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Abstract

Several dwarf plum genotypes (Prunus salicina L.), due to deficiency of unknown gibberellin (GA) signalling, were
identified. A cDNA encoding GA 2-oxidase (PslGA2ox), the major gibberellin catabolic enzyme in plants, was cloned

and used to screen the GA-deficient hybrids. This resulted in the identification of a dwarf plum hybrid, designated as

DGO24, that exhibits a markedly elevated PslGA2ox signal. Grafting ‘Early Golden’ (EG), a commercial plum cultivar,

on DGO24 (EG/D) enhanced PslGA2ox accumulation in the scion part and generated trees of compact stature.

Assessment of active GAs in such trees revealed that DGO24 and EG/D accumulated relatively much lower

quantities of main bioactive GAs (GA1 and GA4) than control trees (EG/M). Moreover, the physiological function of

PslGA2ox was studied by determining the molecular and developmental consequences due to ectopic expression in

Arabidopsis. Among several lines, two groups of homozygous transgenics that exhibited contrasting phenotypes
were identified. Group-1 displayed a dwarf growth pattern typical of mutants with a GA deficiency including smaller

leaves, shorter stems, and delay in the development of reproductive events. In contrast, Group-2 exhibited a ‘GA

overdose’ phenotype as all the plants showed elongated growth, a typical response to GA application, even under

limited GA conditions, potentially due to co-suppression of closely related Arabidopsis homologous. The studies

reveal the possibility of utilizing PslGA2ox as a marker for developing size-controlling rootstocks in Prunus.

Key words: Dwarf rootstocks, flower fertility, floral organogenesis, fruit development, GA deficiency, plum, rootstock–scion

interaction.

Introduction

Modern fruit growing creates an increasing demand for tree

size control that can offer numerous horticultural advan-

tages. Trees with reduced stature allow high density
cultivation, facilitate tree management, and minimize spray

drift. In most temperate fruits, dwarf rootstocks can have

profound effects on scions such as controlling tree size,

flowering time, yield efficiency, and fruit quality (Janick

et al., 1996). However, the mechanism by which these

effects are achieved is still not well understood. Attempts to
explain how rootstocks cause dwarfing of trees, which

focused on their effects on supply of mineral nutrients and

water to the scion, have not provided any convincing

Abbreviations: EG/D, Early Golden/DGO24; EG/M, Early Golden/Myrobalan; L.1/G1, L.1/Group-1; L.4/G2, L.4/Group-2; LD, long day; PAC, paclobutrazol; SD, short
day; WT, wild type.
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explanations (Jones, 1984; Ebel et al., 2000). Other studies,

which focused on the production and movement of

endogenous hormones, demonstrated that dwarfism could

be associated with deficiencies in gibberellin (GA) levels or

signalling (Cristoferi and Filiti, 1981; Erez, 1984; Webster,

2004).

GA is an essential hormone that is involved in many

aspects of plant growth and development (Fleet and Sun,
2005). To date, >100 GA forms have been identified in

plants (MacMillan, 2002). However, only a small number of

them are considered to be functional, while most other GAs

are present in plant tissues as precursors for the active

forms or due to deactivated metabolites. The GA bio-

synthetic pathway has long been studied, and the majority

of genes encoding enzymes in each biosynthetic and

catabolic step have been identified in the model species
(Olszewski et al., 2002).

In higher plants, the flux of active GAs is regulated by the

balance between their rates of biosynthesis and deactiva-

tion. The GA20ox and GA3ox genes encode key enzymes of

bioactive GAs synthesis, whereas GA2ox is the major GA

inactivation enzyme (Yamaguchi, 2008). Modifying the

regulation of genes controlling GA flux can subsequently

alter the processes regulated by GA and, thus, plant
architecture (Hedden and Phillips, 2000).

In plants, it is important to maintain optimal levels of

phytohormones to ensure normal growth and development.

Hence, it is essential that there is a mechanism in place to

remove any excess active compounds or their biosynthetic

precursors to ensure proper function of phytohormones.

Such a strategy can modulate the signal produced and

subsequently prevent the progressive accumulation of the
hormones. A number of inactivation pathways have been

identified for GA (Thomas and Hedden, 2006; Zhu et al.,

2006). However, based on the prevalence of 2b-hydroxylated
GAs in many plant species (MacMillan, 2002), the most

widespread mechanism for GA inactivation seems to be via

2-oxidation (Thomas et al., 1999). Genes encoding GA

2-oxidases (GA2oxs) were first identified by screening cDNA

expression libraries for 2b-hydroxylase activity (Martin et al.,
1999; Thomas et al., 1999). Early characterized GA2oxs are

active against C19-GAs as substrates, including functional

GAs and their immediate precursors. Later, a new type of

GA2ox that catabolizes only the non-bioactive C20-GAs was

reported (Schomburg et al., 2003). Apparently, this class of

GA2ox is not involved in inactivation of functional GAs, but

may be important in regulating GA biosynthesis through the

removal of earlier intermediates in the pathway.
The physiological functions of GA2ox have been studied

in a variety of plant species using different approaches;

however, all these studies demonstrated that GA2ox is

responsible for reducing the level of active GAs in plants.

Overexpression of GA2ox enhances GA inactivation and

thus induces dwarfism (Sakamoto et al., 2001; Busov et al.,

2003; Appleford et al., 2007; Dijkstra et al., 2008). Loss-of-

function mutation in a pea PsGA2ox1 results in the hyper-
elongated slender phenotype (Martin et al., 1999). Similarly,

in Arabidopsis, the ga2ox quintuple mutant results in plants

behaving as the wild type (WT) supplemented with a high

amount of GA (Rieu et al., 2008a).

In this study, a dwarf plum hybrid (DGO24) that exhibits

high levels of PslGA2ox and subsequently displays reduced

bioactive GAs was identified. DGO24, when used as

rootstock, reduces the scion [‘Early Golden’ (EG)] vigour

and also causes several developmental defects; however,

these could be temporarily restored by exogenous GA
application. Moreover, the role of GA during different

stages of fruit development was determined by studying the

expression profile of PslGA2ox mRNA that reflects the

alteration in GA accumulation. A model is proposed in

which the role played by the plant hormone GA is as

critical as that of auxin to ensure correct fruit development.

