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  ABSTRACT 

  Genomic evaluation models so far do not allow for 
accounting of newly generated genetic variation due 
to mutation. The main target of this research was to 
extend current genomic BLUP models with mutational 
relationships (model AM), and compare them against 
standard genomic BLUP models (model A) by analyz-
ing simulated data. Model performance and precision 
of the predicted breeding values were evaluated under 
different population structures and heritabilities. The 
deviance information criterion (DIC) clearly favored 
the mutational relationship model under large herita-
bilities or populations with moderate-to-deep pedigrees 
contributing phenotypic data (i.e., differences equal or 
larger than 10 DIC units); this model provided slightly 
higher correlation coefficients between simulated and 
predicted genomic breeding values. On the other hand, 
null DIC differences, or even relevant advantages for 
the standard genomic BLUP model, were reported un-
der small heritabilities and shallow pedigrees, although 
precision of the genomic breeding values did not dif-
fer across models at a significant level. This method 
allows for slightly more accurate genomic predictions 
and handling of newly created variation; moreover, 
this approach does not require additional genotyping 
or phenotyping efforts, but a more accurate handing of 
available data. 
  Key words:    accuracy ,  genomic selection ,  mutation , 
 relationship matrix 

  Short Communication 

  Current availability of massive genotyping technolo-
gies based on SNP has provided high-throughput data 
for the prediction of genomic breeding values by appro-
priate analytical approaches (Meuwissen et al., 2001). 
These genomic breeding values try to capture the ad-
ditive genetic variability from QTL, although recent 
studies suggested that part of the genetic variability 

could escape inclusion in genomic predictions (Maher, 
2008). Indeed, Casellas and Varona (2011) showed that 
the statistical performance of genomic prediction mod-
els was highly influenced by both the selective history 
of the trait and the age of each mutation involved in 
a given QTL, recent mutations systematically escap-
ing inclusion in analyses. Note that genomic analyses 
would typically not take into account the effect of new 
mutations. Genomic BLUP (GBLUP) models (Nejati-
Javaremi et al., 1997) account for additive genetic 
relationships by the genomic relationship matrix (G; 
VanRaden, 2008). Despite the expectation of G being 
the regular numerator relationship matrix (A), several 
authors highlighted the gain by using G within the con-
text of animal breeding (Legarra et al., 2008; VanRaden 
et al., 2009). Nevertheless, G does not properly account 
for new mutations contributing novel additive genetic 
variability after the founder generation. This limitation 
was overcome by Wray (1990) for the standard matrix 
A, and the main objective of this short communication 
was to adapt and evaluate the approach of Wray (1990) 
and Casellas and Medrano (2008) into a genomics con-
text. 

  Although G can be constructed by several different 
methods (VanRaden, 2008), we focused as an example 
on the first approach outlined by VanRaden (2008), 
given the benefits reported by Toro et al. (2011). Nev-
ertheless, our approach can be straightforwardly adapt-
ed to other algorithms for G. In this research, proce-
dures for calculating G were adapted to accommodate 
the occurrence of new mutations in the autosomal ge-
nome [i.e., the mutational genomic relationship matrix 
(Gm)]. Note that Gm can be defined as Gm = G1 + G2 
+ . . . + Gg, Gq being a genomic relationship matrix 
where individuals from generation q were treated as 
founders and the rows and columns linked to ancestors 
from previous generations were fixed to 0. Assuming σm

2  
as the mutational variance, Gq mσ

2  must be viewed as the 
variance-covariance matrix of additive genetic effects 
attributed to mutations arising in generation q. To 
avoid the successive computation of all intermediate Gq 
matrices, the algorithm described by Casellas (2011) 
can be applied. 
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Two different hierarchical mixed linear models were 
assumed and alternative parameterization of mixed 
model equations by Henderson (1984) was adopted to 
avoid the inversion of matrices G and Gm. The stan-
dard GBLUP parameterization (model A) was y = μ 
+ Z(Ga ) + e, where y was the vector of phenotypic 
records, μ was the vector of population means, e was 
the vector of residuals, and a = (Ga ) was the vector 
of additive genomic effects with appropriate incidence 
matrix Z. From a Bayesian point of view, the condi-
tional distribution of y was assumed multivariate nor-
mal i.e., MVN eμ + ( )⎡

