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Evaporation from multi-component canopies: Generalized formulations 

Jean Paul Lhomme 
⇑, Carlo Montes, Frédéric Jacob, Laurent Prévot

UMR LISAH (INRA, IRD, SupAgro), Laboratoire des Interactions Sol, Agrosystème, Hydrosystème, 2 Place Viala, 34060 Montpellier, France

A general formulation is derived for expressing the evaporation from multi-component canopies repre-

senting mixed-plant communities. It generalizes to n components the formulations introduced by

Lhomme et al. (Bound-Layer Meteorol. 144, 243–262, 2012) for two and three components models.

The new formulation is an alternative and simpler form of the equations previously developed byWallace

(Q. J. R. Meteorol. Soc. 123, 1885–1905, 1997). It is sounder, in the sense that: (i) it accounts for the

impact of stomatal characteristics (hypostomatous or amphistomatous) on evaporation expression; (ii)

it allows one to eliminate the confusing ‘‘Penman–Monteith’’ type terms of Wallace’s formulation (which

do no not represent the individual component evaporations). Additionally, the steps of the mathematical

demonstration are clearly specified, which was not the case for Wallace’s formulation. In this way, a gen-

eral conceptual framework is defined for evaporation from complex vegetation, from which simpler rep-

resentations (1, 2 or 3 components models) and asymptotic limits (infinite identical components) can be

inferred.

1. Introduction

One of the first model of canopy evaporation is the ‘‘big-leaf’’

model of Penman–Monteith (Monteith, 1965), which describes

the evaporation from homogeneous and dense canopies. Since

then, more complex models were developed for representing the

evaporation from non-homogeneous vegetation canopies, begin-

ning with sparse vegetation, where soil and plant components car-

ry equal status (Shuttleworth and Wallace, 1985; Choudhury and

Monteith, 1988; Shuttleworth and Gurney, 1990). Later, these

two-source models were extended to heterogeneous canopies with

more than two components (Dolman, 1993; Brenner and Incoll,

1997; Wallace, 1997; Verhoef and Allen, 2000): the evaporation

from the whole canopy is quantified, as well as that from each

component, accounting for the interactions between them. Re-

cently, Lhomme et al. (2012) re-examined some aspects of these

multi-source representations, showing that the stomatal charac-

teristics of the foliage (amphistomatous or hypostomatous) gener-

ate different formulations for component resistances (stomatal and

boundary-layer) and consequently for the evaporation from the

whole canopy. They derived new generic equations for two and

three-source models, which are valid in both stomatal configura-

tions and are more concise than those traditionally based upon

the ‘‘Shuttleworth–Wallace’’ formalism. Given that these new for-

mulations have the same basic structure for one, two or three com-

ponents, a remaining question was to know whether they can be

extrapolated to multi-component canopies (i.e., n sources).

Wallace (1997) addressed the issue of modelling evaporation

from multi-species canopies by generalizing to n components the

formulations originally given by Shuttleworth and Wallace

(1985) for two components. Wallace’s formulations for evapora-

tion are part of the ERIN model, which also includes a radiation

interception sub-model. However, several weaknesses can be iden-

tified in the evaporation sub-model of ERIN, as presented in the

original article and also in a subsequent one (Wallace and Verhoef,

2000). First, the general formulation for the evaporation from n

components (Wallace, 1997, Eqs. (34)–(37)) is not mathematically

demonstrated: only the final formula (which is not obvious) is gi-

ven. Second, the formulation does not account for the differences

generated by the stomatal characteristics of each component

(amphistomatous versus hypostomatous), as pointed out by

Lhomme et al. (2012) for two and three components. Third and

most important, it retains a rather complex ‘‘Shuttleworth–Wal-

lace’’ formalism involving n ‘‘Penman–Monteith’’ type terms,

which can be confusing given that each term does not represent

the respective component evaporation.