Further, it was demonstrated that the overexpression of this

gene results in a GA-deficient phenotype in Arabidopsis with
growth traits similar to those found in EG/D (EG/DGO24)

plum trees. In another case, the PslGA2ox transgene caused

co-suppression of closely related Arabidopsis homologous,

which triggered GA accumulation and resulted in a GA

overdose phenotype. The results show that GA2ox can be

used as a marker for the selection of dwarf rootstocks that

might be suitable for the tender fruit industry.

Materials and methods

Plum tissues and post-harvest treatments

Flowers and fruits from different developmental stages were
harvested from Japanese plum (Prunus salicina L.) cultivar EG
as described previously (El-Sharkawy et al., 2007). Leaves from
10-year old dwarf seedling DGO24 and 7-year old EG grafted
onto DGO24 (EG/D) or onto vigorous rootstock Myrobalan
(EG/M) were collected. All plant materials were frozen in liquid
nitrogen and stored at –80 �C.

Isolation and in silico analysis of plum GA2ox cDNA sequence

Based on the sequence similarity of various GA2ox genes from
different plant species, a pair of degenerate primers (primers 1 and 2,
Supplementary Table S1 at JXB online) was designed from the
conserved regions to amplify the GA2ox orthologues from P. salicina.
The isolated fragment was cloned in the pGEM-T Easy vector
(Promega, Madison, WI, USA), sequenced, and analysed using
BLAST (Altschul et al., 1997). Extension of the partial cDNA clone
was carried out using the 3’- and 5’-RACE kit (Invitrogen,
Burlington, ON, Canada). Full-length amplification of the cDNA
sequence designated PslGA2ox was carried out using the Platinum
Taq DNA Polymerase High Fidelity kit following the instructions
provided by the manufacturer (Invitrogen). Alignment of the
PslGA2ox predicted protein sequence and the Neighbor–Joining tree
construction were performed as described previously (El-Sharkawy
et al., 2009).

Protoplast isolation and transient expression of PslGA2ox–GFP

fusion protein

The coding sequence of PslGA2ox was cloned as a C-terminal
fusion in-frame with green fluorescent protein (GFP) into the
pGreenII vector using the BamHI site, and expressed under the
control of the 35S promoter. Protoplasts used for transfection
were obtained from suspension-cultured tobacco (Nicotiana taba-
cum) BY-2 cells. Protoplasts were transfected and analysed for
GFP fluorescence by confocal microscopy as described previously
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(El-Sharkawy et al., 2009). All transient expression assays were
repeated at least three times.

Quantification of bioactive GAs

Approximately 3 g of fresh leaf and stem tissues from field-grown
EG/M, DGO24, and EG/D plum trees was collected. Each sample
was frozen in liquid nitrogen, lyophilised, and finally stored at
–20 �C until analysed. Plant materials were homogenized in 15 ml of
cold 80% methanol containing 50 ng of deuterated GA1 and GA4,
and extracted overnight in darkness at 4 �C. After filtration, the
residue was re-extracted with 5 ml of 80% methanol for 2 h and re-
filtered. The extract was purified through a C18 Sep-pack cartridge
and the eluate was absorbed onto 0.5 g of Celite 545 (ProLab), and
purified by step-elution silicic acid (SiO2) partition chromatography
running into an ethyl acetate:hexane (95:5) buffer. The samples were
then evaporated under reduced pressure at room temperature until
dry. Phytohormones were analysed by high-performance liquid
chromatography/mass spectrometry (HPLC/MS) carried out on a
Varian 1200l triple quadrupole, working in positive electrospray
ionization mode (ESI+) with a capillary voltage of 5500 V and acid
voltage of 40 V. HPLC/MS analysis was carried out by MRM
(multiple reaction monitoring) ion detection mode working with
three transitions for each compound. Liquid chromatography (LC)
was performed using a Polaris 3 lm, 15032.1 mm I.D. analytical
column, maintained at 40 �C. The mobile phases consisted of water/
0.1% formic acid (A) and methanol/acetonitrile 25/75 (B). The flow-
rate was 0.2 ml min�1. In each case, 20 ll of sample was injected.
The gradients used for GAs were: t¼0 min (90% A, 10% B);
t¼1 min (75% A, 25% B); t¼10 min (0% A; 100% B); and t¼15 min
(0% A; 100% B). The levels of phytohormones in the plant samples
were determined from the area ratios of endogenous to correspond-
ing deuterated phytohomones. A curve was prepared always with
the same quantity of labelled isotope added to samples and with
concentrations from 1 ppb to 250 ppb for the compounds analysed.
The minimum quantification level was 1 ppb (1 ng ml�1) for each
compound. All experiments were carried out in three independent
replicates.

Plasmid construction and plant transformation

For the generation of the 35S::PslGA2ox construct, a high fidelity
PCR system was used to amplify the full-length sequence using
specific primers 3 and 4 (Supplementary Table S1 at JXB online),
subcloned in pGEM-T Easy vector, and then introduced into the
BamHI site of the pGreen0029 binary vector (Hellens et al., 2000).
The resulting vector was introduced into Agrobacterium tumefa-
ciens strain C58 by the freeze–thaw method (Holsters et al., 1978)
and then employed for Arabidopsis transformation using the floral
dip method (Clough and Bent, 1998). The PslGA2ox gene under
the control of the 35S promoter was introduced into the WT
Arabidopsis background Col-0. Six T3 homozygous independent
lines showing significant PslGA2ox accumulation were identified
based on transgene levels along with phenotype characteristics.
These lines were pooled into two groups based on their growth
behaviour, and a representative from each group was selected for
further experimental use (L.1/G1 and L.4/G2). All plants were
divided into four groups (24 plants per group); three groups were
grown under a long day (LD) photoperiod (16:8 h light/300 lmol
m�2 s�1; 23:18 �C, and 65% relative humidity): control, treated
with 100 lM GA3 or 10 lM paclobutrazol (PAC). The fourth
group was transferred to short day (SD) conditions (8:16 h light
and 20:18 �C). The plant materials were frozen in liquid N2

immediately after collection and stored at –80 �C until use.

RNA isolation

Total RNA from plum was extracted using the methods described
by Meisel et al. (2005). For Arabidopsis, total RNA was extracted
using a Plant Total RNA Purification kit (Norgen, Thorold, ON,

Canada). All RNA extracts were treated with DNase I (Promega)
then cleaned up with anRNeasy mini kit (Qiagen, Mississauga,
ON, Canada).