⎣⎢
⎤
⎦⎥{ }Z Ga I• , ,σ2  and the a priori dis-

tribution of a  was p MVNa aa G 0 G• | ~ , .σ σ2 1 2( ) ( )−  Note 
that I was an incidence matrix with dimensions equal 
to the number of elements in y, and σa

2 and σe
2 were 

additive genomic and residual variances, respectively. 
Remaining a priori distributions were assumed flat with 
appropriate boundaries. Estimated allelic frequencies in 
the base generation were used to compute G, as used in 
North American dairy cattle genomic evaluations (P. 
M. VanRaden, Animal Improvement Programs Labora-
tory, ARS, USDA, Beltsville, MD, personal communi-
cation). On the other hand, an expanded version of the 
previous model (model AM) was proposed to account 
for new mutational genomic effects (m) as follows: y = 
μ + Z(Ga ) + Z(Gmm ) + e, where the conditional 
distribution of y was assumed 
MVN m eμ + ( )+ ( )⎡

⎣⎢
⎤
⎦⎥

Z Ga Z G m I• • , ,σ2  and a priori distri-

butions for genomic effects were MVN a0 G, −( )1 2σ  and 

MVN m m0 G, .−( )1 2σ  As for model A, the remaining a priori 
distributions were assumed flat.

Simulations relied on a diploid genome composed by 
10 chromosomes (100 cM each) with 2,000 SNP and 
200 QTL per chromosome. Each replicate evolved dur-
ing 1,000 non-overlapping generations with effective 
size (Ne) 100. Founder individuals were homozygous 
throughout the whole genome for the wild-type allele 
(i.e., allele 1), and mutation rates of 2.5 × 10−3 (SNP) 
and 2.5 × 10−5 (QTL; Meuwissen et al., 2001) were 
applied during the first 1,000 generations, switching the 
allele state from 1 to 2, or vice versa. After that, gen-
erations expanded to 500 individuals, with 50 males 
and 450 females under random mating; mutation rate 
for SNP changed to 2.5 × 10−8 (Hickey and Gorjanc, 
2012), whereas this parameter did not modify for QTL 
markers. Analyses were performed on 3 different sce-
narios with 3 (G3), 5 (G5), or 10 (G10) generations 
with both genomic (i.e., genotypes from polymorphic 
SNP) and phenotypic data (see below), and a last gen-
eration only contributing genomic data. Although the 
number of generations was a rough simplification of the 

real structure of current livestock populations, scenario 
G3 could be viewed as a reasonable approximation to a 
long-generation interval population with few genera-
tions contributing data (e.g., dairy cattle), whereas 
scenarios G5 and G10 tried to mimic medium- (e.g., 
intensive pig breeds) and short-generation interval 
populations (e.g., rabbits and broilers), respectively. 
On the other hand, 3 different heritabilities (h2) were 
assumed for the phenotypic trait (h2 = 0.1, 0.25 and 
0.5), with σe

2 = 1, and QTL effects were appropriately 
scaled. Note that the wild-type QTL had a null contri-
bution to the phenotype, whereas the additive effect of 
the mutate allele was sampled from a gamma distribu-
tion with shape and scale parameters 0.4 and 1.6 (Meu-
wissen et al., 2001). Moreover, the sign of every QTL 
effect was sampled to be positive or negative with prob-
ability 0.5. A total of 100 replicates were analyzed for 
each scenario and heritability. Model performance was 
evaluated in terms of goodness of fit by the deviance 
information criterion (DIC) statistic (Spiegelhalter et 
al., 2002) and the precision of predicted breeding values 
(u), being u = a (model A) or u = a + m (model AM). 
Precision was calculated for each replicate as the cor-
relation coefficient (ru,û) between simulated and pre-
dicted breeding values. Within a Bayesian framework, 
all replicates were analyzed under model A and model 
AM. For each analysis, a unique Monte Carlo Markov 
chain with 100,000 iterations was launched, after dis-
carding the first 10,000 iterations as burn-in (Raftery 
and Lewis, 1992).