In parallel with this approach, Verhoef and Allen (2000) devel-

oped a four-component model that accounts for canopy stomatal

characteristics and was applied to a dry-land savannah consisting

of shrubs, forbs, grasses and bare soil. Although it is based upon

the same Shuttleworth–Wallace formalism as the ERIN approach,

this model is somewhat different in so far as the fractional cover-

age of each component is introduced into the formulation, as in

Dolman (1993) and Huntingford et al. (1995), following a kind of

‘‘patch’’ approach (Lhomme and Chehbouni, 1999). All four compo-

nents receive the full radiation load and each Penman–Monteith-

like term is multiplied by the corresponding fractional cover. It is
⇑ Corresponding author. Tel.: +33 4 99 61 31 30; fax: +33 4 67 63 26 14.

E-mail address: jean-paul.lhomme@ird.fr (J.P. Lhomme).

1



worthwhile stressing that this formulation is even more confusing

than the ERIN one: given that each ‘‘Penman–Monteith’’ term does

not represent the corresponding component evaporation, their

multiplication by the corresponding fractional cover has no real

physical meaning and can be truly misleading.

Setting the appropriate formalism is essential such that model

parameters can be properly estimated when conducting calibra-

tion processes. In this context, the present study aims at develop-

ing generic equations for the evaporation from canopies with n

components (or species), following the same lines as the ERIN

model, but with the simpler and sounder mathematical formalism

introduced by Lhomme et al. (2012) for two and three-components

canopies. In this way, the main shortcomings of the previous mul-

ti-component evaporation models will be eliminated.

2. Basic expressions for component fluxes

The general case, where the canopy is composed of n compo-

nents (soil surface included), is illustrated in Fig. 1. Each evapora-

tion component (kEi) is calculated separately from equations of the

Penman–Monteith type involving the corresponding available en-

ergy (Ai) and the vapour pressure deficit Dm at the mean canopy

source height zm (assumed to be located at the apparent sink for

momentum: d + z0). The available energy of each component can

be determined from a radiation interception model, such as the

one described in the ERIN model (Wallace, 1997). Similarly to the

ERIN model, the total evaporation from the canopy is logically

written as the simple sum of the individual contributions

kEn ¼
X

n

i¼1

kEi: ð1Þ

Given that fluxes are expressed per unit area of land surface, the

corresponding resistances should be expressed in the same way.

So, the leaf stomatal resistance rs,l,i (one side) of component i and

the corresponding leaf boundary-layer resistance for latent heat

ra,l,i (one side) should be divided by the transpiring surface ex-

pressed per unit area of land surface: 2LAIi for amphistomatous

leaves and LAIi for hypostomatous leaves (LAIi being the leaf area

index of component i). For convenience, we introduce the parame-

ter mi (mi = 1 for amphistomatous leaves and mi = 2 for hypostoma-

tous leaves), that allows the bulk stomatal and boundary-layer

resistances of component i to be written in a unique form as:

rs;i ¼ mirs;l;i=ð2LAIiÞ; ð2Þ

ra;v;i ¼ mira;l;i=ð2LAIiÞ: ð3Þ

The bulk boundary-layer resistance for sensible heat remains

the same in both cases (amphistomatous or hypostomatous), since

each leaf side is a heat source. It is defined for component i as:

ra;i ¼ ra;l;i=ð2LAIiÞ ¼ ra;v;i=mi: ð4Þ

The hyperstomatous case (stomata only on the upper side of the

leaves) is similar to the hypostomatous case and the corresponding

expressions of bulk resistances are identical. Jones (1992) gives the

dependence of leaf boundary-layer resistance on wind speed (u) at

the same level: ra;l ¼ aðw=uÞ1=2, where w is leaf width and a a con-

stant coefficient depending on leaf characteristics. It has been

shown (Appendix A in Lhomme et al., 2012) that the elementary

flux emanating from component i and contributing to the total flux

of evaporation can be written in the general form:

kEi ¼
DAi þ qcpDm=ra;i
Dþ cðmi þ rs;i=ra;iÞ

; ð5Þ

with Dm = e�(Tm) � em. For the substrate or soil surface, assumed

to represent the nth component of the system, the same equation

holds, with mn = 1; rs,n representing the surface resistance to evap-

oration and ra,n the sum of the boundary-layer resistance and the

aerodynamic resistance between the substrate and the source

Nomenclature

A available energy of the whole canopy (Wm�2)
Ai available energy of component i (W m�2)
Rn net radiation of the whole canopy (Wm�2)
G soil heat flux (Wm�2)
Hn sensible heat flux from the whole canopy (Wm�2)
Hi sensible heat flux from component i (Wm�2)
kEn latent heat flux from the whole canopy (Wm�2)
kEi latent heat flux from component i (W m�2)
Da vapour pressure deficit at reference height (Pa)
Dm vapour pressure deficit at canopy source height (Pa)
ea vapour pressure at reference height (Pa)
em vapour pressure at canopy source height (Pa)
e�ðTÞ saturated vapour pressure at temperature T (Pa)
Ta air temperature at reference height (�C)
Tm air temperature at canopy source height (�C)
Tc,i surface temperature of component i (�C)
u
⁄

friction velocity (m s�1)
um wind speed at canopy source height (m s�1)
cp specific heat of air at constant pressure (J kg�1 K�1)
q air density (kg m�3)
c psychrometric constant (Pa K�1)
D slope of the saturated vapour pressure curve (Pa K�1)

Canopy structural characteristics
d canopy displacement height (m)
LAIi leaf area index of component i (m2 m�2)

LAI leaf area index of the whole canopy (m2 m�2)
n number of components (soil surface included)
zr reference height (m)
zh mean canopy height (m)
zm mean canopy source height (=d + z0) (m)
z0 canopy roughness length (m)
mi parameter with value of 1 for amphistomatous and 2 for

hypostomatous foliage

Component resistances
ra,0 aerodynamic resistance between the source height and

the reference height (s m�1)
r0a;i aerodynamic resistance for the vertical transfer within

layer i (s m�1)
ra,i bulk boundary-layer resistance of component i for sen-

sible heat (s m�1)
ra,v,i bulk boundary-layer resistance of component i for

water vapour (s m�1)
rs,i bulk stomatal resistance of component i (s m�1)
rs,n soil surface resistance to evaporation (s m�1)
rs,l,i leaf stomatal resistance (one side) of component i

(s m�1)
ra,l,i leaf boundary-layer resistance (one side) of component i

for sensible heat and water vapour (s m�1)
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height (zm), the latter being defined by integrating the reciprocal of

the appropriate eddy diffusivity (Choudhury and Monteith, 1988,

Eq. (22)).

It is worthwhile stressing that this multi-component approach

is different from the multi-layer approach (as represented in

Fig. 2), where an homogeneous and high canopy is divided into

many parallel layers exchanging heat and water vapour with the

air at each level of the stand (Waggoner and Reifsnyder, 1968;

Lhomme, 1988). In the latter approach, an additional aerodynamic

resistance (r0a;i), linked to turbulent diffusivity, is included within

each layer in relation to the vertical transfer of sensible heat and

water vapour within the canopy. Air saturation deficit, as wind

velocity, is also different within each vegetation layer, contrary

to the multi-component approach, where each vegetation compo-

nent is subject to the same air vapour pressure deficit (Dm) and the

same wind velocity (um) at canopy source height. In this respect,

we have to note that in the ‘‘second’’ version of the ERIN model

(Wallace and Verhoef, 2000) an extra resistance called ‘‘within-

canopy aerodynamic resistance’’ and calculated from eddy diffu-

sivity (as for the soil surface) is added to the leaf boundary-layer

resistance for representing the transfer within the canopy. From

a theoretical standpoint, this addition is not perfectly sound, be-

cause it contradicts the fact that each component is subject to

the same air vapour pressure deficit at canopy source height. The

stratification of the exchange levels (implied by this addition) im-

plies de facto a multi-layer approach and not a multi-component

one.

3. Generalized formulae for the evaporation from n

components

The vapour pressure deficit (Dm) in Eq. (5) is calculated from the

vapour pressure deficit at reference height Da[=e
�(Ta) � ea] follow-

ing Shuttleworth and Wallace (1985, Eq. (8))

Dm ¼ Da þ ½DA� ðDþ cÞkEn�ra;0=ðqcpÞ; ð6Þ

where A(=Rn � G) is the available energy of the whole canopy, kEn the

flux of evaporation from the whole canopy (n components) and ra,0 the

aerodynamic resistance between the mean source height and the ref-

erence height. To simplify the formulations we put:

R0 ¼ 1þ
D

c

� �

ra;0; ð7Þ

Ri ¼ rs;i þ mi þ
D

c

� �

ra;i: ð8Þ

Introducing Eq. (6) into Eq. (5) and after some rearrangements

we obtain:

kEi ¼
R0

Ri

DAþ qcpDa=ra;0
Dþ c

þ
D

c

� �

Aira;i
R0

� kEn

� �

: ð9Þ

The first term of the square bracket is the Penman equation rep-

resenting the potential evaporation of the canopy (defined by

assuming saturation at canopy source height Dm = 0). Putting:

kEp ¼
DAþ qcpDa=ra;0

Dþ c
; ð10Þ

the resulting formula can be rewritten as:

kEi ¼ ½R0ðkEp � kEnÞ þ ðD=cÞra;iAi�=Ri: ð11Þ

Eq. (11) shows that the evaporation from an individual compo-

nent depends on the evaporation from the entire canopy, confirm-

ing the interaction between the different components. Substituting

Eq. (11) into Eq. (1) and collecting the terms in kEn gives:

kEn ¼ R0

X

n

i¼1

Pi

 !

kEp þ
D

c

� �

X

n

i¼1

PiAira;i; ð12Þ

with the coefficients Pi defined as:

Pi ¼
1

Ri 1þ R0

X

n

j¼1

1
Rj

� �

" # : ð13Þ

Fig. 1. Resistance network and potentials for a canopy with n component (see list of symbols). All the component fluxes (sensible and latent heat) converge at canopy source

height zm.
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Eqs. (12) and (13) represent a simple formulation of the evapora-

tion rate from amulti-component canopy. It generalizes for n compo-

nents the equations demonstrated by Lhomme et al. (2012) for n = 2

and 3. The first term involves the atmospheric demand (kEp), multi-

plied by a combination of resistances, and the second term is a sum-

mation of the available energy (Ai) of each component, each one

multiplied by a combination of resistances. The contribution of each

component is obtained from Eq. (11), once kEn is calculated.

As already stated, Wallace (1997) proposed a similar (although

more complex) formula for a canopy with amphistomatous com-

ponents, without specifying however the steps of the mathemati-

cal demonstration (the resistance combination terms Ci were not

formally derived). Therefore, we establish in Appendix A that our

formulation applied to amphistomatous components is equivalent

to the one proposed by Wallace (1997). In this way, a clear valida-

tion of his formulation (our Eq. (30)) is provided.

4. Examining and illustrating particular cases

In this section we show how the general formulation demon-

strated above (Eqs. (12) and (13)) restitutes the equations already

established for canopies with one, two and three components. The

particular case of n identical components is also examined for its

physical significance.

4.1. One component (n = 1)

When only a single component is considered, Eq. (12) trans-

forms into:

kE1 ¼ R0P1kEp þ
D

c

� �

P1A1ra;1 with P1 ¼ 1=ðR0 þ R1Þ: ð14Þ

Replacing R0 and R1 by their respective expressions (Eqs. (7) and

(8)) and after some rearrangements the following expression is

obtained:

kE1 ¼
DAþ qcpDa=ðra;0 þ ra;1Þ

Dþ c ra;0þm1ra;1þrs;1
ra;0þra;1

� � : ð15Þ

If we consider an amphistomatous canopy (m1 = 1), Eq. (15) sim-

plifies into:

Fig. 2. Resistance network and potentials for a canopy of height zh divided into n parallel layers. r0a;0: aerodynamic resistance above the canopy; r0a;i: aerodynamic resistance

for the vertical transfer of heat and water vapour within layer i; Ta,i: air temperature within layer i; ea,i: air water vapour pressure within layer i.
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kE1 ¼
DAþ qcpDa=ðra;0 þ ra;1Þ

Dþ c 1þ
rs;1

ra;0þra;1

� � : ð16Þ

Eq. (16) corresponds to a Penman–Monteith equation, where

the leaf boundary-layer resistance ra,1 of the component is added

to the aerodynamic resistance ra,0 between the canopy source

height and the reference height. The inclusion of this additional

air resistance is explained by the fact that the effective source of

heat and water vapour is not taken here at the mean canopy source

height (zm = d + z0), as is the case for the common formulation of

the ‘‘big leaf’’ model, but at the level of the foliage itself with tem-

perature Tc,1. The additional resistance ra,1 can be considered as

equivalent to the extra resistance rex ¼ B�1=u� linked to the concept

of kB�1, discussed in many studies (e.g., Garratt and Hicks, 1973).