Real-time quantitative RT-PCR

DNase-treated RNA (5 lg) was reverse transcribed in a total
volume of 50 ll using SuperScript III Reverse Transcriptase
(Invitrogen). Gene-specific primers were designed using Primer
Express (v3.0, Applied Biosystems, Carlsbad, CA, USA) (primers
5–30, Supplementary Table S1 at JXB online). Quantitative reverse
transcription PCRs (qRT-PCRs) were performed using 20 ng of
cDNA and 300 nM of each primer in a 20 ll reaction volume with
SYBR GREEN PCR MasterMix (Qiagen, Mississauga, ON,
Canada). Three biological and three technical replicates for each
reaction were analysed on an ABI PRISM 7900HT Sequence
Detection System (Applied Biosystems) with a first step of 95 �C
for 15 min followed by 40 cycles of 95 �C for 15 s and 60 �C for
1 min. Melting curves were generated using the following program:
95�C for 15 s, 60 �C for 15 s, and 95 �C for 15 s. Transcript
abundance was quantified using standard curves for both target
and reference genes, which were generated from serial dilutions of
PCR products from corresponding cDNAs. Transcript abundance
was normalized to the reference genes [PsAct (EF585293) and
AtAct (NM_121018)] that show high stability across the different
treatments.

Results

Isolation and structural characterization of PslGA2ox
cDNA

PCR amplification resulted in the isolation of a partial

DNA fragment with the expected size. Sequence analysis of

the PCR product indicated that this fragment encoded

a part of the GA2ox gene family. Extension of the partial

cDNA clone resulted in a full-length cDNA containing an

open reading frame of 1482 bp encoding a protein of 342

amino acids and hence designated PslGA2ox. Alignment of

the PslGA2ox amino acid sequence with that of other
reported GA2oxs revealed that the predicted protein shares

sequence identity ranging from 53% to 68% with closely

related homologues and highlighted a number of conserved

motifs and structural similarities that are common within

the dioxygenase family of GA catabolic enzymes (Supple-

mentary Fig. S1 at JXB online) (Valegård et al., 1998). In

order to classify the PslGA2ox sequence among the various

GA2oxs, a phylogenetic tree was constructed (Fig. 1). The
dendrogram analysis defines that the GA2ox gene family

could be divided into three main classes based upon

sequence conservation. PslGA2ox is a member of class I

that (as well as class II), act as a major C19-GA deactivator

(Thomas et al., 1999). However, tested members of class III

can only catabolize C20-GA2oxs (Schomburg et al., 2003).

Additionally, analysis of various GA2ox amino acid sequen-

ces, characterized so far, revealed the absence of any obvious
targeting sequence that can signify the localization of this

protein in the plant cell. The results show that the GFP

distribution in both control and PslGA2ox–GFP is spread

throughout the cytoplasm and nucleus (Supplementary

Fig. S2 at JXB online).
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Identification of a GA2ox-dependent dwarf plum line

Twenty-five dwarf individual plum hybrids, produced

through controlled hybridizations in a breeding program,

were identified phenotypically based on their compact stature

with short internodes and small dark leaves. In order to

determine if the dwarf phenotype is due to deficiency in

bioactive GAs, they were treated with GA3. GA application

showed phenotypic effects in only 10 hybrids as determined

by their internode length and leaf size. To establish if the

dwarfism in these hybrids is associated with PslGA2ox, they

were screened against a vigorously growing plum, EG/M,

for the accumulation of PslGA2ox (Supplementary Fig. S3

at JXB online). The expression results defined that only one
hybrid, designated DGO24, displayed significantly high

PslGA2ox mRNA levels; therefore, this was selected for

further analysis. Then, the full-length PslGA2ox cDNA was

isolated from DGO24 to determine whether there are

divergences within the amino acid sequence that can

elucidate the hyper accumulation of transcripts. However,

sequence analysis revealed a nucleotide sequence identical

to that isolated from EG/M trees. Compared with EG/M

control trees (tree height 3.7360.22 m), DGO24 displayed

very short trees along with a slow growth rate (tree height

1.3760.15 m). Grafting EG onto DGO24 (EG/D) resulted

in shoots that exhibited shorter internodes and reduced

stem elongation (tree height 2.0660.25 m) than EG/M

(Supplementary Fig. S4 at JXB online). To determine

whether PslGA2ox accumulation is the cause of the EG

scion’s phenotype, its expression was studied in EG/M,
DGO24, and EG/D shoots. A strong signal was detected in

both DGO24 and EG/D trees; however, the expression was

weak in EG/M (Fig. 2). It was thus decided to investigate

bioactive GA accumulation within the three different plum

trees with the aim to determine whether there are dissim-

ilarities in GA content that can account for the diversity in

growth behaviour. Quantification of active GAs revealed

that DGO24 and EG/D shoots exhibited at least 6- and 8-
fold lower concentrations of the bioactive forms GA1 and

GA4, respectively, than EG/M (Table 1).

Dwarfism is reversed by GA3 application

In addition to the compact stature, short internodes, and

small dark leaves, EG/D trees exhibited malformed flowers

and small fruit at harvest (Fig. 3A, B) along with significant

delay in fruit development compared with EG/M

(1062.74 d). EG/D fruit were ;36% smaller than EG/M
fruit in size and weight (Fig. 3B, C). In order to confirm

that these developmental deformities are due to insufficient

GA necessary to coordinate plant growth, EG/D trees were

sprayed with GA3. GA application restored the growth of

compact EG scions to near normal, as determined by

internode length, accelerated the fruit development process

to levels comparable with those of EG/M fruits, and

resulted in proper flower organogenesis (Supplementary
Fig. S5 at JXB online; Fig. 3A). Moreover, GA treatment

caused significant increases in fruit size and weight, and

these were up to ;2-fold greater at harvest than their

counterparts from untreated EG/D trees (Fig. 3B, C).

