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Estimating and Testing Zones of Abrupt Changes for Spatial
Data

Denis Allard1, Edith Gabriel1 and Jean-Noël Bacro2
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2 UMR CNRS 5149, Equipe de probabilités et statistiques, Université Montpellier II
Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France

Summary. We propose a method for detecting the zones where a variable, irregularly sampled
in the plane, changes abruptly. Our general model is that under the null hypothesis the variable
of interest is the realization of a stationary Gaussian process with constant expectation. The
alternative is modeled as a discontinuity of the expectation along a set of curves. A local test
is first built using distribution properties of the estimated gradient under the null hypothesis.
The points where the local test is rejected define the potential Zones of Abrupt Change (ZACs).
These local tests are then aggregated into a single global test. The theory that links the local
tests and the global test is based on asymptotic distributions of excursion sets of nonstationary
χ2 fields. We first establish new results about the curvature at local maxima of these fields and
give the asymptotic distribution of the area of the connected components of the excursion sets
for high thresholds used to test the global significance of the potential ZACs. Issues arising when
implementing the method in practice are discussed and the method is evaluated by a simulation
study. Its application to a soil data set from an agricultural field shows how it can be used in an
exploratory analysis for proposing a subdivision of the domain. Finally, it is compared to other
existing methods which estimate local rates of change.

KEY WORDS: Gradient estimation; Changecurve; Excursion set; Gaussian random fields; Non-
stationary χ2 random fields; Geostatistics.

1 Introduction

In this paper we propose a method for detecting the zones where a variable, irregularly sampled

in the plane, changes abruptly. Our general model will be that the variable of interest is a

realization of a process Z(x) on a domain D, whose mean function may present abrupt change.

Under the null hypothesis H0 the process is stationary and has a constant expectation on

D. The alternative H1 is a discontinuity of E[Z(x)] along a set of curves Γ. Detecting the

discontinuities of E[Z(x)] amounts to reject the null hypothesis. We are not interested in
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mapping the zones where the gradient is high under the null, but in detecting the zones where

the gradient corresponds to departure from the null. Note that there is no assumption about

the shape of the curves. They can be regular curves in the plane, intersecting or not. Because

we consider the case of irregular sparse sampling, it will not be possible to estimate precisely

these curves, but rather the zones of sharp variations. Hence we prefer to refer to the estimation

of Zones of Abrupt Change (ZACs).

Since ZACs can have a complex geometry in the plane, methods for estimating ZACs must

be assumption free about their shape. A discontinuity of the expectation field along a straight

line is illustrated in Figure 1a, along a sine wave in Figure 1b. The discontinuity jump is not

constant: it has high values in the center of the image and tends to zero near the edges.

a) b)

Figure 1: Typical examples of abrupt changes to be estimated

Mapping the zones where a variable under study changes abruptly is a problem encountered

in many biological, ecological or agricultural applications. A first example is the study of popu-

lations in biology [Womble (1951), Barbujani et al. (1989)]: abrupt changes in allele frequencies

of populations can be linked to the boundaries between different populations. A second example,

used in this paper to illustrate the methodology, comes from agricultural applications. Precision

agriculture aims at defining a location-dependent management within an agricultural field, for

nitrogen fertilization for example. The agricultural field is thus divided into homogeneous zones,

on the basis of soil samples (Ciba Foundation Symposium on Precision Agriculture, 1997).

Estimating ZACs is a problem related to boundary estimation, edge detection, or change

2
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curve estimation. Edge estimation plays an important role in signal and image processing and

there is an extensive body of literature about this subject. Many methods have been investigated,

including Markov random fields [e.g., Geman and Geman (1984), Besag (1986) and Besag et al.

(1995)], wavelets (Wang, 1998) and non parametric methods (Qiu, 1998).

The problem of estimating discontinuity curves in the plane with irregularly located samples

has been much less addressed. Womble (1951) and Barbujani et al. (1989) considered an

empirical method based on the upper quantile of the norm of the gradient computed on a

grid. By construction, this method always detects the same proportion of grid points with high

gradient, without assessing their significance.

Hall et al. (2001) proposed a non parametric tracking method based on spatial approxima-

tions of the local likelihood that the discontinuity curve passes through a given point in the

plane, as a function of that point. Since it is based on tracking, it needs a starting point in the

vicinity of the discontinuity. Also, local likelihood tracking implicitly assumes the existence of

a discontinuity curve and therefore does not provide a way of testing its existence.

Godtliebsen et al. (2002) proposed a scale-space approach for finding significance in spatial

data, which is a spatial generalization of the kernel method called SiZer developed in Chaudhuri

and Marron (1999, 2000) in one dimension. It computes the kernel smoothing for a range of

bandwidth h and assesses the significance of the slope for all h. Visualization is done by movies

(time corresponding to bandwidth) and with pictures using streamlines along significant gradient

vectors and contours. This method requires heavy computations and visualization is not easy

to interpret.

Shen et al. (2002) considered the related problem of detecting the presence of a signal f on a

spatial domain D, i.e. testing the null hypothesis of whether f is 0 versus the alternative that it

is nonzero somewhere. Their method assumes that the data are modeled as a Gaussian process

Z(x) = f(x) + ε(x) where ε is a zero centered Gaussian stationary process. It uses a wavelet

decomposition of the data observed on a grid and tests simultaneously the null hypothesis of

whether the wavelet coefficients are 0 versus the alternative that they are not. They proposed a

method for controlling the probability of type I errors when performing the simultaneous tests

3
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on the wavelet coefficients.

Banerjee et al. (2003) proposed a Bayesian approach for estimating the gradient surface of

a spatial process that is irregularly sampled. This approach provides estimates of the posterior

distribution of the gradient. However, it does not provide a way to test globally the presence of

ZACs. We will return to this point in Section 6.2.

Here we propose an approach based on the distribution of the estimated gradient that links

the local tests of “high gradient” to a global test for testing H0 vs. H1. We will assume that

under the null hypothesis Z(x) is second order stationary, i.e. has a constant expectation and

a covariance function Cov(x, y) that only depends on x − y. The sketch of our method is the

following. We first perform an optimal interpolation of the gradient using the geostatistical

paradigm. The variable Z being irregularly and presumably sparsely sampled, the estimated

bivariate gradient is nonstationary. We then define a local test statistic related to this estimated

gradient, which enables us to detect all points where the null hypothesis is locally rejected. This

set of points defines the potential ZACs. It does not necessarily define curves and it is usually

disconnected. We then aggregate these local tests in a global test for each connected component

of the potential ZACs, using the asymptotic distribution of their area under the null hypothesis.

This method involves two different levels of significance. Let us denote 1 − η the global level of

significance and 1 − α the local one. The global probability of type I errors, η, results from the

simultaneous consideration of multiple local tests at the level 1−α. It will be shown that on the

plane the value α that achieves the global level η is a function of η and the covariance function

only. However, because in practice we work on a grid, α will also depend on other parameters

such as the mesh of the grid on which computations are performed and the sampling pattern.

We will show that it is possible to find the appropriate α that controls a specified level η, say

η = 0.05, and that our method is quite robust with respect to the above mentioned parameters.

The theory that links the level α to η on the plane is based on the excursion sets of χ2 fields,

a theory developed in Adler (1981, 2000), Aronowich and Adler (1988), Worsley (1994) and

Cao (1999). Standard χ2 fields are defined as the sum of squared, independent and identically

distributed Gaussian stationary random fields. In our problem, these basic requirements do not

4
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hold because we deal with the gradient of an interpolated field. In consequence, the χ2 field

considered here is the sum of squared, nonstationary, not independent Gaussian random fields.

We will then need to develop theoretical results for this nonstationary χ2 field.

This paper is organized as follows. The method is presented in Section 2 along with all the

theoretical results that are needed. In Section 3 we show how the method must be implemented

in practice. Performances and robustness are evaluated through a simulation study in Section

4. In Section 5, the method is illustrated on the exploratory analysis of a soil data set in the

context of precision agriculture. In Section 6 we compare this method with the approach in

Banerjee et al. (2003). We conclude with possible extensions and a discussion.

2 The method

2.1 General framework

Let Z = (Z(x1), . . . , Z(xn))
′

be a sample of some real valued, Gaussian random field Z(x), at

the locations x1, . . . , xn of some domain D of R2. Here and in the rest of the paper, V ′ (resp.

A′) denotes the transpose of a vector V (resp. of a matrix A). We will assume the following:

A1 : the covariance function c(h) of Z(x) exists and is stationary.

A2 : c(h) is infinitely differentiable when ||h|| > 0.