Given that this research focused on the analysis of 
simulated populations, a preliminary examination of 
the estimated σm

2  became mandatory to corroborate the 
validity of further results about model performance. As 
shown in Table 1, estimated mutational heritabilities  
(hm m T

2 2 2= σ σ , where σT
2  is the total phenotypic vari-

ance) averaged between 0.04 and 0.25%, agreeing with 
the range of values previously reviewed by Lynch (1988) 
and Houle et al. (1996); indeed, even the most extreme 
estimates fit the range, although some of them were 
close to the lower boundary. This highlighted the con-
servative behavior of the simulation procedure where 
the impact of new mutations was not artificially in-
flated, preventing unrealistic advantages for the model 
from accounting for new mutational variance.

Both GBLUP models were compared in terms of 
goodness of fit by the DIC statistic, which suggested 
important influences from heritability and pedigree 
depth (Table 2). Note that the DIC evaluates both 
model fit and complexity, and average differences larger 
than 3 to 5 DIC units are generally assumed statisti-
cally relevant (Spiegelhalter et al., 2002). Small herita-
bilities and shallow pedigrees favored model A, whereas 
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moderate-to-high heritabilities or deeper pedigrees took 
benefit of the most complex structure of model AM 
accounting for new mutational variability. Similar evi-
dences were revealed by ru,û, where higher accuracies (P 
< 0.05) were reported for model AM under simulation 
scenarios with moderate-to-high heritabilities or deeper 
pedigrees (Tables 3 and 4), albeit the gains were mar-
ginal. These results suggested that model AM could be 
ineffective to properly capture mutational variability 
when lowly heritable traits were analyzed on shallow 
pedigrees, whereas heritability and pedigree depth 
showed synergistic behavior in less extreme scenarios 
[i.e., traits with moderate-to-high heritabilities (even 
under shallow pedigrees) or moderate-to-deeper pedi-
grees (even for lowly heritable traits) would marginally 

benefit from the inclusion of new mutational effects in 
GBLUP models].

Regardless of the GBLUP parameterization, ru,û 
showed very similar trends when comparing different 
heritabilities, pedigree depths, or individuals with and 
without phenotypic data. The accuracy of the genomic 
predictions significantly increased with heritability as 
anticipated by Calus et al. (2008), and demonstrated 
by previous studies without the inclusion of mutational 
effects (Meuwissen, 2009; Zhong et al., 2009). Accuracy 
was higher for phenotyped individuals than for those 
without contributing phenotypic data to the analysis. 
Indeed, this decline in precision for the unphenotyped 
individuals from recent generations has been widely 
demonstrated in the scientific literature (Meuwissen 

Table 1. Estimated heritabilities under the different simulation scenarios by assuming both direct and 
mutational additive genetic sources of variation 

Item1

Standard heritability2 Mutational heritability3 (× 100)

Mean Range Mean Range

Scenario G3
 h2 = 0.10 0.12 0.04–0.21 0.04 0.01–1.57
 h2 = 0.25 0.24 0.13–0.35 0.09 0.02–2.30
 h2 = 0.50 0.48 0.37–0.66 0.14 0.04–2.75
Scenario G5
 h2 = 0.10 0.12 0.05–0.16 0.04 0.02–1.50
 h2 = 0.25 0.23 0.17–0.31 0.11 0.04–1.99
 h2 = 0.50 0.52 0.43–0.66 0.19 0.07–2.32
Scenario G10
 h2 = 0.10 0.11 0.06–0.15 0.06 0.02–0.91
 h2 = 0.25 0.25 0.19–0.29 0.14 0.07–1.09
 h2 = 0.50 0.51 0.42–0.58 0.25 0.13–0.89
1G3, G5, and G10 = 3, 5, and 10 generations, respectively.
2ha a T

2 2 2= σ σ , where σa
2 is the additive variance and σT

2  is the total phenotypic variance.
3hm m T

2 2 2= σ σ , where σm
2  is the mutational variance and σT

2  is the total phenotypic variance.