PslGA2ox expression during fruit ontogeny

PslGA2ox transcripts were consistently expressed at moder-

ate levels during different stages of fruit development in

EG/D. In order to elucidate the physiological role of

PslGA2ox and subsequently the contribution of GAs in fruit
development, its expression profile was analysed during

different stages of EG/M fruits (Fig. 4). PslGA2ox transcripts

were initially low in flower buds, but greatly increased soon

after flowering [;4 days after bloom (DAB)] followed by

sharp inhibition of its mRNA levels after fertilization, ;7

DAB. The accumulation of PslGA2ox mRNA at bloom

represented the highest transcript abundance during the

whole experiment. During early fruit development, 7–15
DAB, PslGA2ox transcripts increased gradually in young

fruits. Stone fruits (Prunus spp.) exhibit a typical double

sigmoid growth pattern during fruit development, with four

distinct stages, S1–S4 (El-Sharkawy et al., 2007). Within the

first stage, intense cell division is predominant, while during

Fig. 1. Phylogenetic relationships between Prunus salicina

PslGA2ox (HM021156), Arabidopsis thaliana AtGA2ox1 (CAB41007),

AtGA2ox2 (CAB41008), AtGA2ox3 (CAB41009), AtGA2ox4

(AAG51528), AtGA2ox6 (AAG00891), AtGA2ox7 (AAG50945),

AtGA2ox8 (CAB79120), Oryza sativa OsGA2ox1 (BAB40934),

OsGA2ox4 (AAU03107), OsGA2ox6 (CAE03751), Spinacia oleracea

SoGA2ox1 (AAN87571), SoGA2ox2 (AAN87572), SoGA2ox3

(AAX14674), Solanum lycopersicum SlGA2ox5 (ABO27636), Lactuca

sativa LsGA2ox1 (BAB12442), Phaseolus coccineus PcGA2ox1

(CAB41036), and Cucurbita maxima CmGA2ox (CAC83090) based

on the full-length amino acid sequence. Bootstrap confidence values

from 1000 replicates are indicated. I, II, and III represent the three

different GA2ox protein classes.
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S2 phase there is hardly any increase in fruit size but the

endocarp hardens to form a solid stone. Throughout these

developmental periods (22–52 DAB), PslGA2ox transcription

showed a significant and gradual increase, reaching relatively

maximal levels by the end of the S2 stage. The S3 stage (62–
72 DAB) is accompanied by a considerable increase in fruit

size, which is mostly attributable to cell expansion. In S3

phase, when the pulp readily separates from the seed,

PslGA2ox levels increased in abundance within the pulp

tissue, but consistently decreased in the seeds during matu-

rity. Throughout the S4 stage, where most metabolic changes

due to fruit ripening take place, PslGA2ox accumulation was

generally low. As ripening progressed, the expression level of
PslGA2ox increased in abundance within the pulp tissue,

reaching relatively high levels at the post-climacteric phase

(;83 DAB); however, in the seeds, its transcription increased

to a peak at the pre-climacteric stage (;80 DAB) and slightly

decreased thereafter.

Ectopic expression of PslGA2ox in WT Arabidopsis

GA2ox proteins play repressive roles in plant growth

and development through catabolizing bioactive GAs, in

particular GA4, into inactive forms (Thomas et al., 1999;

Schomburg et al., 2003). The present results suggest the
involvement of PslGA2ox in the dwarf plum (DGO24);

however, to confirm this hypothesis, the PslGA2ox gene

was overexpressed in Arabidopsis, where GA4 is the major

active GA controlling different aspects of plant develop-

ment (Xu et al., 1999). Ectopic expression of PslGA2ox led

to a wide range of disturbances in general growth and

development behaviour. Six independent transgenic lines

were confirmed after PCR analysis and then divided into

two groups based on their phenotypic and molecular

characteristics (Fig. 5). Group-1, including L.1, L.5, and

L.7, exhibited a typical dwarf phenotype due to a signifi-

cant decline in the length of all stem growth-related

characters, resulting in ;60% reduction in overall plant
height, which was associated with considerably high

PslGA2ox levels. Group-2 that includes L.2, L.3, and L.4

showed a hypergrowth pattern. The plants were ;41%

taller than the WT due to notably shorter, but numerous

internodes, which was associated with low but significant

PslGA2ox accumulation (Supplementary Table S2 at JXB

online; Fig. 5A, B). Analysis of the transgene profile in

mutant plants showed that the level of PslGA2ox corre-
lated negatively with plant height. The tallest plants had

the lowest transcription levels while the expression was

weaker in longer plants. Thus a homozygous representative

from each group (L.1/G1 and L.4/G2) was selected for

further studies. To assess whether the overexpression of

PslGA2ox can disturb the GA response pathway, the

transcription levels of a number of genes that are induced

(At2g21220, AtGA2ox2, AtGA2ox3, and AtGA2ox8) or
repressed (AtGA20ox1 and AtGA3ox1) by GA were de-

termined (Phillips et al., 1995; Thomas et al., 1999;

Schomburg et al., 2003; Nemhauser et al., 2006). Expression

of the various GA-responsive genes was considerably

different in the two lines (Fig. 5C). All GA-inducible

transcripts were suppressed by 21–57% in L.1/G1, and the

GA-repressed genes, AtGA20ox1 and AtGA3ox1, increased

by ;4.7- and ;5.5-fold, respectively. In contrast to the
expected results, L.4/G2 accumulated more of the GA-

up-regulated transcripts, while AtGA2ox2 and AtGA2ox3

were barely detected. Application of GA3 that cannot be

metabolized by GA2oxs (Sakamoto et al., 2001) resulted in

a differential response in the treated plants (Supplementary

Table S2 at JXB online; Fig. S6). GA treatment rescued

L.1/G1 height as a result of increasing internode number

and length. However in L.4/G2, GA treatment caused
a significant plant height reduction (;47%). To evaluate

the effect of GA, the expression of the different GA-

regulated genes was assessed (Fig. 5D). In L.1/G1, the

accumulation profile of the different GA-responsive genes

was similar to that in the WT, while in L.4/G2, only

a modest increase in the various GA-up-regulated tran-

scripts was observed; however, AtGA2ox2 and AtGA2ox3

remained undetectable. Generally, the GA biosynthesis
inhibitor (PAC) and SD conditions reduced stem elongation

and shoot growth of all treated plants (Supplementary Fig.

S6 at JXB online). However, this effect was very pro-

nounced in L.1/G1, and half of the plants were dead before

completing their life cycle.

Developmental phenotypes of PslGA2ox lines

In order to validate the previous data, the PslGA2ox lines

were phenotypically characterized for some well known

Fig. 2. PslGA2ox accumulation on EG/M, DGO24, and EG/D. All

RT-PCR experiments were repeated at least three times with three

different cDNA synthesized from three different RNA extractions for

the same sample. The required number of cycles necessary for

exponential, but non-saturated PCR amplification was determined

using the cDNA from the highest expressing sample (DGO24).