Assumption A1 is usual in spatial statistics. In the discussion, Section 6, we will show that at

a very low computation cost this assumption can be weakened to a less demanding assumption.

For the sake of clarity we assume here the more restrictive assumption A1 and develop our

method in this case. Assumption A2 is less usual, because it is about the regularity of the

covariance function away from 0. It is a mild condition and is verified for most used covariance

functions, e.g. for the Matérn class of covariance function c(h;κ, φ) ∝ (φ||h||)κKκ(φ||h||), where

Kκ(·) is the modified Bessel function of order κ and φ is a scale parameter. When κ = 0.5 we

obtain the exponential covariance function. See Stein (1999) for further details on the Matérn

class in the context of spatial interpolation. A2 is however not verified for the popular spherical

covariance function c(h) = σ2{1−1.5||h||/b+0.5(||h||/b)3}, for ||h|| ≤ b and c(h) = 0 if ||h|| > b,

5
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because it is not twice differentiable for ||h|| = b. Note also that no assumption is required for

h = 0. In particular continuity or differentiability at the origin is not required.

The null hypothesis of absence of ZAC is formally defined as H0 : E[Z(x)] = µ for all x ∈ D,

and the alternative hypothesis is modeled as H1 : the set of the discontinuities of E[Z(x)] define

some non void set of curves Γ ⊂ D. No assumption is made about the number or the shape of

Γ. In particular Γ can be a single curve or a set of curves. They can be closed curves, or self

intersecting curves. We will consider hereafter that µ = 0 under the null hypothesis and the

more general case where µ 6= 0 is unknown will be discussed later in Section 6.

2.2 Estimation of the gradient

Since under the null hypothesis Z(x) is a zero mean Gaussian random function, the optimal

predictor of Z(x) at an unsampled location x is the linear combination of the n samples, called

simple kriging in geostatistics (see e.g. Cressie, 1993),

Z∗(x) = C(x)
′

C−1Z, (1)

where C(x) = (c(x−x1), . . . , c(x−xn))
′

and C = E[ZZ
′

] is the covariance matrix with elements

C[kl] = c(xk − xl), k, l = 1, . . . , n. The covariance function of the predictor is

Cov(Z∗(x), Z∗(y)) = C(x)
′

C−1E[Z Z
′

]C−1C(y) = C(x)
′

C−1C(y),

which shows that the field Z∗(x) is not stationary. We have the following result regarding the

field Z∗(x).

Proposition 1 For a covariance function verifying A1 and A2, the random field Z∗(x) is in-

finitely differentiable for all x, except possibly at the sample locations, both almost surely and in

the mean squared sense.

This proposition is a direct consequence of standard results on random fields. Rapidly

sketched, the argument is the following: for a given realization Z, the field Z ∗(x) = C(x)
′

C−1Z

inherits the differentiability property of the functions c(x−xk), k = 1, . . . , n. Hence it is infinitely

6
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differentiable for all x, except maybe for points where x − xk = 0, i.e. sample locations. This

implies that Z∗(x) is almost surely infinitely differentiable, except possibly at sample locations.

Mean squared infinite differentiability of Z∗(x) is then implied by the fact that Z is a Gaussian

vector with finite variance. More details can be found in Stein (1999) and Yaglom (1986).

At sample locations, Z∗(x) is continuous if c(h) is continuous at 0, and it is r times differ-

entiable if c(h) is 2r times differentiable at 0. If c(h) has a discontinuity at the origin (called a

nugget effect in the geostatistical literature), Z ∗(x) is discontinuous at sample locations. Since

the set of sample locations is a set of null measure in D, it is not a serious limitation. From now

on, we will consider that x is not one of the sample points: x ∈ D\{x1, . . . , xn}. According to

Proposition 1, the gradient W (x) of the estimated field Z ∗(x) exists and

W (x) = (W1(x),W2(x))
′

= (∂1Z
∗(x), ∂2Z

∗(x))
′

, (2)

with

∂iZ
∗(x) = ∂iC(x)

′

C−1Z,

where ∂i denotes the partial derivative along the coordinate i ∈ {1, 2}. If c(h) is twice differen-

tiable for h = 0, W (x) is the best linear unbiased predictor of the gradient of Z(x). If c(h) is

not twice differentiable for h = 0, which is for example the case for an exponential covariance

function, Z(x) has no derivative, but following Chilès and Delfiner (1999, p.314) in this case

we accept by extension W (x) as a predictor of the local gradient. Banerjee et al. (2003) pro-

vides a complete distribution theory of gradient processes under the assumption of a stationary

Gaussian process.

2.3 Local detection of a discontinuity

In a first step we test locally the presence of a discontinuity at a point x ∈ D\{x1, . . . , xn}. We

formally define the local test as follows H0(x) : E[Z(y)] = 0 for all y in a small neighborhood

around x, versus the alternative H1(x) : x ∈ Γ, where Γ is the discontinuity curve. The local

test will be rejected if the local gradient of the estimated surface is above some critical value, as

7
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presented below. Let us denote Σ(x) the covariance matrix of W (x) :

Σ(x) = E[W (x)W
′

(x)] = ∂C(x)
′

C−1∂C(x),

where ∂C(x) is the n × 2 matrix (∂1C(x), ∂2C(x)). Since Z(x) is a Gaussian field we have that

W (x) ∼ N2(0,Σ(x)). At a point x where Σ(x)−1 exists, we define

T (x) = W (x)
′

Σ(x)−1W (x). (3)

Note that the statistics T (x) is invariant to rotations. The matrix Σ(x) is invertible if none of

the vectors (∂iC(x)), i = 1, 2 are vectors of 0s, i.e. if the point x is not such that c(x − xk) = 0

for all k = 1, . . . , n. In such a case, Z∗(x) and W (x) are identically null, and no statement at all

can be made about the gradient. From now on, we will restrict ourselves to the set of points x,

denoted D0, such that Σ(x)−1 exists. For x ∈ D0, T (x) has a χ2(2) distribution. The local null

hypothesis is rejected if T (x) > t1−α = χ2
1−α(2) at the confidence level 1 − α. This procedure

can be applied on the nodes of a grid superimposed on the domain D under study, which enables

us to map the regions where the local test is rejected. The set of points were the local test is

rejected defines the potential ZACs.

We illustrate this first step on the following example. On the unit square, a sample of a

standard Gaussian random field with an exponential covariance function c(h) = exp(−||h||/b)

with b = 0.1 is simulated on 100 randomly located samples x1, . . . , xn, thus defining a vector

Z. To avoid potential numerical instabilities due to very close samples, these locations are

generated according to a Strauss process with a hard-core distance equal to 0.02. A discontinuity

is introduced by adding a constant a to all samples whose abscissa is less than 0.4. The case

a = 0 corresponds to H0 (absence of discontinuity). A realization of this process is depicted

Figure 2a for a = 2.5. The circles indicate the sample locations and their size is proportional to

the value. Figure 2b shows the local tests at the confidence level 1 − α = 0.9994. This level is

not arbitrary: it corresponds to a global level η = 0.05, as it will be explained in Section 3. Each

pixel of a 60× 60 grid is colored if the test statistic T in this pixel is above t0.9994 = 14.8. Black

pixels correspond to significant ZACs according to the theory developed in the next section,

while grey pixels correspond to non significant ones. A large vertical stripe of colored pixels is

8
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visible along the discontinuity. When the same procedure was applied with a = 0, there were

no pixel with a test statistic above t1−α.
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Figure 2: a) 100 randomly located samples of a standard stationary Gaussian random field with
the addition of a constant within the rectangle in dashed lines; b) Detection of the ZACs using
the true covariance; significant ZACs are in black; non significant ones are in grey; c) Detection
of the ZACs with an estimated covariance (last iteration).

If the random field is stationary, we should find a proportion of about α pixels in which H0(x)

is rejected (i.e. 2.16 pixels in the example above). The tests in neighboring grid nodes are not

independent, so we also expect these pixels to be close to each other. On the contrary, if there

is a discontinuity (or a sharp variation) of the expectation field, we must expect the grid nodes

where H0(x) is rejected to be much more numerous and located on, or near the discontinuity,

as illustrated in Figure 2b.

