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Abstract: This paper provides a review of theoretical and practical aspects related to genetic
management of forest trees. The implementation of international commitments on forest genetic
diversity has been slow and partly neglected. Conservation of forest genetic diversity is still riddled
with problems, and complexities of national legal and administrative structures. Europe is an example
of a complex region where the distribution ranges of tree species extend across large geographical
areas with profound environmental differences, and include many countries. Conservation of forest
genetic diversity in Europe has been hampered by lack of common understanding on the management
requirements for genetic conservation units of forest trees. The challenge resides in integrating
scientific knowledge on conservation genetics into management of tree populations so that
recommendations are feasible to implement across different countries. Here, we present pan-European
minimum requirements for dynamic conservation units of forest genetic diversity. The units are
natural or man-made tree populations which are managed for maintaining evolutionary processes and
adaptive potential across generations. Each unit should have a designated status and a management
plan, and one or more tree species recognized for as target species for genetic conservation. The
minimum sizes of the units are set at 500, 50 or 15 reproducing individuals depending on tree species
and conservation objectives. Furthermore, silvicultural interventions should be allowed to enhance
genetic processes, as needed, and field inventories carried out to monitor regeneration and the
population size. These minimum requirements are now used by 36 countries to improve management
of forest genetic diversity.
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Abstract

This paper provides a review of theoretical and practical aspects related to genetic management
of forest trees. The implementation of international commitments on forest genetic diversity has
been slow and partly neglected. Conservation of forest genetic diversity is still riddled with

problems, and complexities of national legal and administrative structures. Europe is an example
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of a complex region where the distribution ranges of tree species extend across large geographical
areas with profound environmental differences, and include many countries. Conservation of
forest genetic diversity in Europe has been hampered by lack of common understanding on the
management requirements for genetic conservation units of forest trees. The challenge resides in
integrating scientific knowledge on conservation genetics into management of tree populations so
that recommendations are feasible to implement across different countries. Here, we present pan-
European minimum requirements for dynamic conservation units of forest genetic diversity. The
units are natural or man-made tree populations which are managed for maintaining evolutionary
processes and adaptive potential across generations. Each unit should have a designated status
and a management plan, and one or more tree species recognized for as target species for genetic
conservation. The minimum sizes of the units are set at 500, 50 or 15 reproducing individuals
depending on tree species and conservation objectives. Furthermore, silvicultural interventions
should be allowed to enhance genetic processes, as needed, and field inventories carried out to
monitor regeneration and the population size. These minimum requirements are now used by 36

countries to improve management of forest genetic diversity.

Keywords

Forest genetic resources; genetic diversity; genetic conservation unit; genetic management; in situ

1. Introduction

Forests harbour most of Earth’s terrestrial biodiversity (Millennium Ecosystem Assessment, 2005)
and trees are the keystone species of forest ecosystems maintaining their structure and function.

Between 50 000 (National Research Council, 1991) and 100 000 (Oldfield et al., 1998) tree species

3
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are estimated to exist globally and many of them are also an important component in other
ecosystems, such as savannas and agricultural landscapes. The genetic diversity of trees is crucial
for adaptation of forests to climate change (Hampe and Petit, 2005; Neale and Kremer, 2011) and

for sustaining other species and entire forest ecosystems (Whitham et al., 2006).

International efforts to improve the management of tree genetic diversity were initiated more
than 40 years ago (Palmberg-Lerche, 2007) focusing on forest genetic resources, i.e. genetic
variation in trees valuable for present or future human use (FAO, 1989). Lack of research on the
minimum size of a genetic conservation unit for forest trees was recognized early as a problem
(FAO, 1975). Later on, the concepts of minimum viable population (MVP, a population size that
ensures the persistence of a population for a given period of time) (Shaffer, 1981) and
evolutionary significant units (ESU, populations having independent evolutionary histories) (Ryder,
1986) paved the way to incorporating genetics into conservation work and developing a dynamic

approach to the conservation of genetic diversity (e.g. Lande and Barrowclough, 1987).