Table 1. Concentrations of bioactive GAs in plum shoots

Plum tree GA concentration (ng g�1 DW)

GA1 GA4

EG/M (control) 2.8160.91 16.8362.2

DGO24 0.560.18** 2.060.84**

EG/D 0.6660.08** 4.5360.95**

The GA concentration is given in ng g�1 dry weight. The values are the
average of three replicates. Statistically significant differences from the
applicable control are indicated by (**) for the probability level (P < 0.01).

GA inactivation and plant development | 1229

Downloaded from https://academic.oup.com/jxb/article-abstract/63/3/1225/469185
by INRA (Institut National de la Recherche Agronomique) user
on 06 August 2018

http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1
http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1
http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1
http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1
http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1
http://www.jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/err345/-/DC1


GA-related traits. Furthermore, the plants were grown

under various GA-unlimited or -limited conditions.

Root elongation

Recent studies suggested that GA inhibited root growth by

suppressing lateral root formation (Eriksson et al., 2000;

Gou et al., 2010). Relative to the WT, all Group-1 plants

exhibited compact shoot growth associated with accelerated

root formation. Root lengths of Group-1 plants were

enhanced by ;30–61%. In contrast, all Group-2 plants

displayed extended shoot length with roots significantly

shorter than the WT, ;20–33% (Supplementary Table S3 at
JXB online; Fig. 6A). GA application caused a rapid stem

elongation with a concomitant suppression in root de-

velopment in all treated plants; however, these responses

were much less in the case of Group-1 (Supplementary

Table S3 at JXB online; Fig. 6B).

Flowering characteristics

GAs are involved in the developmental events leading to

reproductive competence, as well as in floral determination

and commitment (Cheng et al., 2004; Rieu et al., 2008b).

The flowering time was considerably delayed in Group-1
transgenics (+5.6360.7 d) and accelerated in Group-2

(–6.9360.7 d) relative to the WT (Supplementary Table S4

at JXB online). GA application noticeably restored flower-

ing time in Group-1; however, it did not significantly

influence Group-2. PAC and SD conditions substantially

retarded the transition to flowering in Group-1 by ;20 d

and ;65 d, respectively. However, Group-2 treated with

PAC or exposed to SD started flowering ;10 d earlier than
the corresponding WT.

WT Arabidopsis flowers exhibit a typical coordinated

flower structure that ensures proper self-pollination. Group-1

plants displayed generally smaller flowers and their filaments

Fig. 3. (A and B) Close-up views of EG/M and EG/D flowers and fruits, respectively, before and after GA application. (C) The changes in

EG/D fruit size and weight, before and after GA treatment, compared with their counterpart in EG/M fruit.
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were usually shorter than their pistils. A similar flower

structure was observed in Group-2, but this was largely due

to acceleration of pistil growth (Supplementary Table S4 at

JXB online; Fig. 7). Such variation between the stamens and

pistil can cause a major reduction in fertility, especially in
self-pollinated species. GA application visibly changed the

flower structure. In Group-1, the flower size, pistil and

stamen lengths were mostly restored; however, the stamen

remained shorter than the pistil. In contrast, GA reduced

overall Group-2 flower size without a visible change in

structure. In general, PAC and SD treatments reduced the

size of the various floral organs. In the case of Group-1, SD

conditions significantly affected pistil elongation, resulting in
filaments much longer than the pistils. Although Group-2

pistil length was also reduced due to SD, the flowers were

generally larger than SD-grown WT.

Role of PslGA2ox in floral organ patterning

Arabidopsis flowers consist of a precise pattern of organs

arranged in four concentric whorls. In addition to the
regular flowers, all Group-1 members also exhibited fused

flowers (Fig. 8A). These abnormal flowers hold eight short

stamens with often fasciated filaments (Fig. 8B). In some

instances, the stamens were completely malformed beyond

recognition (Fig. 8C). Additionally, they also had two

separate, functional pistils, as they progressed towards

maturity (Fig. 8B, D). Such fused flowers were alternatively

arranged in a pre-set pattern along with regular flowers
within the whole plant (Fig. 8E). In spite of these defects,

both the pollen and pistil seemed to be at least partially

viable as pollen germination and occasional seed set could

be observed. These results indicate that Group-1 plants

exhibited major disorder in the floral organ identity pro-

cedure, while GA treatment along with LD conditions was

largely enough to recover all defects in plant development

including floral organogenesis (Supplementary Fig. S7A at

JXB online). To investigate the cause of floral organogene-

sis deformities, the expression profile of a set of genes

involved in floral patterning, such as LFY and the floral

homeotic genes from classes B (AP3 and PI) and C (AG),

were studied (Parcy et al., 1998; Lohmann and Weigel,
2002). Relative to the WT, accumulation of all studied

transcripts dramatically decreased in L.1/G1 (Supplemen-

tary Fig. S7B at JXB online). Thus, it was decided to

examine further the potential involvement of GA in the

promotion of floral-related gene expression. Interestingly,

GA treatment restored the regular flower patterning as well

as the levels of all studied genes (Supplementary Fig. S7A,

B at JXB online). Growing Group-1 mutants under SD
increased the disturbance in the floral organs (Fig. 9). The

whole plant exhibited flowers with reduced number of

stamens that were not consistent either in thickness or in

length. Some flowers displayed fasciations of stamens at

filaments and/or anthers (Fig. 9A). In other flowers, the

stamens fused to other floral organs such as petals or carpel,

and the anthers were malformed (Fig. 9B, C). In yet other

cases, the filament was totally absent, resulting in anthers
fused directly to the base (Fig. 9D). The stamens also show

other deformities such as rudimentary anthers on unusual

thick filamentous structure (Fig. 9E), such that the filament

and the anther could not properly differentiate. Similarly,

an abnormal short and thick stigma was also observed. In

such cases, the ovary is often split, exposing the ovules (Fig.

9E). Consequently, such disruptions in the flower organo-

genesis caused complete sterility. The results showed that all
these major disorders were associated with low or almost

undetectable floral patterning transcripts. Interestingly,

treatment of Group-1 plants under SD conditions with GA

recovered the different aspects of the plant growth pattern

to near normal (Supplementary Fig. S7C, D at JXB online).