The final step is now to propose a global test for rejecting H0 versus H1. This necessitates

to simultaneously test the dependent simple tests H0,s versus H1,s, where s is an index for

the grid nodes in the potential ZACs. We will follow an approach similar to the one used

in functional RMI (Worsley, 2001) and obtain an asymptotic distribution for the area of the

connected components of the potential ZACs for testing its significance.
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2.4 Global test for potential ZACs: theoretical results

Potential ZACs correspond to the excursion set of the field T (x) above a level t1−α. In this

section it will be shown that under H0 the area of a connected component, say St1−α
, of the

excursion set above t1−α is related to the curvature at the local maximum in the connected

component, according to:
t1−αSt1−α

|Λ|1/2

π
L
→ E(2) (4)

as t1−α → ∞, where E(2) is an exponential random variable with expectation 2 and Λ is a 2×2

matrix defined below. We first need to establish some theoretical results about the nonstationary

field T (x) under the null hypothesis, in particular about its curvature at a local maximum. Then,

we will prove equation (4).

2.4.1 The curvature of T (x)

Let us first introduce some new notations: for a twice differentiable field T (x), Ṫ (x) will denote

the vector (∂1T (x), ∂2T (x))
′

and T̈(x) is the 2 × 2 matrix whose elements are ∂2
klT (x), with

1 ≤ k, l ≤ 2.

We perform the change of variable U(x) = Σ(x)−1/2W (x) such that T (x) is the sum of two

independent, N (0, 1), squared random variables, T (x) = U 2
1 (x) + U2

2 (x). Explicitly,

U1(x) =
W1(x)

σ1(x)
, U2(x) =

1
√

1 − ρ2(x)

{

W2(x)

σ2(x)
− ρ(x)

W1(x)

σ1(x)

}

, (5)

where σi(x) =
√

Σ[ii](x), i = 1, 2 and ρ(x) = Σ[12](x)/{σ1(x)σ2(x)}. Let

ρij(x, y) =
E[Wi(x)Wj(y)]

σi(x)σj(y)
=

∂iC(x)
′

C−1∂jC(y)

σi(x)σj(y)

be the correlation function between Wi(x) and Wj(y), i, j = 1, 2. Then, ρ12(x, x) = ρ(x) and

ρ11(x, x) = ρ22(x, x) = 1. We have the following results regarding the covariance functions for

the fields U1 and U2 :

E[U1(x)U1(y)] = ρ11(x, y),

E[U1(x)U2(y)] = {ρ12(x, y) − ρ(y)ρ11(x, y)} /
√

1 − ρ2(y),

10
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E[U2(x)U2(y)] = {ρ22(x, y)−ρ(x)ρ12(x, y)−ρ(y)ρ21(x, y)+ρ(x)ρ(y)ρ11(x, y)}/
√

(1 − ρ2(x))(1 − ρ2(y)).

These equations show that the marginal distributions of U1(x) and U2(x) are stationary, but

that their covariance functions depend on both x and y. Hence, the fields are not station-

ary. Neither are they identically distributed (E[U1(x)U1(y)] 6= E[U2(x)U2(y)]) or independent

(E[U1(x)U2(y)] 6= 0).

Proposition 2 Conditional on Ui(0), U̇i(0) and Üi(0) (0 ∈ D0), the fields Ui(x) defined above

have the same distribution as:

Ui(0) + x
′

U̇i(0) +
1

2
x

′

Üi(0)x + ηi(x) (6)

in a neighborhood of 0, where ηi(x) is a Gaussian field with mean E[ηi(x)] = o(||x||2) and

covariance function E[ηi(x)ηi(y)] = o(||x||2||y||2).

Proof : We first re-write Ui(x) = Ai(x)′C−1Z, i = 1, 2, where Ai(x) are the vectors of length

n derived from (5). For lighter notations, we now drop the subscript i. The n (non random)

surfaces of A(x) are infinitely differentiable and hence so are the random fields U(x), both almost

surely and in the mean squared sense. For all realizations of Z, one can write

U(x) =
n
∑

k=1

Ak(x)[C−1Z]k =
n
∑

k=1

(

Ak(0) + x
′

Ȧk(0) +
1

2
x

′

Äk(0)x + Rk(x)

)

[C−1Z]k,

where Ak(0) is the k-th element of A(0) and similarly for Ȧk(0) and Äk(0), [C−1Z]k is the k-th

element of the vector C−1Z, Rk(x) ≤ Mk||x||
3 and Mk is a constant. Hence,

U(x) = U(0) + x
′

U̇(0) +
1

2
x

′

Ü(0)x + R(x)′C−1Z,

with R(x) = (R1(x), . . . , Rn(x))′. Then, conditional on V = (U, ∂1U, ∂2U, ∂2
11U, ∂2

12U, ∂2
22U)(0)′,

we have U(x) = U(0) + x
′

U̇(0) + 1
2x

′

Ü(0)x + η(x), where η(x) is a Gaussian random field with

E[η(x)] = R(x)′C−1E[Z | V ] and E[η(x)η(y)] = R(x)′C−1E[ZZ ′ | V ]C−1R(y).

Hence E[η(x)] = o(||x||2) and E[η(x)η(y)] = o(||x||2||y||2). 2

11



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Allard, D., Gabriel, E. (Auteur de correspondance), Bacro, J.-N. (2011). Estimating and testing

zones of abrupt change for spatial data. Statistics and Computing, 21 (1), 107-120.  DOI :
10.1007/s11222-009-9151-x

E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Statistics and Computing, 2011, 
vol.21, no.1, 107-120, DOI: 10.1007/s11222-009-9151-x 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 
 

We now move to the structure of the field T (x) near a local maximum. Let TT0
(x) be the

field T (x) conditional on the event that T (x) has a local extremum with height T0 at x = 0, i.e.

T (0) = T0, Ṫ (0) = 0, (see for example Adler (1981) for a precise definition of such a conditional

field). Let us also Λi(x) = E[U̇i(x)U̇i(x)
′

] = Var(U̇i(x)) denote the covariance matrix of the

gradient of the field Ui(x). Their expression, given in Section 3.1 and Appendix A, depends only

on the covariance function c(h) and its first and second order derivatives.

Theorem 1 Consider the fields U1(x), U2(x) and T (x) defined as above and let v(x) = U 2
1 (x)/T (x).

Conditional on T (x) having a local extremum at 0 ∈ D0 of height T0,

T−1
0 T̈T0

(0) + 2{v(0)Λ1(0) + (1 − v(0))Λ2(0)} = op(1),

as T0 → ∞, where T̈T0
(x) denotes the second order derivative of TT0

(x).

Theorem 2 Conditional on T (x) having a local maximum at 0 ∈ D0 of height T0, for x ∈ D0

in a neighborhood of 0,

TT0
(x/

√

T0) − T0 + x
′

{v(0)Λ1(0) + (1 − v(0))Λ2(0)}x = op(1), as T0 → ∞.

Theorem 1 states that for high local extrema of the field T (x), the matrix of second derivatives

converges in law to a negative definite deterministic matrix. Hence, the local extremum is a

local maximum. The proof of this theorem necessitates several lemmas and is given in appendix.

The proof of theorem 2 relies on a straightforward Taylor expansion of U1(x) and U2(x) and the

use of (6) and Theorem 1. These results are an extension of the results for standard χ2 fields

shown in Cao (1999).

2.4.2 Asymptotic distribution of the area of a potential ZAC

It is now possible to establish an asymptotic law for the area of the connected components of

the excursion set of T (x) above a high threshold t. Let us denote At the excursion set above a

threshold t, At = {x : T (x) > t} and Ct one of its connected components. According to Theorem

12
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2, for high levels t the field T (x) is approximately an elliptic parabolöıd in the neighborhood

of a local maximum, say of height Tm. The area of Ct, denoted St, is then the area of the

horizontal section of this elliptic parabolöıd at a distance Tm − t from the maximum. The next

two theorems provide an asymptotic distribution for the area St for high thresholds t. This will

allow us to use St as a test statistic for the global test.

Theorem 3 Conditional on T (x) having a local maximum T0 > t at 0 ∈ D0,

St =
T0 − t

T0
π|Λ(0)|−1/2 + op(1/T0), (7)

as t → ∞, where Λ(0) = v(0)Λ1(0) + (1 − v(0))Λ2(0) and | · | denotes the determinant of a

matrix and v is defined in Theorem 2.

Proof : According to Theorem 2, conditional on T (0) being a local maximum of height T0,

T (x) has the representation TT0
(x) = T0(1 − x

′

Λx) + op(1) on the connected component Ct =

{x : T0(1 − x
′

Λx) + op(1) > t} as t → ∞. Its Lebesgue measure is St =
∫

T0(1−x
′
Λx)+op(1)>t dx

which leads to the result. 2

Theorem 4 Conditional on T (x) having a local maximum T0 > t at 0 ∈ D0,

tSt
L
→ π|Λ(0)|−1/2E(2), (8)

as t → ∞, where E(2) is an exponential random variable with expectation 2.