Soon after the MVP and ESU debate started, the dynamic conservation approach was also applied
and further developed for forest trees (Ledig, 1986; Eriksson et al., 1993; Namkoong, 1997). It is
based on managing tree populations at their natural sites within the environment to which they
are adapted (in situ), or artificial, but dynamically evolving populations elsewhere (ex situ). Ex situ
conservation stands of forest trees contribute to dynamic conservation only if natural selection
predominates. Climate change makes it even more important to apply the concept of dynamic

conservation to ensure the long-term sustainability of tree populations.
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Many countries have developed specific national programmes or strategies for managing their
forest genetic diversity based on the dynamic conservation approach (e.g. Graudal et al., 1995;
Behm et al., 1997; Teissier du Cros, 2001). Unfortunately, the progress in implementing these
programmes and strategies has been slower than expected and the practical conservation of
forest genetic diversity is still riddled with methodological and political problems, and complexities
of national legal and administrative structures (Geburek and Konrad, 2008). These problems are
not uniquely related to forest genetic diversity but to genetic conservation in general. As a result,
many national and international actions on biodiversity conservation have largely neglected

genetic diversity (Laikre et al., 2010).

The lack of genetic management in biodiversity conservation is no longer due to a lack of research
or guidelines, but due to failure to incorporate genetic aspects into practical management
(Frankham, 2010). In case of trees, forest conservation genetics has improved the theoretical basis
of genetic management of tree populations (e.g. Young et al., 2000; Geburek and Turok, 2005;
Hamann et al., 2005) and various guidelines are available for this purpose (e.g. FAO, DFSC, IPGRI,
2001; FAO, FLD, IPGRI, 2004). However, a persisting problem is that the national programmes
apply the theory and the guidelines in different ways. As a result, the effectiveness of the
conservation efforts varies to a large degree between countries. This has also led to difficulties in
assessing the status of genetic conservation of forest trees as they often have large distribution
areas covering several countries, sub-regions or even continents. Furthermore, without a common
and operational definition for the genetic conservation unit, it is impossible to develop range-wide

conservation strategies for forest trees.
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Europe is an example of a complex region where the distribution ranges of forest trees extend
across large geographical areas with profound environmental differences, and include many
countries with different forest management practices and forest owners. Conservation status
assessment of forest genetic diversity in Europe has been hampered by a lack of common
understanding on the management requirements for the genetic conservation units. This has also
made it difficult to identify gaps in the conservation efforts and to develop genetic conservation

strategies at the pan-European level.

In this paper, we discuss theoretical and practical aspects of genetic management of forest trees.
We use Europe as a case study and present pan-European minimum requirements for genetic
conservation units of forest trees that are scientifically sound and practically feasible to implement
in different countries. We also suggest further actions for improving the genetic management of
tree populations. The term “dynamic conservation of genetic diversity” used throughout the text is
defined as in situ or ex situ conservation aimed at conserving evolutionary processes and adaptive

potential of natural or man-made tree populations across generations.

2. Methods

This review was carried out in the context of the European Forest Genetic Resources Programme
(EUFORGEN) and the EUFGIS project (Establishment of a European Information System on Forest
Genetic Resources, 2007-2011). The process of developing the pan-European minimum
requirements for dynamic conservation units of forest tree genetic diversity is presented in Figure
1. The inputs to the process included relevant literature and various results of EUFORGEN, such as

species-specific requirements for the units (unpublished), conservation guidelines (e.g. Koski et al.,

6
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1997; Lefévre et al., 2001) and descriptors for inventories of forest genetic resources (e.g. Jensen,
1998; Kleinschmit et al., 1998; Alba, 2000). Furthermore, a large group of experts contributed to a
survey and a workshop organized as part of the EUFGIS project. A smaller group of experts then
reviewed all input information and drafted the minimum requirements. The drafting process
included pilot testing of the minimum requirements in six countries (Austria, Denmark, France,
Slovakia, Slovenia and the United Kingdom) before they were finalized. The literature selected for
the review focuses on key issues, i.e. genetic diversity and related processes in tree populations,
dynamic conservation of genetic diversity, sampling for genetic conservation, forest management
and monitoring (Figure 1). We considered these as the most important issues for integrating
genetics into the management of the conservation units and we only referred to main publications

(in our opinion).