Fruit growth and development

The time from pollination to silique occurrence was not

significantly altered in Group-2 mutants compared with the

WT in different growth conditions or treatments. In

contrast, silique formation was delayed by ;4.1 d in

Group-1, which could be partially restored by GA. How-
ever, both PAC and SD caused a dramatic delay in silique

emergence of Group-1 plants (Supplementary Table S4 at

JXB online). Moreover, WT and Group-2 siliques matured

at about the same time, while Group-1 siliques shattered at

least ;7.2 d later. GA treatment delayed silique maturity;

however, both mutant groups displayed a substantially

longer time than GA-treated WT to reach maturity. PAC

and SD treatments remarkably delayed Group-1 silique
maturation (;13 d and ;27 d, respectively). In contrast,

Group-2 siliques significantly shattered earlier. Further-

more, both silique length and seed number were drastically

reduced in both mutant groups (Supplementary Table S5 at

JXB online; Fig. S8). Siliques of Group-1 and -2 were

Fig. 4. Steady-state transcript levels of PslGA2ox mRNA assessed

by qRT-PCR in EG/M flowers and throughout fruit ontogeny.

During S1 and S2 of fruit development, the expression was

determined in the whole fruit. However, during S3 and S4, the

expression was determined in pulp (black filled bars) and in seeds

(grey filled bars). The experiments were carried out in three

biological replicates, and error bars represent the SD. The y-axis

refers to the mean molecules of PslGA2ox per reaction/mean

molecules of PsAct. The x-axis represents the developmental

stages indicated by the number of days after bloom (DAB).
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reduced in length by ;68% and 30%, respectively. Even

more strikingly, both mutants exhibited a reduction in seed
content by ;96% and 61%, respectively. Most Group-1

seeds were not completely developed as determined by their

flat shape and low germination. Both mutants strongly

responded to GA application; however, their responses were

contradictory. In Group-2, GA caused inhibition in silique

length and seed number. In contrast, Group-1 siliques

elongated greatly along with increased seed content; how-

ever, both traits remained less than in the WT. PAC and SD

significantly suppressed both traits, although Group-2

exhibited more tolerance for these GA-limiting conditions.
In addition, all Group-1 siliques were short, thin, usually

seedless, and ;42% of them exhibited a twisted shape

(Supplementary Fig. S9 at JXB online); and this phenotype

continued throughout the entire plant ontogeny. GA

treatment resulted in full recovery of silique shape. Appar-

ently, Group-1 bent siliques seem to be a result of unequal

distribution of GA levels between the two silique sides

resulting in differential elongation rate.

Fig. 5. (A) Aerial portions of WT and the two phenotype groups resulting from ectopic expression of PslGA2ox in Arabidopsis under LD

conditions. (B) PslGA2ox accumulation in the WT and the different transgenic mutants. (C and D) The expression of the different GA-

responsive genes in the WT and a representative from each group of mutants (L.1 and L.4) in the absence (C) and presence (D) of GA.

Transcripts accumulation was determined using qRT-PCR on three biological replicates. Standard curves were used to calculate the

numbers of target gene molecules per sample, which were then normalized relative to AtAct expression.
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Group-2 mutants show sensitivity to exogenous GA

Endogenous GA levels are the result of an antagonistic

reaction between GA biosynthesis and inactivation mecha-

nisms (Hedden and Phillips, 2000). Therefore, any distur-
bance in this machinery can modify the accumulation of

active GAs (Rieu et al., 2008a, b). Previous data illustrated

that Group-2 exhibited much higher sensitivity to GA than

the WT. Application of GA caused a major reduction in

silique length of both the WT and L.4/G2. In order to

confirm this inhibitory consequence of GA, WT and L.4/G2

plants were treated with gradually increasing concentrations

of GA (Supplementary Fig. S10A at JXB online). Significant
reduction in L.4/G2 silique elongation occurred with a GA

concentration of 5 lM; however, the WT responded only to

50 lM GA concentrations (Supplementary Fig. S10B).

Discussion

Ten dwarf plum hybrids due to deficiency of unknown GA

signalling were identified. Then, a cDNA sequence encoding

GA 2-oxidase (PslGA2ox), the major GA catabolic enzyme

in plants, was used to screen the 10 hybrids. This resulted in

the identification of a plum hybrid (DGO24) that showed
extremely high PslGA2ox accumulation, concomitant with

low accumulation of bioactive GA1 and GA4. The irregular

growth pattern of DGO24, including the compact stature

and deformed flowers, is transmissible to the scion in

grafted trees, to a certain extent. Thus, it is possible to

interpret this to mean that DGO24 rootstock may be

involved in the inactivation of bioactive GAs within the

scion part, which is further supported by the low amount of

active GAs in EG/D compared with control trees.

PslGA2ox is a member of class I GA2oxs, which catalyse

the conversion of active C19-GAs into inactive forms by 2b-
hydroxylation. As a consequence of lack of any apparent

targeting sequence in GA2ox proteins, they were assumed
to be cytosolic enzymes (Sun, 2008). The present results

showed that PslGA2ox protein is localized in both the

cytoplasm and the nucleus. Interestingly, the GA receptors

(GID1s) also exhibit a similar localization behaviour

(Ueguchi-Tanaka et al., 2005), suggesting that GA2oxs act

as GID1s by binding the bioactive GAs with high affinity,

but to convert them into inactive forms.

In tree fruit crops, dwarfism induced due to GA deficiency
is an advantage; however, synchronized levels of endogenous

GA are still very important to ensure correct fruit de-

velopment and production (Serrano et al., 2007). EG/D trees

exhibited a significant delay in fruit development. The re-

establishment of fruit development is dependent on the

availability of sufficient GA in the appropriate developmen-

tal stages, when the requirements for GAs are essential.

Dunberg and Odén (1983) showed that the active GA4 is the
most effective GA form leading to flowering promotion and

reproductive growth. Thus, the scarcity of overall active GA

content, particularly GA4, within EG/D trees can explain the

distortion in flower structure and the delay in flowering

events as well as the shift of the overall fruit ripening date.

Consequently, determining the role of GA during fruit

ontogeny has convenient implications in understanding and

controlling the fruit development process.
Studies on the effect of GA on plant growth and

development have been hindered by their low abundance

and variation in forms, time, and localization. However,

examining the expression of genes encoding enzymes in-

volved in GA biosynthesis and catabolism provides an

alternative approach for such studies. Interestingly, the

evolution of PslGA2ox accumulation was generally aligned

with the quantification of bioactive GAs during plum fruit
development (Yamaguchi and Takahashi, 1976; Bukvoac

and Yuda, 1979; this study). Analysis of the PslGA2ox

expression profile indicated that GAs play important roles

in fruit development, mainly throughout immature stages

before ripening. In flowers, the abundance of PslGA2ox

transcripts suggested a dominant task of GA in promoting

flowering and elucidated the role of PslGA2ox enzyme in

regulating GA accumulation during this stage (Dunberg
and Odén, 1983; Pharis and King, 1985).