Proof : We first show the following:

T0 − t = E(2) + op(1) (9)

conditional on T0 > t as t → ∞. We will use an argument similar to those used by Aldous

(1989): the local maxima of T (x) in D can be considered as a point process. Because T (x) is

infinitely differentiable, this point process is locally finite. Let us denote λ(z)dz the rate of local

maxima of heights in [z, z + dz[, i.e. the expectation of the number of such local maxima per

area unit. Then, assuming that border effects can be ignored,

P (T (x) > t) = e−t/2 =
1

ν(D)

∫

D

∫ +∞

t
λ(z)1Cy,z,t(x)dz dy,

13
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where ν(D) is the area of D and Cy,z,t denotes a connected component of the excursion set above

t having a maximum of height z at y. Now, x ∈ Cy,z,t ⇔ 0 ∈ Cx−y,z,t ⇔ y − x ∈ Č0,z,t with Č0,z,t

being the symmetrical of C0,z,t around 0. Hence,

P (T (x) > t) =
1

ν(D)

∫

D

∫ +∞

t
λ(z)1Č0,z,t

(y − x)dz dy.

Then,

e−t/2 =
1

ν(D)

∫ +∞

t
λ(z)S(0, z, t)dz,

where S(0, z, t) is the area of C0,z,t. According to Theorem 3, for high t and conditional on a

height z, S(0, z, t) = (z − t)π|Λ(0)|−1/2/z + o(1/z). Hence, neglecting o(1/z) and after rear-

rangement,

K

∫ +∞

t
λ(z)

z − t

z
dz = e−t/2,

where K = πν(D)−1|Λ(0)|−1/2. It is easy to check that λ(z) = (4K)−1ze−z/2 is the solution of

this integral equation. This leads to:

P (T0 > t + u | T0 > t) =

∫+∞
t+u λ(z)dz
∫+∞
t λ(z)dz

= e−u/2(1 + O(u/t)).

The rest of the proof is now straightforward. According to (9), as t → ∞, T0 = t + Op(1).

Plugging this in (7) leads to St = E(2)π|Λ(0)|−1/2/t + Op(1/t). 2

When t1−α is very large, there is with a high probability at most one connected component on

D under H0 and testing on each connected component is then equivalent to testing on the entire

domain D. This theorem enables us to reject for each connected component of the potential

ZAC the null hypothesis H0 of whether the connected component of the potential ZAC is from

a stationary random field versus the alternative H1. At a global level of confidence 1 − η, H0

will be rejected if

exp

(

−
t1−αSt1−α

|Λ|1/2

2π

)

< η,

where Λ is computed at the maximum of T (x) in Ct1−α
. On the plane, provided that t1−α is

large enough this test is exact. Because in practice we work on a grid, some care must be taken

regarding the appropriate value α for achieving a desired level η. We address this problem in

the next section.
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3 Practical implementation

We now detail how this procedure is implemented in practice. In particular we address succes-

sively the problem of the discretization of the plane by a grid, how the level α for this grid is

found and finally the estimation of the covariance function under the alternative.

3.1 Working on a grid

In this section we suppose that the covariance function is known. Its estimation is considered in

section 3.3. On each grid node (i, j), the gradient W (i, j), the matrix Σ(i, j) and the field T (i, j)

are first computed. On the grid nodes where Σ(i, j) is invertible, the gradient is multiplied by

Σ(i, j)−1/2, thus leading to U1(i, j) and U2(i, j). For these computations, the covariance matrix

C of the data, and for each pixel the covariance vector C(i, j) and its derivatives D1(i, j) =

∂1C(i, j) and D2(i, j) = ∂2C(i, j) are needed. They are computed from the covariance function

c(h) of the random field Z(x). We show here how to compute Λ1 at the grid node (i, j). Dropping

the dependence to (i, j) we have:

Λ1 [k,l] = E[∂kU1∂lU1] = E[∂k(W1/σ1)∂l(W1/σ1)] = {∂kD
′

1C
−1∂lD1−∂kσ1∂lσ1}/σ

2
1 , k, l = 1, 2,

where ∂kσ1 = ∂kD
′

1C
−1D1/σ1. There is a similar albeit much longer expression for Λ2, mainly

because of the factor involving ρ(x) that needs also to be differentiated. It is given in appendix.

For both Λ1(i, j) and Λ2(i, j) the second order derivatives ∂2
klC(i, j) need to be computed.

Then, for the level 1 − α, the set of the grid nodes whose statistic T (i, j) is above the 1 − α

quantile of a χ2(2) distribution define the potential ZAC. For each of its connected component,

its area St1−α
and the values U1, U2, v, Λ1 and Λ2 are computed on the grid node where T is

maximum. A p-value is then computed according to Equation (8) :

p = exp

(

−
t1−αSt1−α

|Λ|1/2

2π

)

, (10)

with Λ = vΛ1 + (1 − v)Λ2 and v = U 2
1 /T . Equation (10) is thus a numerical approximation of

Theorem 4 due to the discretization of the plane. This approximation was explored by means of
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a series of 1000 independent simulations under H0 as described in Section 2. On each of them,

the statistic X = t1−αSt1−α
|Λ|1/2/π was computed on all connected components of potential

ZACs. For conciseness considerations, the results are not illustrated here, but a discretization

effect was clearly apparent. Since the area of the excursion set decreases as the threshold t1−α

increases, the grid must be sufficiently fine to detect small connected components when the level

1 − α is high. For a combination of a coarse grid and a high threshold, the discretization effect

leads to a lack of small values for the statistic X. When the level 1 − α is not high enough, the

convergence in law (8) does not hold. In conclusion, the grid must be sufficiently fine to capture

all connected components of the excursion set and the level 1 − α must be sufficiently high for

the convergence in law to hold, but not too high relatively to the mesh of the grid. In all tested

situations, we found a 60 × 60 grid to be sufficiently fine.

3.2 Finding α

On a grid, the appropriate level α achieving a specified level η is thus a trade-off between the

necessity of having a high level for the convergence in law to hold on the one hand, and a level

that is not to high relatively to the mesh of the grid. Series of simulations not reported here

have shown that ZACs are less often detected as 1 − α increases due to the discretization effect

for high levels and more often detected as n increases, because the gradient is better predicted.

We propose to find the appropriate level by Monte-Carlo simulations under H0: a series of N

simulations of a Gaussian field under the null hypothesis, conditional on the same discretization,

sample locations and covariance function is performed. The level α̂ corresponding to η is then

defined as

α̂ = sup{α : Mα ≤ ηN}, (11)

where Mα is the number of simulations (among N) with significant ZACs at the level 1 − α.

We performed N = 1000 simulations with n = 100 on a 60 × 60 grid. An exponential

covariance model was simulated with b = 0.1 and b = 0.2. To each simulation correspond

specific sampling locations (randomly drawn according to a Strauss process), hence a specific

level 1 − αi, i = 1, . . . , N . A series of 100 realizations at the same sample locations are then
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generated and each value α̂i is found according to (11) for η = 0.05. The necessary number of

realizations for a given precision can be found using binomial confidence intervals, but this has

not been pursued here. For b = 0.1, 1 − α̂i ranges from 0.9973 to 0.9996, the median being

0.9991. It corresponds to thresholds for the χ2 field from 11.8 to 17.0, the median being 14.0.

For b = 0.2 these values are (1− α̂)min = 0.9987, (1 − α̂)max = 0.9998 and (1 − α̂)med = 0.9994.

Note that the number of samples, the covariance function and the grid being identical for all

simulations, the differences are only due to the sampling pattern. For these very high levels,

potential ZACs under H0 are almost always unique and very small (between 1 and 3 pixels).

Hence, at these levels, it is equivalent to consider that the global level of significance 1 − η is

defined for each connected component or globally for the entire domain.

To illustrate this procedure, we go back to the example depicted in Figure 2. Using Monte-

Carlo simulations, it was found that 1 − α̂ = 0.9994. The p-value of each connected component

of the potential ZACs is now computed using (10). When the p-value is smaller than η = 0.05,

it is considered as significant and colored in black; otherwise it is colored in grey. We define

the ZACs as the set of significant connected components of the potential ZACs. On Figure 2b,

there are three ZACs along the discontinuity; the p-value of the largest is less than 10−10, the

other two are 0.002 and 0.047. The other clumps have a p-value larger than 0.05 (from 0.080 to

0.632).

3.3 Estimation of the covariance function under the alternative

Equation (10) assumes that the covariance function is known. In practice when analyzing data it

is unknown and needs to be estimated. The covariance function is estimated using the variogram

function, which is widely used in the geostatistical literature, see e.g. Chilès and Delfiner (1999).