Table 2. Average deviance information criterion (DIC) estimates (means ± SE) 

Item1 Model A2 Model AM3 Difference4

Scenario G3
 h2 = 0.10 4,807 ± 4 4,815 ± 4 −8 ± 2**
 h2 = 0.25 4,829 ± 4 4,832 ± 4 −3 ± 3NS

 h2 = 0.50 4,877 ± 5 4,867 ± 4 10 ± 4*
Scenario G5
 h2 = 0.10 7,431 ± 5 7,429 ± 5 2 ± 3NS

 h2 = 0.25 7,472 ± 5 7,462 ± 5 10 ± 3*
 h2 = 0.50 7,501 ± 6 7,479 ± 7 22 ± 4***
Scenario G10
 h2 = 0.10 13,192 ± 8 13,183 ± 8 9 ± 4*
 h2 = 0.25 13,236 ± 9 13,216 ± 8 20 ± 4***
 h2 = 0.50 13,260 ± 9 13,225 ± 9 35 ± 5***
1G3, G5, and G10 = 3, 5, and 10 generations, respectively.
2Genomic BLUP (GBLUP) model accounting for standard additive genetic effects.
3Genomic BLUP model accounting for both standard additive and new mutational genetic effects.
4Differences between model A and model AM were tested by a paired-samples t-test. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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et al., 2001; Legarra et al., 2008). It is important to 
note that ru,û increased with the number of generations 
involved in G, this being probably due to the growth 
of the genomic/phenotypic data set (Meuwissen et al., 
2001; Goddard, 2009) and the rise of the degree of re-
lationship among individuals from late generations in 
small populations (Habier et al., 2007).

In summary, maximum DIC and ru,û differences were 
reported in scenario G10 and h2 = 0.5. The accuracy 
of genomic breeding values increased 0.57% (pheno-
typed individuals) or 1.07% (unphenotyped individu-
als) under model AM. This suggests that model AM 
could be of interest for genomic selection in livestock 
populations, although each case must be evaluated on 
its merits, depending on population structure and the 

genetic model underlying the trait. Moreover, other ge-
netics-related phenomena such as selection, population 
stratification, or even genetic drift must be carefully 
considered because they could vary the real contribu-
tion of mutational effects.

A delicate point is the consideration of generations 
when they overlap. Wray (1990) pointed out that the 
decisive notion in her model was time span, not gen-
erations; the model applies equally well to overlapping 
generations pedigrees. In this case, generations would 
be cohorts born in the same time span (e.g., year-by-
year groups). The only requirement is that no individual 
within one cohort can be descendant from another from 
the same cohort. Even in our model using genomic rela-
tionships, a notion of pedigree or time flow is absolutely 

Table 3. Correlation coefficients (× 100; mean ± SE) between simulated and predicted breeding values for 
individuals with phenotypic data 

Item1 Model A2 Model AM3 Difference4

Scenario G3
 h2 = 0.10 52.49 ± 0.23 52.51 ± 0.22 0.02 ± 0.05NS

 h2 = 0.25 64.25 ± 0.24 64.29 ± 0.25 0.04 ± 0.04NS

 h2 = 0.50 82.19 ± 0.24 82.27 ± 0.26 0.08 ± 0.05NS

Scenario G5
 h2 = 0.10 57.66 ± 0.24 57.69 ± 0.25 0.03 ± 0.04NS

 h2 = 0.25 69.21 ± 0.25 69.31 ± 0.23 0.10 ± 0.04*
 h2 = 0.50 85.12 ± 0.23 85.38 ± 0.25 0.26 ± 0.03***
Scenario G10
 h2 = 0.10 63.03 ± 0.22 63.10 ± 0.23 0.07 ± 0.05NS

 h2 = 0.25 73.81 ± 0.21 74.03 ± 0.25 0.24 ± 0.04***
 h2 = 0.50 88.60 ± 0.19 89.17 ± 0.18 0.57 ± 0.03***
1G3, G5, and G10 = 3, 5, and 10 generations, respectively.
2Genomic BLUB (GBLUP) model accounting for standard additive genetic effects.
3Genomic BLUP model accounting for both standard additive and new mutational genetic effects.
4Differences between model A and model AM were tested by a paired-samples t-test. 
*P < 0.05; ***P < 0.001.