Throughout fruit development, it is almost certain that

the series of modifications that make the fruit proceed

through the consequent developmental stages involve many

different metabolic pathways. So far, only the hormone

auxin has been demonstrated to be involved in the

developmental program of Prunus fruit (Miller et al., 1987;

El-Sharkawy et al., 2008, 2009, 2010). However, previous
studies suggested cross-talk between GA and other hor-

mones in the regulation of different plant development

Fig. 6. Representative 15-day-old seedlings primary roots of WT,

L.1, and L.4 genotypes. Plants were grown in MS medium

(Murashige and Skoog, 1962) without or with (100 lM) GA3.

Bar¼10 mm.
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events, in particular with auxin in processes such as fruit set

and development (Fleet and Sun, 2005; de Jong et al., 2009;

Csukasi et al., 2011). Additionally, in Prunus spp., the
evolution of the plant hormones auxin and GA was found

to exhibit a similar pattern during fruit development

(Yamaguchi and Takahashi, 1976, Miller et al., 1987).

Furthermore, earlier studies in Prunus showed the stimula-

tory effect of exogenous auxin and GA on enhancing fruit

development (Jackson, 1968; El-Sharkawy et al., 2010; this

study). Taken together, apparently during plum fruit

growth, in particular during S1, S3, and S4 phases, the
actions of auxin and GA are not independent of each other

but are coordinated to regulate the progression of fruit

development, as has been proposed previously in other

plant systems (Serrani et al., 2007; Csukasi et al., 2011).

Recent studies reported that the growth of seeded tomato

fruits is coordinated by a delicate balance between auxin

and GA (de Jong et al., 2009), where auxin is needed

to mediate the rate of cell division, and GA is required to
organize cell expansion. The mutual effect of the two

phytohormones was further validated in the development

of parthenocarpic fruit. Either auxin or GA treatment can

promote parthenocarpic tomato fruit growth, whereas

neither of them alone was able to maintain the growth rate

to the end of ripening. Only the joint application of both

hormones resulted in parthenocarpic fruits similar to those

obtained by pollination (Serrani et al., 2007). This is
accurate for the different developmental stages, excluding

the S2 phase. As mentioned previously, during the S2 stage

there is hardly any increase in fruit size (no evidence of cell

division and the expansion process), which coincided with

a significant reduction in auxin content (Miller et al., 1987).

Therefore, the accumulation of GAs during the S2 stage

seems to be due to the lignification of the endocarp to form

a solid stone, which is the only developmental process
occurring during this stage. Biemelt et al. (2004) demon-

strated that GA mediates lignin formation and deposition

by polymerization of pre-formed monomers.

Further, in terms of gene expression, it was noted that

during fruit maturation and ripening (S3 and S4) when the

seed separated from the pulp, the signal of PslGA2ox

detected in the developing seeds was almost 6-fold higher

than its counterpart in the pulp. Also, PslGA2ox displayed
a contrasting accumulation profile between fruit pulp and

seed. The up-regulation of the transcript in the pulp usually

coincided with its down-regulation in the seed. Accordingly,

it seems that seed is mainly responsible for GA biosynthesis

within the plum fruit; however, both seed and pulp could be

Fig. 7. Close-up views of WT, L.1, and L.4 flowers from plants exposed to several growth conditions: LDs, GA, PAC, and SDs. Sepals

and petals were removed to reveal the anthers and pistil. Bar¼10 mm.
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the site of action of this hormone depending on GA

requirement. Previous studies suggest that as seed germina-

tion proceeds, the GA-dependent transcriptional events are

not restricted to the sites of GA biosynthesis (Ogawa et al.,
2003). However, there are other cases where bioactive GA is

produced at their site of action (Kaneko et al., 2003;

Csukasi et al., 2011). Further, the role of seeds in stone

fruit development was determined by Jackson (1968) and

Miller et al. (1987) who provided evidence that seeds

stimulate fruit growth and ripening by providing auxins

and GAs.

Ectopic expression of PslGA2ox in Arabidopsis generated
two groups of plants that exhibited two contradictory

phenotypes. Group-1 displayed a typical GA-deficient

phenotype and consequently exhibited substantial disorder

in all GA-regulated transcripts. Interestingly, both Group-1

mutants and EG/D trees displayed many common GA-

deficient growth traits, including compact vegetative growth

and general disturbance in reproductive development events,

which is indicative of the role of PslGA2ox in producing this
phenotype. The previous growth properties along with the

accelerated root formation are a common behaviour in GA-

deficient mutants (Koornneef and van der Veen, 1980;

Griffiths et al., 2006; Rieu et al., 2008b; Gou et al., 2010).

Although the disturbances in the flowering characteristics

were the most pronounced outcome in Group-1 mutants, it

still can produce flowers. Previous reports indicated that the

development of floral organs is usually interrupted in GA-

deficient plants (Goto and Pharis, 1999; Cheng et al., 2004)

or in plants incapable of responding to GA (Griffiths et al.,
2006), which triggers flower infertility. However, most of

these mutants remained leaky to some degree, and can

produce small amounts of active GAs, sufficient to induce

flowering even under severe GA growth conditions such as

SDs (Wilson et al., 1992). In Arabidopsis, development of

floral organs is under the control of homeotic genes that

must be accessible to maintain the typical organogenesis

process (Weigel and Meyerowitz, 1994). In Group-1 flowers
under LDs or SDs, transcripts of the different floral organ

identity genes were significantly lower, which can explain

the abnormal flower formation. However, the plant pheno-

type along with the expression profile of homeotic genes

before and after GA treatment suggests its essentiality to

maintain their accumulation and subsequently have a cor-

rect flower patterning (Lohmann and Weigel, 2002;

Eriksson et al., 2006; this study). Arabidopsis is a facultative
LD plant and its flowering is controlled by the interplay

between three different pathways: LDs, an autonomous

pathway, and the GA pathway. However, only the GA

pathway plays a central role in the control of flower

initiation under SDs (Mouradov et al., 2002; Boss et al.,

2004; Putterill et al., 2004). Apparently growing Group-1

Fig. 8. Close-up views of defective L.1 flowers under LD (A). The arrowheads indicate the fused filaments (B) and stamen-like organ (C).

