectively. In a graph, values with the same letter indicate non-significant 10 difference (crossed Student t-test, *P*<0.05).

Experience 11 Figure 6

12 Mean

12 Mean

13 (n=90) cc

13 and CML

15 significan

15 significan

16 Figure 7

17 Relati Mean $(+/- s d)$ hexose, sucrose and starch concentration of taproot basal segments $(n=90)$ collected at different times after $t_0 (0, 1, 5, 10 \text{ days})$ for control (\square) , YL (\square) , ML (\circ) and CML \bullet) seedlings, respectively. In a graph, values with the same letter indicate nonsignificant differences (crossed Student t-test, *P*<0.05).

Figure 7

Relationship between hexose concentration in the apex and estimated root growth rate 18 of (a) taproots (n=15) and (b) lateral roots (n= 60) collected ten days after t₀ for control (\Box), 19 YL (\blacksquare), ML (\odot) and CML (\bullet) seedlings, respectively.

20 **Figure 8**

24

21 Relationship between apical diameter and estimated root growth rate of lateral roots 22 and taproots (n=75) collected ten days after t_0 for control (\Box), YL (\blacksquare), ML (\circ) and CML 23 (●) seedlings, respectively.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

1 **Figure 9**

2 Relationship between values of root growth rate predicted by a model **(**accounting for 3 the influence of hexose concentration *,* apical diameter*,* and their interaction) and estimated 4 values of root growth rate of lateral roots and taproots $(n=75)$ collected ten days after t_0 for 5 control (\square) , YL (\square) , ML (\circ) and CML (\bullet) seedlings, respectively.

6

Manuscrit d'auteur / Author manuscript

Figure 2

Figure 4

Figure 6

Figure 7

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Annals of Botany, 2011, Vol.107, no.4, 653-662, DOI: 10.1093/aob/mcq270

Table 1

Mean $(+/- s d)$ estimated taproot growth rate Before and ten days After t_0 (appearance of visible leaves of second flush, day of defoliation).

Values with the same letter indicate non-significant differences within both columns and lines (crossed Student t-test, *P*<0.01).