For a stationary random field Z(x) with variance σ2, the variogram

γ(h) = E[{Z(x) − Z(x + h)}2]/2, (12)

is related to the covariance function: γ(h) = σ2 − c(h). There are numerous methods for

estimating the covariance function. We have chosen to use a weighted least square fit, as
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advocated by Cressie (1993). It has the advantage of being implemented in many packages, and

we have used throughout the variofit function of the geoR package. Also, it is more robust

to departure from the Gaussian assumption than likelihood based methods. The estimated

parameters of the covariance function minimize the distance between a given parametric family

of variogram models and the experimental variogram γ̂(h) = 1/(2nh)
∑

xi−xj∼h{Z(xi)−Z(xj)}
2,

where nh is the number of pairs involved in the sum. We refer to the literature for a more detailed

presentation of the variogram and the practice of its estimation.

Under the alternative hypothesis, the presence of discontinuities in the expectation field leads

to some difficulties in the estimation of the variogram. The experimental variogram γ̂(h) involves

differences Z(xi)−Z(xj). If the points xi and xj are on different sides of a discontinuity this will

imply a bias in the estimated parameters of the variogram. In particular the estimated variance

σ̂2 will be overestimated. This will lead to smaller potential ZACs, higher p-values and ultimately

to a loss of power. To solve this difficulty, we propose the following iterative procedure. We first

estimate a global covariance function (i.e. using all pairs of samples) and a first set of ZACs.

We then re-estimate the covariance function, but all pairs of samples {Z(xi), Z(xj)} for which

the segment [xi, xj ] intersects a significant ZAC are discarded from the variogram estimation

procedure. ZACs are then re-estimated using the new covariance function, and the procedure is

iterated until convergence occurs. If the range parameter of the variogram changes, the level α

must be re-evaluated using a new series of simulations. Convergence is reached when the set of

ZACs remains unchanged. We have no formal proofs of the convergence of the procedure, but

convergence was always observed in less than five iterations. This procedure usually decreases

dramatically the estimated variance and increases the detected ZACs. Under the null hypothesis,

false positive ZACs are detected with a probability η; in this case they are very small and only

very few pairs of points are discarded for the re-estimation of the covariance function. On

all tested situations, ZACs were unchanged at the second iteration. As illustration, we analyze

again the synthetic data pictured in Figure 2 pretending that the covariance function is unknown.

The covariance function is estimated and leads to the following overestimated parameters: ( b̂,

σ̂2) = (0.28, 3.02). The corresponding level for the test is 1 − α̂ = 0.9985. The covariance is
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then re-estimated as described above and convergence is reached in four iterations with final

estimates (b̂, σ̂2) = (0.21, 1.35) and 1− α̂ = 0.9994. The covariance parameters are closer to the

true values; the variance in particular has been decreased by 60%. The final detected ZAC is

depicted Figure 2c. This example shows that under H1 it is possible to estimate simultaneously

the covariance function and the ZACs.

4 Simulation Study

In this section, we explore two important points using a simulation study: the power of the

method and the influence of an error of estimation of the covariance functions. The first point

can, at least locally, be tackled mathematically. It is currently under scrutiny and deserves a

paper on its own. The second problem is much more complicated and is usually considered using

computer intensive methods in spatial statistics.

4.1 Power of the method

On each of the 1000 realizations on which α̂i, i = 1, . . . , N , was estimated in section 3.2, a

constant a (varying from 0 to 3) is now added in the region where the abscissa is less than 0.4,

as described in Section 2.4. Three levels of significance are considered: 1−α = 0.995, 0.999 and

1−α̂i. Note that by definition, only 1−α̂i correctly controls the global level η. Not all significant

ZACs correspond to the discontinuity: ZACs detected by the algorithm are considered as “true”

if the abscissa of the maximum is in the interval x1 ∈ [.27, .53], corresponding to the columns

16, . . . , 32 of the 60 × 60 grid. Other ZACs correspond to ZACs that should not be detected.

The proportion of simulations with “true” ZACs at the level 1− α̂i corresponds to the power of

the global test. Table 1 reports the number of simulations for which “true” significant ZACs are

detected. The following observations can be made: i) the level 1 − α = 0.995 is too low since it

detects 88 simulations with true ZACs under H0, a number significantly higher than expected;

ii) there is not a significant difference in the detection rate using the levels 1− α̂ or 0.999. Hence,

as a first approximation, it would probably be appropriate to use the latter instead of using the
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more computer intensive value 1− α̂; iii) the discontinuity is more often detected as a increases,

and it is very often detected (more than 80% of the simulations) for a = 2.5 which is quite a

good result considering that there are only 100 sample values in the domain and that they are

not independent; iv) in presence of a discontinuity, the detection rate is higher when the range

parameter b increases because a larger range parameter corresponds to a higher regularity of the

underlying random field.

Similar simulations not reported here show that a higher density of samples yields to an even

better detection rate (e.g., in the same conditions, for n = 200, a discontinuity with a = 2 is

detected for more than 90% of the simulations).

Table 1: Number of simulations (out of 1000) with “true” significant ZACs for different values
of 1 − α (60 × 60 grid; n = 100, exponential covariance with range parameter b).

b = 0.1 b = 0.2
a 0.995 0.999 1 − α̂ 0.995 0.999 1 − α̂

0 88 28 26 79 22 25
1 259 82 72 292 121 127
1.5 498 258 246 609 367 381
2 778 548 588 887 722 727
2.5 941 835 811 986 945 941
3 993 971 967 999 999 997

4.2 Sensitivity to the covariance estimation

We now explore the sensitivity of the method to misspecification of the covariance function: a

Gaussian random field is simulated with a given covariance function, and the method is applied

with a different one. Simulations are performed using the same 1000 sampling locations as

above for which the levels 1− α̂i were already estimated for the Exp(0.1) case. On each of these

locations, Gaussian fields with different covariances are simulated in addition to the Exp(0.1)

realization: two of them are of the same parametric form, with different range parameters

(b = 0.07 and b = 0.13) and one is the so called spherical covariance function c(h) = 1 −

1.5||h||/b + 0.5(||h||/b)3 , for ||h|| ≤ b and c(h) = 0 if ||h|| > b, often used in geostatistics
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for interpolation purpose. It is continuous at the origin (but not differentiable) and infinitely

differentiable when ||h|| > 0 except for ||h|| = b where it is not twice differentiable. Hence, for

all points of D at a distance b of one of the sampling points, the method could not be applied.

However, because this set of points is of null measure, no problems were encountered when

applying the method blindly. The range parameter of the spherical covariance is chosen equal

to 0.3, so that for both models the covariance is almost zero for the same distance ||h|| = 0.3.

The method is applied with an Exp(0.1) covariance function. The detection rate of the ZACs is

reported in Table 2 for the levels 1 − α̂i found for the baseline case.

Table 2: Number of simulations (out of 1000) with significant “true” and “other” ZACs detected
for different simulated models. The method is applied using the parameters of an exponential
covariance with range parameter b = 0.1 (60 × 60 grid; n = 100). Simulated models are
exponential (resp. spherical) covariance model with parameter b′, denoted E(b′) (resp. S(b′)).

“True” significant ZACs “Other” significant ZACs
a E(0.07) E(0.1) E(0.13) S(0.3) E(0.07) E(0.1) E(0.13) S(0.3)

0 26 26 22 19 51 43 40 33
1 78 72 81 67 59 49 39 29
1.5 242 246 258 225 75 54 39 33
2 526 508 555 487 108 59 46 40
2.5 824 811 840 804 177 78 56 55
3 967 967 980 964 264 100 63 67

In general there is not an important difference in the detection rate for the four cases con-

sidered. When simulating an Exp(0.13), the underlying random field is smoother than for an

Exp(0.1), thereby making it easier to detect the discontinuity. Hence the number of simulations

with “true” ZACs detected is more important. The average area of the detected ZACs (not

reported here) are also larger (20% larger, on average) when the range parameter increases. The

number (and the area) of the “other” ZACs detected is usually small, in accordance with the fact

that these “other” ZACs are related to type I errors. When the discontinuity is high (a = 3),

the number of “other significant” ZACs increases, in particular for the shorter range (b = 0.07).