4.2. Two components (n = 2)

When two components (substrate + vegetation) are considered,

Eq. (12) is written as:

kE2 ¼ R0ðP1 þ P2ÞkEp þ
D

c

� �

ðP1A1ra;1 þ P2A2ra;2Þ; ð17Þ

with

P1 ¼
R2

R0R1 þ R0R2 þ R1R2

; ð18Þ

P2 ¼
R1

R0R1 þ R0R2 þ R1R2

: ð19Þ

These equations are similar to those proposed by Lhomme et al.

(2012, Eqs. (16)–(22)) as an alternative form of the Shuttleworth–

Wallace formulation for sparse crops.

4.3. More than two components (n > 2)

The case n = 3 leads to results analogous to the two-component

model: Eq. (12) transforms into the reformulated ‘‘clumped’’ model

given by Lhomme et al. (2012, Eq. (33)). This formulation can be

applied to many vegetation types already treated in the literature,

with structure equivalent to that represented by our model (Fig. 1):

for instance, the tropical savannah in Niger, consisting of bushes,

grass and bare soil (Dolman, 1993) or a shrub-land in southeastern

Spain (Brenner and Incoll, 1997; Domingo et al., 1999), where

shrubs, soil under shrubs and bare soil outside shrubs constitute

the three components of the model. A similar representation (veg-

etation plus two soil components) was employed by Zhang et al.

(2008) for a vineyard in an arid region of northwest China. The for-

mulation with n = 4 can be applied to the Sahelian savannah de-

scribed and modelled by Verhoef and Allen (2000), which is

composed of bushes, herbs, grass and bare soil. Our generalized

formulation is also suitable for modelling the mountain grasslands

energy exchange (Wohlfahrt et al., 2001), where several compo-

nents and species must be distinguished, each one characterised

by different structural and functional properties. Another example

could be the sparse mixed-species shrub canopy of Arizona studied

and modelled by Stannard and Weltz (2006).

Wallace and Verhoef (2000) thoroughly discussed the practical

interest of developing interactive multi-component models, such

as the ERIN model, for mixed-plant communities in a large range

of vegetation systems, both natural and man-made: crop associa-

tion, crop/weed mixture, agroforestry. They pointed out, neverthe-

less, the difficulties to correctly define the in-canopy aerodynamic

resistances.

4.4. Identical components

It is interesting to consider the particular case where all the n

components of the canopy are identical, i.e., with the same elemen-

tary characteristics (leaf area index, leaf stomatal resistance and

leaf boundary-layer resistance) and where they all receive the

same load of available energy (Ai). Given that soil surface cannot

be identical to a vegetation component, practically it means that

the canopy has a leaf area index (LAI = nLAIi) large enough to com-

pletely cover the ground and that soil surface can be disregarded.

Noting that nAi = A and Pi = 1/(Ri + nR0), Eq. (12) transforms into:

kEn ¼
nR0kEp þ D=cð ÞAra;i

Ri þ nR0

: ð20Þ

Developing kEp (Eq. (10)), R0 and Ri (Eqs. (7) and (8)) leads to:

kEn ¼
DAþ qcpDa= ra;0 þ ra;i=n

� 	

Dþ c
ra;0þmira;i=nþrs;i=n

ra;0þra;i=n

� � : ð21Þ

Eq. (21) with mi = 1 (amphistomatous case) is a Penman–Mon-

teith equation, similar to Eq. (16). This is what could be expected

from a canopy with n identical components, since it constitutes a

kind of ‘‘big-leaf’’ with homogeneous characteristics. Bearing in

mind Eqs. (2) and (3), the bulk expressions for the stomatal and

boundary-layer resistances in Eq. (21) can be expressed as a func-

tion of the leaf area index of the whole canopy: rs,i/n = mirs,l,i/(2LAI)
and ra,i/n = mira,l,i/(2LAI).