3. Conservation of forest tree genetic diversity

3.1. Genetic diversity in forest trees

Forest trees differ from other plant species in their capacity to maintain high levels of genetic
diversity within populations rather than among populations (Hamrick, 2004), with some
exceptions to the rule (e.g. Vendramin et al., 2008). This is partly due to extensive gene flow as
dispersal distances of effective pollen flow (i.e. pollination leading to successful mating) and seeds
can reach up to 100 km and tens of kilometres, respectively (Kremer et al., 2012). Trees also have
a long generation time, characterized by a long juvenile stage and overlapping generations
(Austerlitz et al, 2000). However, despite the extensive gene flow, tree populations also
demonstrate adaptation to local environmental conditions (Aitken et al., 2008). Such local

adaptation can develop rapidly, i.e. within one or a few generations (Namkoong, 1998). Despite of

7
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local adaptation, genetic variation in adaptive traits is generally maintained at a high level within

tree populations (Savolainen et al., 2007).

It seems that the counter-acting processes of extensive gene flow and local adaptation (through
strong selection pressures on seedlings and young trees in each generation) have shaped the
genetic constitution of European forest trees during their range expansion after the last glaciations
to a high degree. Extensive gene flow is constantly mixing genes and alleles, offering a multitude
of new combinations for selection. In contrast, forest trees have low evolutionary rates at the DNA
sequence level (Petit and Hampe, 2006). The rapid local adaptation is most likely caused by the
intergenic allelic associations created in this constant ‘mixing’ process facilitated by high gene flow
rates (e.g. De Carvalho et al., 2010). These associations explain the coexistence of phenotypic
differentiation among tree populations in the presence of extensive gene flow (Kremer et al.,
2010). An epigenetic mechanism may also play a significant role in the rapid local adaptation of
forest trees, as shown in Norway spruce (Picea abies). Variation in environmental signals, such as
temperature, during embryo development influences the expression of adaptive traits in the
offsprings (Kvaalen and Johnsen, 2008). This epigenetic mechanism in Norway spruce seems to be
controlled by a set of largely unknown genes, which have been identified by microRNAs (Yakovlev

et al., 2010).

During the past 2.6 million years (Quaternary Period), the distribution ranges of tree species have
not been stable but dynamically contracting, expanding or shifting as a response to climate
changes. These changes had a profound impact on boreal and temperate tree species but they
also influenced the distribution of tropical forests (Hewitt, 2000) as well as the migration of

tropical tree species (e.g. Kadu et al., 2011; Logossa et al., 2011). Genetic and paleoecological

8
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studies have provided insights into the past dynamics of the distribution ranges by locating refugia
areas and postglacial migration routes (Petit et al., 2002; Magri et al., 2006; Cheddadi et al., 2006;
Liepelt et al., 2009). Refugia populations, which are often found at the current low-latitude regions
of temperate tree species’ distribution ranges, have been assigned a high priority for the long-
term conservation of genetic diversity (Hampe and Petit, 2005). In Europe, the refugia populations
are mostly found in the Mediterranean Basin which harbours high within-population genetic
diversity in vascular plants (Fady and Conord, 2010) and where species introgression took place
during the last glaciation (Hatziskakis et al., 2008; Scaltsoyiannes et al., 1999). However, recent
studies have provided evidence that small tree populations also survived at intermediate or even

high latitudes throughout the Quarternary glacial episodes (Hu et al., 2009; Parducci et al., 2012).