When looking closely at these simulations, we found that for short range the excursion sets

are less smooth, and often break down in several connected components. Among them, some
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have their centers outside the limits used for defining “true” ZACs, but very close to it, thereby

contributing to increasing the number of simulations with “other” ZACs. This Table shows that

the detection of significant ZACs is not too sensitive to a misspecification of the covariance func-

tion. Overestimation of the range parameter is a more acceptable error than underestimation in

terms of detection: it detects more true ZACs without increasing the false positives away from

the true discontinuity. Note also that misspecifying the covariance parametric model (Sph(0.3)

instead of Exp(0.1)) is of secondary importance if the range parameter is correctly estimated.

5 Example : A soil Data Set

Precision agriculture aims at defining a location dependent management within an agricultural

field, for nitrogen fertilizer for example, in order to better manage production in quantity and

quality and minimize nitrogen losses towards ground water. This implies to consider the soil

characteristics and their spatial variability and to define homogeneous management zones.

The data considered here were sampled in August 2001 in an agricultural field (10 ha) in

Chambry, Northern France, on a pseudo-regular grid with 77 nodes (distance between nodes =

36 m), see Figure 3a. The analysis is performed on soil water content (WC), one of the most

important parameters in plant growth models used for managing crops. It was measured on soil

cores up to 120 cm. Each soil sample is itself a mixture of three cores taken at 50 cm distance.

Similar data, collected in a nearby field are presented and analyzed in Mary et al. (2001). WC

ranges from 130 mm to 448 mm; the average is 275.6 mm and the standard deviation is 54.6 mm.

The median (262 mm) is very close to the average, the first and third quartiles are Q1 = 240 mm

and Q3 = 318 mm respectively. The histogram is depicted in Figure 3b. In addition to these

data, a map of the four main soil types drawn by soil scientists using independent data was

provided (Figure 3c). The North is mainly silt with altered chalk in the subsoil (black). In the

South is mainly found chalk and cryoturbed chalk (light and dark grey). In the middle, which

is also the summit of the field is sand (white).

An exponential covariance function was estimated with the following parameters: (range,

variance) = (30 m, 3176 mm2). A 62× 98 grid with a mesh size of 5 m is used, and simulations
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Figure 3: a) Proportional view of the location of the samples; b) Histogram of the samples; c)
map showing the 4 soil types

conditional on the sample locations with the above parameters have shown that 95% of the

realizations have no significant ZACs for 1 − α̂ = 0.9984. Convergence is reached in three

iterations only, and the null hypothesis is rejected. The final variogram parameters are (range,

variance) = (36 m, 2550 mm2). Note that the variance parameter has been decreased by about

20%. Figures 4a and 4b show the estimated variograms at the first and at the last iteration.

The corresponding ZACs, depicted in Figure 4c and 4d, are easily related to the soil type map

(Figure 3c): they overlap the transition area in the middle of the field. The summit zone with

the sand in the Eastern part of the field is clearly delineated. The transition between chalk and

silt in the Western part is partly detected. In the central part, no ZAC is estimated, as this

area corresponds to a smooth transition. The sensitivity to the range parameter was explored

by performing the same analysis with smaller and larger range parameters: 25 m and 40 m

respectively; convergence is reached to the same set of ZACs.

Seven other dates were available for analysis, from march 2000 to February 2003. On all of

them but one, ZACs were detected at the same locations, thereby confirming this first analysis.

For October 2000, no ZACs were detected. The reason was that at this date, no sample were

taken precisely at the location of the ZAC. Another important variable of interest for agronomists

is the mineral nitrogen. Interestingly no ZAC could be detected for any date for this variable,
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Figure 4: Estimating the ZACs on the soil data set. a) Experimental variogram (dots) and fitted
model (solid line curve) at the first iteration; b) same at the last iteration; c) ZACs at the first
iteration; d) ZACs at the last iteration.

which according to agronomists was to be expected for physical reasons. This analysis indicates

that considering the water content only, the main transitions of the soil map could be retrieved.

The field can thus be divided into two management zones corresponding to the top and the

bottom of the field. A third zone, corresponding to the summit of the field could also be defined,

but it would be much smaller and would probably not be interesting under a management point

of view.
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6 Extensions, comparison and discussion

6.1 Extensions

Several assumptions were made for establishing our method: in particular, we assumed known

expectation, second order stationarity and regularity of the covariance function. We now discuss

how some of these assumptions can be weakened.

6.1.1 Unknown expectation

We assumed second order stationarity with known expectation µ and thus simple kriging was

used throughout. In general, the expectation is unknown and the spatial optimal predictor,

called ordinary kriging (Cressie, 1993; Chilès and Delfiner, 1999), is :

Z̃(x) = C(x)′C−1Z +
1 − C(x)′C−11

1′C−11
1′C−1Z, (13)

where 1 = (1, . . . , 1)′ is a vector of ones of length n. According to Proposition 1, the gradient

W̃ (x) of Z̃(x) exists and W̃ (x) = ∂C ′(x)K−1Z, with K−1 = (C−1 − C−111′C−1)/1′C−11.

The associated covariance matrix is Σ̃(x) = ∂C ′(x)K−1CK−1∂C(x), which yields to Σ̃(x) =

∂C ′(x)K−1∂C(x), because K−1CK−1 = K−1. The field T̃ (x) = W̃ ′(x)Σ̃(x)−1W̃ (x) is then a

χ2(2) field on the set of points x where Σ̃(x)−1 exists. The case of an unknown expectation is

thus formally identical to the case seen in Section 2, C−1 being replaced by K−1 when computing

W̃ , Ũ , Σ̃ and Λ̃ and T̃ . All propositions and theorems remain valid. In practice, differences

between (1) and (13) are small when the data are centered and when the distance to the data

is small compared to the range of the covariance function. Some differences were visible when

simulating non centered data and predicting outside the sampled domain or near its border.

6.1.2 More general covariances

The two assumptions A1 and A2 can be weakened. Instead of assumption A1, one can assume

A′
1 : Z(x) has stationary first order differences, i.e. E[Z(x) − Z(y)] = 0 and Var(Z(x) −

Z(y)) = 2γ(x− y) for all x, y ∈ D. This weaker assumption is called intrinsic stationarity in the
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geostatistical literature and γ(x− y) is the variogram of Z(x) introduced in (12). In this case it

can be shown that the optimal predictor is again the ordinary kriging (13), in which the vector

C(x) whose elements are c(x−xi) and the matrix C whose elements are c(xi−xj) are replaced by

a variogram vector G(x) and a variogram matrix G whose elements are γ(x−xi) and γ(xi −xj)

respectively. Hence, under assumption A′
1 it is possible to use our method for detecting ZACs

using ordinary kriging. Assumption A2 is about the regularity of the covariance function away

from 0. For sake of simplicity we assumed that it was infinitely differentiable for all h with

||h|| > 0. As already stated, this condition is mild and is verified for most used covariance

functions. In fact only third order differentiability of the covariance function is necessary. The

spherical covariance function does not verify this less restrictive assumption (derivatives are not

continuous for ||h|| = b), and thus in theory should not be used. However, the set of points

where differentiability is not verified is a set of null measure in the plane. Practically speaking,

this condition is never a serious limitation.

6.1.3 Sampling design

No spatial regularity of the sampling design is required but the local sampling density has a

direct consequence on the power of the method. Clearly, for sparse sampling, we will not be

able to detect abrupt changes. The lack of samples makes it simply impossible to test whether

the estimated local gradient corresponds to a smooth transition or if it is locally sharp. This

leads us to the question of the power of the test. The global power has been explored in the

simulation study reported Section 3.2. If the alternative hypothesis is specified, a local power

(i.e., the probability 1 − β(x) to detect on x a discontinuity curve Γ that passes through x) can

be approximated. This work is still in progress and is not reported here.

6.2 Comparison and discussion

We now compare our method with the one described in Banerjee et al. (2003) (hereafter denoted

BGS) on their very same example: a sample (n = 100) of a stationary Gaussian random field

with covariance function c(h) = σ2(1 + φ||h||) exp(−φ||h||), with σ2 = 1.0 and φ = 1.05, see
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Section 5 in BGS. BGS compute the posterior distribution of the gradient at two locations

and find that the 95% credibility interval of the N-S gradient at the point (3.5, 3.5) does not

contain 0. This is used as an indication of a significant N-S slope at this point, while the

same analysis on the E-W gradient showed no significant slope. Using the same code (available

at www.biostat.umn.edu/~sudiptob/Software/Software.html), we computed the posterior

distribution of the gradient at all grid nodes of a 30 × 30 grid. This computation took 4.5 days

on a recent PC running R under a Linux operating system. Figure 5a depicts all pixels on which

either the N-S or the E-W gradient 95% credibility interval does not contain 0. This procedure

finds the pixels with a gradient in the 5% tail in these directions, but does not assess that these

gradients are due to an abrupt change violating the assumption of stationarity. Because the

gradients in the two directions are independent (see BGS, Section 3), the real level pictured in

Figure 5a is 0.95 × 0.95 = 0.9025.