It is worthwhile noting that when n?1 (i.e., LAI?1 with

constant component resistances rs,l,i and ra,l,i), Eq. (21) transforms

into the Penman equation kEp (potential evaporation) given by

Eq. (10), where only the aerodynamic resistance above the canopy

(ra,0) is present. This also means that Dm? 0. Such a result, obvi-

ously obtained by implicitly assuming soil water to be not limiting,

could be expected: as a matter of fact, the infinite number of com-

ponents tends to cancel all the inner resistances to evaporation.

5. Conclusion

As stated in the introduction, a new formulation for the evapo-

ration from a multi-component canopy representing a mixture of

neighbouring species has been obtained. In theory, this formula-

tion applies to canopies without significant vertical stratification.

The total evaporation from the canopy is determined by Eq. (12)

and the component evaporations by Eq. (11). These new equations

are now fully justified and mathematically demonstrated. They are

more concise than those proposed by Wallace (1997) and do not

involve the confusing ‘‘Penman–Monteith’’ terms. They also allow

for the stomatal characteristics of each component. The simple

cases (n = 1 or 2) are easily inferred from the general formulation

and its asymptotic limit for identical components (n?1) is in

accordance with the basic knowledge on evaporation modelling.

The generalized approach of the evaporation from mixed-plant

communities, as developed here, is worth for the theoretical and

conceptual framework it defines, but also for its concrete applica-

tions when applied to two, three or more components. Neverthe-

less, when applying these formulations to the real world, some

practical problems remain difficult to tackle, such as defining reli-

able expressions for inner canopy resistances.

Appendix A. Derivation of the ERIN formulation

Starting from the general formulation of Eq. (12), it is possible

to retrieve the formulae originally proposed by Wallace (1997)
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for the evaporation from multi-component canopies. First, (Eq.

(12)) should be rewritten as:

kEn ¼
X

n

i¼1

Pi R0

DAþ qcpDa=ra;0
Dþ c

� �

þ
D

c

� �

Aira;i

� �

: ð22Þ

Replacing R0 by its expression (Eq. (7)) and then multiplying

and dividing by ra,0 + ra,i yields:

kEn ¼
X

n

i¼1

½Piðra;0 þ ra;iÞ=c� D
ðAra;0 þ Aira;iÞ

ra;0 þ ra;i
þ

qcpDa

ra;0 þ ra;i

� �

: ð23Þ

Noticing that:

Ara;0 þ Aira;i
ra;0 þ ra;i

¼ A�
ra;iðA� AiÞ

ra;0 þ ra;i
; ð24Þ

leads to:

kEn ¼
X

n

i¼1

½Piðra;0 þ ra;iÞ=c� DAþ
½qcpDa � Dra;iðA� AiÞ�

ra;0 þ ra;i

� �

: ð25Þ

Eq. (25) can be rewritten in the form used by Wallace (1997)

kEn ¼
X

n

i¼1

CiPMi; ð26Þ

where the ‘‘Penman–Monteith’’ terms and their coefficients are gi-

ven by:

PMi ¼
DAþ

qcpDa�Dra;iðA�AiÞ½ �
ra;0þra;i

Dþ c 1þ
rs;i

ra;0þra;i

h i ; ð27Þ

Ci ¼ Pi R0 þ rs;i þ 1þ
D

c

� �

ra;i

� �

: ð28Þ

Wallace (1997) defined slightly differently the R coefficients

specified by Eqs. (7) and (8): R0
0 ¼ cR0 and R0

i ¼ cRi. He also implic-

itly considered amphistomatous components (mi = 1). Therefore,

the coefficients Ci can be rewritten (with Wallace’s notations) as:

Ci ¼
R0
0 þ R0

i

R0
i 1þ R0

0

X

n

j¼1

1=R0
j

! : ð29Þ

Dividing each term by R0
0 þ R0

i and rearranging gives:

Ci ¼ 1þ

X

n

j¼1;j–i

1=R0
j

1=R0
0 þ 1=R0

i

0

B

B

B

B

@

1

C

C

C

C

A

�1

: ð30Þ

This formulation, now fully demonstrated, is exactly the one gi-

ven byWallace (1997, Eq. (36)) and also mentioned byWallace and

Verhoef (2000, Eq. (18)).
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