The circle in (D) indicates the connection region between the twin siliques. (E) The frequency of the twin silique pattern in an

inflorescence.
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members under LDs alone can relatively minimize, but not

prevent, the disturbance in the floral organogenesis pro-
cedure (Weigel et al., 1992). However, the disorders under

SDs were more severe, and this is largely due to the critical

LFY levels that are the target of photoperiodic regulation

(Blázquez et al., 1997) and GA (Eriksson et al., 2006).

Consequently, GA treatment resulted in proper re-

establishment of most Group-1 growth deformities under

both LDs and SDs, including vegetative growth and floral

organogenesis through restoring the accumulation profile of
the various GA-regulated transcripts especially those of

floral organ identity mRNAs.

In contrast, in Group-2 plants, PslGA2ox insertion

somehow caused co-suppression of the closely related

Arabidopsis homologous AtGA2ox2 and AtGA2ox3 that

probably lead to an overall increase in active GAs (Rieu

et al., 2008a). Consequently, the different GA-related tran-

scripts accumulated in a manner resembling unlimited GA
conditions. Further, at the phenotypical level, Group-2

mutants demonstrated a characteristic ‘GA overdose’

growth pattern (Sun, 2000). Fleet and Sun (2005) reported

that plants exhibiting a GA overdose phenotype showed

excessive growth and increased sterility, suggesting the

importance of optimal GA levels to ensure proper growth

and development. The overall growth pattern of Group-2

plants resembled that of ga2ox quintuple mutant (Rieu
et al., 2008a) or those of GA-treated WT plants. The

present results showed that any additional GA caused

contradictory responses in Group-2, probably due to reach-

ing lethal levels of the hormone. Synchronized elongation

of the pistil and filament is essential to ensure efficient

pollination within the flower. High levels of GA can induce

male sterility and cause excessive elongation of the pistil
(Sawhney and Shukla, 1994; Colombo and Favret, 1996).

Plants carrying mutations in the biosynthetic (GA20oxs) or

catabolic genes (C19-GA2oxs) exhibited extended pistils,

resulting in partial infertility (Rieu et al., 2008a, b). A loss

of fertility has also been described for WT plants treated

with GA (Jacobsen and Olszewski, 1993) and for double

mutants in the GA signalling repressors, RGA and GAI

(Dill and Sun, 2001). Here, it is shown that Group-2 plants
behaved similarly, which appears to be due to increased

length of the pistil relative to the stamen that consequently

reduces the self-pollination efficiency. Apparently, many

GA-dependent mechanisms might be quite saturated within

this group. Any additional GA results in serious disruptions

of growth and development. The inhibitory effect of GA

was clearly demonstrated by treating L.4/G2 with gradually

increasing GA concentrations, which caused a significant
reduction in silique length using 10-fold lower GA concen-

trations compared with the WT. The growth pattern of

Group-2 plants under GA-deprived conditions further con-

firms the GA overdose phenotype. Rieu et al. (2008a)

observed that PAC-treated ga2ox quintuple mutant exhibited

a general growth spurt in comparison with treated WT.

Further, PAC-treated and SD-grown L.4 plants exhibited

earlier flowering onset, earlier silique maturation, and larger
siliques than the WT exposed to the same conditions.

Rootstocks play a key role in improving and eventually

stabilizing productivity in perennial crops, as they can adapt

to diverse environmental conditions, which makes rootstock

breeding as important as creating new varieties.

Fig. 9. Developmental defects of L.1 floral organ structure due to SDs. The arrowheads indicate the fused filaments and anthers (A), stamens

fused to petals (B), the stamen-like organ fused to the carpel (C), the anther fused directly to the base (D), abnormal stamen structure (E), and

stamen formed inside the ovules accompanied by opened ovule phenotype.
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Manipulation of plant stature, through classical plant

breeding or use of plant growth regulators, has long been

a major goal in tree fruit horticulture. Though the use of

‘anti-GA’ growth regulators showed success in controlling

plant stature, efficient size reduction in perennial species,

such as plums, requires repeated application of synthetic

chemicals, which can be costly both commercially and

environmentally. Therefore, selection and use of dwarf
rootstocks that exhibits GA deficiency provides an environ-

mentally attractive approach.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Amino acid sequence alignment of PslGA2ox

with closely related GA2ox sequences using the ClustalX

program.

Figure S2. The full-length PsGA2ox gene was fused to the

GFP tag. Nicotiana tabacum protoplasts were transfected

with the following constructs: (A) the control 35S::GFP and
(B) PslGA2ox::GFP.

Figure S4. View of EG/M, DGO24, and EG/D trees

under field conditions.

Figure S5. Branches from EG/M (A) and EG/D before

(B) and after GA application (C).

Figure S6. Aerial portions of WT, L.1, and L.4 plants

exposed to several growth conditions, sprayed with 100 lM
GA3, treated with 10 lM PAC, and short days (SD).

Figure S7. Close-up view of L.1 plants and defective

flowers which resulted under LD (A) or SD (C) conditions

with and without GA treatment. (B and D) Transcript

accumulation of the Arabidopsis floral meristem identity

gene (LFY) and floral homeotic genes (AP3, PI, and AG)

assessed by qRT-PCR in inflorescence apices of WT and

L.1 plants grown under LDs (B) or SDs (D) with and

without GA treatment.
Figure S8. Close-up views of WT, L.1, and L.4 siliques

from plants exposed to several growth conditions, LDs,

GA, PAC, and SDs.

Figure S9. Close-up views of twisted L.1 siliques and the

suppression of such a phenotype by GA application during

different stages of silique development.

Figure S10. Representative image (A) and growth pattern

(B) of the inhibitory effect of GA on WT and L.4 silique
elongation.

Table S1. Oligonucleotide primers.

Table S2. Stem growth phenotype characterization of WT

and transgenic Arabidopsis plants expressing PslGA2ox as

shown in Fig. 5.

Table S3. The effect of GA treatment on root elongation

of WT and transgenic Arabidopsis plants expressing

PslGA2ox as shown in Fig. 6.
Table S4. Flower growth phenotype characterization of

WT and transgenic Arabidopsis plants expressing PslGA2ox.

Table S5. Silique growth phenotype characteristics of WT

and transgenic Arabidopsis plants expressing PslGA2ox as

shown in Supplementary Fig. S7.
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