We estimated the parameters of the covariance function as described in Section 3.3 and

obtained (σ̂2, φ̂) = (0.87, 0.99). Figure 5b shows the pixels with a value T above the quantile

t0.9025 = 4.66. The regions highlighted in Figures 5a and 5b are quite similar, at the exception

of a large area in the upper part of the domain and a smaller one in the middle of the image. In

these areas, the gradient is oriented in the NE-SW direction and is thus not visible on Figure 5a.

Our test statistics T being rotation invariant, it is visible on Figure 5b. As discussed in Section

3, one cannot assess the significance of the potential ZACs at the level 1−α = 0.9025 because it

is too low for the convergence in law (8) to hold. For the estimated parameters above, we found

1−α̂ = 0.9983. At this level only one pixel had a value T above the quantile t1−α̂ = 12.75, whose

coordinate is (3.5, 3.8), in the same region of higher gradient than the test point used in BGS.

The corresponding p-value computed according to (10) is 0.753 and H0 is not rejected. This

analysis required 30 minutes, including the estimation of α̂ with 100 realizations. We tested the

sensitivity of these results with respect to the estimated parameters and found consistently no

significant ZACs. The same analysis was repeated on a 60 × 60 grid and gave exactly the same

results. Our analysis shows clearly that the null hypothesis of no abrupt change must not be

rejected.
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Figure 5: Sets of pixels of a 30 × 30 grid with “high” gradient, i.e. where: a) the 95% credibility
interval of the N-S or the E-W gradient does not contain 0, according to BGS; b) the statistic
T is above the level t0.9025 = 4.66, according to our method.

This comparison highlights the major difference between the two methods. BGS provide

an attractive approach for estimating locally the posterior distribution of the gradient of the

process and thus for reconstructing its surface. However, they do not provide a theory for

testing the significance of the gradients at all locations simultaneously. For example, the N-S

gradient at the point (3.5, 3.5) is only locally significant, i.e. this point belongs to a zone where

the gradient is the highest in the domain. But it should not be globally significant since it

originated from a stationary random field: in any realization of a stationary random field, there

almost always exist some pixels where the local slope is significantly different from 0 at the level

α = 0.05 as soon as the domain is larger than the correlation distance. Our method makes a

clear distinction between local “high gradient” and a global approach for testing H0 versus H1,

while the approach in BGS is only local. At the local level, the potential ZACs are the zones

of “high gradient”. The test statistic used for defining these zones is rotation invariant and is

thus easier to use than the directional derivatives used in BGS. The theory exposed in Section

2 makes the link between the local level α and the global level η. It provides a practical way to

perform a global test for rejecting H0 and for detecting ZACs, i.e. zones where the assumption

of stationarity of the expectation field is violated.

We now proceed with some discussion about the differences between our method and two
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other recent methods that can be found in the literature. Compared to the non parametric

approach developed in Hall et al. (2001), our method finds all the ZACs at once and does not

need any starting point. More importantly, our method does not make the implicit assumption

that there is a discontinuity in the domain but provides at the same time a test for rejecting the

null hypothesis of absence of ZACs and an estimate of these ZACs in case of rejection. We are

also able to assign a p-value to each ZAC, thereby discriminating between significant locally high

gradient zones and non significant ones. It detects (i.e. estimates and tests) a more general class

of discontinuity curves, but at the cost of a more particular model of random field. On the one

hand, it is more particular in the sense that it relies on a Gaussian assumption for the data. But,

if the data cannot be considered as Gaussian, they can be transformed on a Gaussian scale, using

a parametric form (e.g. log transform, Cox transform) or a non parametric quantile transform.

This, of course, does not ensure the gaussianity of the random field but should be enough for

the method to work reasonably well in practice, as illustrated on the agricultural example in

Section 5. On the other hand, however, this assumption makes it possible to explicitly take into

account the autocorrelation between the samples and to detect discontinuities for a low density

of samples in presence of autocorrelation.

In Chaudhuri and Marron (1999, 2000) and Godtliebsen et al. (2002), significance of the

features is assessed at all scales, i.e. for all bandwidths. The assumption is that the data Z(x i)

stem from an underlying signal f and independent Gaussian noise : Z(xi) = f(xi) + εi. Under

the null hypothesis of a constant signal, the data set is an i.i.d. sample of a random variable.

For the applications we have in mind, the assumption of independent noise is unrealistic. In

our method, we suppose that it is a stationary random field, whose covariance function is to

be estimated. Having estimated the covariance parameters from the data, it is not necessary to

detect significant features at all scale. Hence our method requires less computation and is easier

to interpret visually. Furthermore, based on a simulation study, we showed that our method is

robust with respect to change in the range parameter.

Acknowledgments We wish to thank Bruno Mary and Martine Guérif, INRA, France, for

providing the soil data set and for enlightening discussions about its analysis.
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Appendix A: Λ2

We give the full expression for the matrix Λ2 used in (8).

Λ2 [kl] = {∂kD′
2C

−1∂lD2/σ
2
2 − ∂kσ2∂lσ2/σ

2
2 + ∂kρ∂lρ − ∂kρ∂lD

′
2C

−1D1/σ1σ2

−∂lρ∂kD
′
2C

−1D1/σ1σ2 + ρ[(∂kσ2/σ2)(∂lD
′
1C

−1D2/σ1σ2 + ∂lρ)

+(∂lσ2/σ2)(∂kD
′
1C

−1D2/σ1σ2 + ∂kρ) + (∂lσ1/σ1)(∂kD′
2C

−1D1/σ1σ2)

+(∂kσ1/σ1)(∂lD
′
2C

−1D1/σ1σ2) − ∂kD
′
1C

−1∂lD2/σ1σ2 − ∂kD
′
2C

−1∂lD1/σ1σ2]

+ρ2[∂kD′
1C

−1∂lD1/σ
1
1 − ∂kσ1∂lσ1/σ

1
1 − ∂kσ1∂lσ2/σ1σ2

−∂kσ2∂lσ1/σ1σ2]}/(1 − ρ2) − ρ2(∂kρ∂lρ)/(1 − ρ2)2.

The proof is direct but quite long.

Appendix B: Proof of Theorem 1

In this appendix, we prove Theorem 1. We first present a classical lemma, the proof of which

can be found in Miller (1964, p.71).

Lemma 1 Let Y = (Y1, . . . , Y4)
′

be a vector of four non centered Gaussian random variables

with mean µ = (µ1, . . . , µ4)
′

and covariance Γij , 1 ≤ i, j,≤ 4. Then, E[Y1Y2Y3] = µ1µ2µ3 +
∑

i µiΓjk and E[Y1Y2Y3Y4] = µ1µ2µ3µ4 +
∑

j 6=i µiµjΓkl +
∑

j>i ΓijΓkl, where j 6= i, k 6= i, j and

l 6= i, j, k.

Lemma 2 Consider U(x) = (U1(x), U2(x))′ defined in Section 2.4. Then, for 1 ≤ i ≤ 2,

a) Ui(x) and U̇i(x) are independent

b) Cov(Üi(x), U̇i(x)U̇i(x)
′

| U(x)) = 0,

c) Let us denote ∂(m)Ui the vector of all partial derivatives of order m ≥ 1 of Ui, i = 1, 2. By

convention, let ∂(0)Ui = Ui. Then, ∂(m)Ui and ∂(n)Uj are independent when i 6= j, for m,n ≥ 0.

d) Üi(x)|U(x)
L
∼ N4 (−Ui(x)Λi(x),Mi(Λi(x))) , where Mi(Λi(x))[kl] = Cov(∂2

klUi(x), ∂2
k′l′Ui(x) |

Ui(x)) is the conditional covariance matrix of the second order derivatives of Ui(x) and does not

depend on Ui(x),
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e) ∂2
klUi(x)|U(x),U̇(x) ∼ N

(

E∂2Ui(x), V∂2Ui(x)

)

, with E∂2Ui(x) = −UiΛi(x)[kl]+E[∂2
klUi(x)U̇i(x)]Λ−1

i U̇i(x)

and V∂2Ui(x) = Mi(Λi(x))[kl] + E[∂2
klUi(x)U̇i(x)]Λ−1

i (x)E[∂2
klUi(x)U̇i(x)]′.

Before presenting the proof, it is worth noting that U̇i and Üi are not independent. We only

have the weaker result b).