Table 4. Correlation coefficients (× 100; mean ± SE) between simulated and predicted breeding values for 
individuals without phenotypic data 

Item1 Model A2 Model AM3 Difference4

Scenario G3
 h2 = 0.10 37.40 ± 0.51 37.39 ± 0.50 −0.01 ± 0.06NS

 h2 = 0.25 50.40 ± 0.51 50.44 ± 0.52 0.04 ± 0.05NS

 h2 = 0.50 66.70 ± 0.52 66.80 ± 0.53 0.10 ± 0.05*
Scenario G5
 h2 = 0.10 40.92 ± 0.49 40.97 ± 0.48 0.05 ± 0.5NS

 h2 = 0.25 55.76 ± 0.50 55.89 ± 0.50 0.13 ± 0.06*
 h2 = 0.50 73.03 ± 0.49 73.44 ± 0.50 0.43 ± 0.06***
Scenario G10
 h2 = 0.10 59.52 ± 0.50 59.68 ± 0.50 0.16 ± 0.07*
 h2 = 0.25 66.99 ± 0.49 67.61 ± 0.49 0.62 ± 0.06***
 h2 = 0.50 79.96 ± 0.49 81.03 ± 0.50 1.07 ± 0.05***
1G3, G5, and G10 = 3, 5, and 10 generations, respectively.
2Genomic BLUP (GBLUP) model accounting for standard additive genetic effects.
3Genomic BLUP model accounting for both standard additive and new mutational genetic effects.
4Differences between model A and model AM were tested by a paired-samples t-test. 
*P < 0.05; ***P < 0.001.
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necessary, because mutations are transmitted forward 
but not backward. Consider thus cohorts i = 1, 2, . . 
. , q as the starting point. According to properties of 
G (Gianola et al., 2009) and under Hardy-Weinberg 
equilibrium, Gi would contain an average of 1 in the 
diagonal and 0 off-diagonal for individuals from cohort 
i. Within this context, we could reduce the notion of 
cohort to the extreme where each individual defines a 
new cohort and, therefore, Gm = G1 + G2 + . . . + 
Gt, where t is the total number of individuals in the 
pedigree file. Only descendants of the ith individual 
would have values different from 0 in Gi, as previously 
suggested by García-Cortés et al. (2010) for matrix A. 
For this partitioning of Gm, the diagonal element of 
individual i in Gi is fixed to 0, and this is so because 
the covariance matrix Gi must be centered around this 
element. The Gi-specific mutational genetic value of i is 
exactly defined as 0, has no uncertainty, and this indi-
vidual becomes the genetic basis of the genetic covari-
ance matrix Gi. However, the ith element in matrix Gm 
will not be 0 because of the ith diagonal contributions 
of remaining cohorts.

To the best of our knowledge, this is the first ap-
proach contributing a reliable way to account for new 
additive mutational variability in genomic prediction 
models, with this GBLUP parameterization being able 
to provide small advantages in terms of accuracy of 
the genomic predictions, a way of handling mutational 
variance in selection schemes, and possibly more accu-
rate estimates of mutational variance than those based 
on pedigrees. Although the relevance of new mutations 
could be small when individuals from few generations 
are involved (i.e., first steps in genomic selection pro-
grams), this model could be of special relevance as 
times goes on and genotyped individuals accumulate 
generation by generation. Also, it allows better han-
dling of new genetic variability, such as the selection 
of “original” animals or loci, which are penalized by 
standard animal breeding techniques (Goddard, 2009).
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