Proof : a) This is a direct consequence of the fact that the variance of Ui(x) is constant. Indeed,

since E[Ui(x)2] = 1, we have that ∂kE[Ui(x)2] = 0, hence 2E[Ui(x)∂kUi(x)] = 0. Since they are

Gaussian, absence of correlation is equivalent to independence. For the sake of lighter notations,

we now drop the dependence to x.

b) Using Lemma 1 and a),

E[∂kUi∂lUi∂
2
k′l′Ui | U ] = E[∂kUi | U ]E[∂lUi∂

2
k′l′Ui | U ] + E[∂lUi | U ]E[∂kUi∂

2
k′l′Ui | U ]

+ E[∂2
k′l′Ui | U ]E[∂kUi∂lUi | U ]

= E[∂2
k′l′Ui | U ]E[∂kUi∂lUi | U ],

since E[∂kUi | U ] = 0. Hence, Cov(∂2
k′l′Ui, ∂kUi∂lUi | Ui) = 0.

c) This result is easily proven using recursively E[∂ (m)Ui | ∂(n)Uj] = ∂E[∂(m−1)Ui | ∂(n)Uj] and

E[∂(m−1)Ui | ∂(n)Uj ] = E[∂(m−1)Ui∂
(n)Uj]Var−1(∂(n)Uj)∂

(n)Uj . The first result holds because

of the regularity properties of the fields Ui; the second result is the usual regression formula for

Gaussian vectors.

d) Using part c) of this lemma, Üi is independent of Uj when i 6= j, i, j = 1, 2. Hence,

conditioning Üi on U is equal to conditioning Üi on Ui. We first prove that E[Üi | Ui] = −UiΛi.

We start from proposition a). Then, ∂lE[Ui∂kUi] = 0, i.e

E[∂kUi∂lUi] = −E[Ui∂
2
klUi]. (14)

On the other hand, the classical regression of ∂2
klUi given Ui is:

E[∂2
klUi | Ui] = E[∂2

klUi] + Cov(Ui, ∂
2
klUi)(Ui − E[Ui])/Var(Ui) = E[Ui∂

2
klUi]Ui (15)

since E[Ui] = 0, E[∂2
klUi] = 0 and Var(Ui) = 1. Putting together (14) and (15) leads to the

desired result. We now turn to the conditional covariance

Cov(∂2
klUi, ∂

2
k′l′Ui | Ui) = E[∂2

klUi∂
2
k′l′Ui | Ui] − E[∂2

klUi | Ui]E[∂2
k′l′Ui | Ui]
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= E[∂2
klUi∂

2
k′l′Ui | Ui] − U2

i Λi [kl]Λi [k′l′].

According to (15),

∂2
klUi

L
= Cov(∂2

klUi, Ui)Ui +
√

Var(∂2
klUi) − Cov(∂2

klUi, Ui)2 εkl

L
= −Λi [kl]Ui +

√

Var(∂2
klUi) − Λ2

i [kl] εkl,

where the equalities are equalities in law and εij is a residual N (0, 1) random variable. Hence,

Cov(∂2
klUi, ∂

2
k′l′Ui | Ui) =

√

Var(∂2
klUi) − Λ2

i [kl]

√

Var(∂2
k′l′Ui) − Λ2

i [k′l′]E[εklεk′l′ ]. (16)

e) According to part c) of this lemma, Üi is independent of (Uj , U̇j) for i 6= j and i, j = 1, 2.

Hence, conditioning Üi on (U, U̇) is equal to conditioning Üi on Vi = (Ui, U̇i)
′. Thus we have

E[∂2
klUi | Vi] = E[∂2

klUi] + Cov
(

∂2
klUi, Vi

)

Var−1 (Vi)Vi,

with Cov
(

∂2
klUi, Vi

)

=
(

E[∂2
klUiUi] E[∂2

klUiU̇i]
)

and Var−1(Vi) =





1 0

0 Λ−1
i



 . Hence,

E[∂2
klUi | Vi] = −Λi[kl]Ui + E[∂2

klUiU̇i]Λ
−1
i U̇i. (17)

Regarding the conditional variance, we have, using the usual conditional variance formula for

Gaussian vectors Var
(

∂2
klUi | Vi

)

= Var
(

∂2
klUi

)

−Cov
(

∂2
klUi, Vi

)

Var−1 (Vi) Cov
(

Vi, ∂
2
klUi

)

, where

Var
(

∂2
klUi

)

= Var
(

∂2
klUi | Ui

)

+Cov
(

∂2
klUi, Ui

)

Var−1 (Ui) Cov
(

Ui, ∂
2
klUi

)

= Mi(Λi)[kl]+Λ2
i [kl],

according to part d) of this lemma. The second term is equal to

(

E[∂2
klUiUi] E[∂2

klUiU̇i]
)





1 0

0 Λ−1
i





(

E[∂2
klUiUi]E[∂2

klUiU̇i]
)

= Λ2
i [kl]+E[∂2

klUiU̇i]Λ
−1
i E[∂2

klUiU̇i]
′.

Hence, Var
(

∂2
klUi | Vi

)

= Mi(Λi)[kl] + E[∂2
klUiU̇i]Λ

−1
i [kl]E[∂2

klUiU̇i]
′. 2

Lemma 3 For T (x) = U 2
1 (x) + U2

2 (x) defined in Section 2.4, conditional on (U(x), U̇ (x)),

∂2
klT (x) ∼ N

(

E
T̈kl

, V
T̈kl

)

,

32



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Allard, D., Gabriel, E. (Auteur de correspondance), Bacro, J.-N. (2011). Estimating and testing

zones of abrupt change for spatial data. Statistics and Computing, 21 (1), 107-120.  DOI :
10.1007/s11222-009-9151-x

E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Statistics and Computing, 2011, 
vol.21, no.1, 107-120, DOI: 10.1007/s11222-009-9151-x 

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 
 

with E
T̈kl

= 2
∑2

i=1

(

∂kUi(x)∂lUi(x) − U2
i (x)Λi(x)[kl] + Ui(x)E[∂2

klUi(x)U̇i(x)]Λ−1
i (x)U̇i(x)

)

, and

V
T̈kl

= 4
∑2

i=1 U2
i (x)

(

Mi(Λi(x))[kl] + E[∂2
klUi(x)U̇i(x)]Λ−1

i (x)E[∂2
klUi(x)U̇i(x)]′

)

, where Mi(Λi(x))

is defined in lemma 2.

Proof : We start from T̈ = 2(U̇1U̇
′
1 + U̇2U̇

′
2 + U1Ü1 + U2Ü2). The conditional expectation

E[T̈ | U ] is easily found by a direct application of (17). For the conditional variance, we have

Var
(

∂2
klT | V

)

= 4Var
(

∂kU1∂lU1 + ∂kU2∂lU2 + U1∂
2
klU1 + U2∂

2
klU2 | V

)

= 4Var
(

U1∂
2
klU1 + U2∂

2
klU2 | V

)

= 4U2
1 Var

(

∂2
klU1 | V

)

+ 4U2
2 Var

(

∂2
klU2 | V

)

+ 8U1U2Cov
(

∂2
klU1, ∂

2
klU2 | V

)

.

The covariance term is equal to 0, according to Lemma 2c. Finally,

Var
(

∂2
klT | U, U̇

)

= 4
2
∑

i=1

{

U2
i

(

Mi(Λi,[kl]) + E[∂2
klUiU̇i]Λ

−1
i [kl]E[∂2

klUiU̇i]
′
)}

. 2

3 Proof of Theorem 1

We want to prove that T−1
0 T̈T0

(0)+ 2{v(0)Λ1(0)+ (1− v(0))Λ2(0)} = op(1), as T0 → ∞, where

TT0
is the field T (·), conditional on the event that there is an extremum of height T0 at 0. It

is shown by using a multivariate version of Chebychev inequality that we first recall : let X

be a random vector with mean mX and covariance matrix CX . Then, P (||X − mX || ≥ a) ≤

tr(CX)/a2. According to lemma 3,

E[∂2
klT (0) | U, U̇ ] = 2

2
∑

i=1

(

−U2
i (0)Λi(0)[kl] + Ui(0)E[∂2

klUi(0)U̇i(0)]Λ
−1
i (0)U̇i(0)

)

,

= 2
2
∑

i=1

−U2
i (0)Λi(0)[kl] + O

(

√

T0

)

,

and Var
(

∂2
klT (0) | U, U̇

)

= O (T0). Hence, tr(Var(T̈(0) | U)) = O(T0) as T0 → ∞, and the

application of the multivariate Chebychev inequality to T −1
0 T̈|U,U̇ leads to the result. 2
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