Range expansions generally reduce genetic diversity along the migration path owing to recurrent
bottleneck effects and they can also create patterns of genetic diversity that can be difficult to
separate from adaptive events (Excoffier et al., 2009). However, when multiple founder events are
unrelated, due to long distance dispersal, a high level of genetic diversity is conserved in the
colonisation domain (Fayard et al., 2009). Successful migrating tree populations obviously
maintained sufficient genetic variation to allow them to adapt to newly colonized areas (Hamrick,
2004). Furthermore, so called mid- or high-latitude contact zones, where different refugial
lineages mixed, had an important role in creating new gene combinations and adaptations to
environmental conditions along the migration routes (Liepelt et al., 2009; De Carvalho et al.,
2010). Tree populations in the contact zones still harbour high levels of genetic diversity (Petit et
al., 2003; Liepelt et al., 2009; De Carvalho et al., 2010) and thus they are considered of a high

conservation priority in addition to the refugia areas.
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3.2. Conservation goal and approaches

Genetic diversity includes both the diversity of alleles and the diversity of genotypes, i.e. allelic
combinations. The diversity of genotypes is particularly important for organisms having long
generation time, such as forest trees, because they have few opportunities of recombination to
create new allelic associations. The frequencies of alleles and genotypes are continuously changing
over time as a result of evolutionary processes (natural selection, genetic drift, gene flow and
mutation) and tree populations have rarely, if ever, reached an optimum degree of adaptation to
given environmental conditions (Eriksson, 2005). Thus, the goal of genetic conservation of forest
trees should be the maintenance of a diverse group of mating individuals and populations across
different environmental gradients to ensure continued evolutionary processes, not only the

preservation of the existing frequencies of alleles and genotypes.

In situ conservation is commonly the preferred approach for maintaining the genetic diversity of
forest trees and other wild plant species, while domesticated plants are conserved in genebanks
(ex situ) or on farms (circa situm). Genetic material of forest trees is also conserved ex situ in seed
banks, seed orchards, clone collections, provenance trials, planted conservation stands and
botanical gardens to complement in situ conservation efforts (particularly when population size is
critically low in the wild). In situ conservation of forest trees has several advantages as compared
to ex situ conservation (Rotach, 2005). Firstly, in situ conservation is dynamic allowing temporal
and spatial changes in genetic diversity while ex situ conservation is mostly static maintaining the
once-sampled genetic diversity. The second advantage is that trees within in situ conservation
units remain exposed to evolutionary processes, as they continue interacting with their

environment and competing with individuals of the same or other species. Thirdly, it is easier and
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cheaper to conserve tree populations in their natural habitat than under ex situ conditions. Finally,

larger population sizes can be managed in situ than ex situ.

3.3. Management aspects

Dynamic conservation of genetic diversity can be integrated into the management of both
protected areas and forests used for different purposes (FAO, FDL, IPGRI, 2004). However, from
the genetic management point of view, both protected areas and managed forests often have
some limitations. Most protected areas are established for conserving endangered animal and
plant species or specific habitats, and their suitability for long-term genetic conservation of forest
trees has rarely been assessed prior to their establishment. It is assumed that habitat conservation
and natural regeneration also maintain the genetic diversity of tree populations in an optimum
and stable state. However, this assumption has been challenged by many theoretical and empirical
studies (e.g. Rauch and Bar-Yam, 2005; Faith et al., 2008). Furthermore, genetic conservation of
forest trees often has a low priority in the management of protected areas and typically no
silvicultural treatments are allowed in these areas to enhance genetic processes within tree

populations.

When protected areas or genetic conservation units in managed forests are being established, it is
commonly assumed that seemingly natural forests consist of autochthonous, genetically diverse
tree populations. However, historical records show that forest reproductive material (typically
seeds or seedlings) has been traded and distributed across Europe for hundreds of years (Konig,

2005). There is usually no documentation available where the transferred material was planted in
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the past. Genetic studies have shown that such human interventions have shaped the pattern of

genetic diversity in forest trees in Europe (e.g. Fineschi et al., 2000; Vendramin et al., 2008).

As part of today’s forest management, stands are often regenerated by planting or seeding with
genetic material originating from other locations but the use of forest reproductive material is still
poorly documented in most countries. Of the whole silvicultural chain, the regeneration phase is
the most significant one as it largely determines the amount of genetic diversity in subsequent
mature stands while other phases, such as thinning, have a lesser impact on genetic diversity
(Savolainen and Karkkainen, 1992; Lefévre, 2004). The impact of forest management on genetic
diversity depends on the silvicultural system applied and many systems actually maintain genetic
diversity rather well (Geburek and Miiller, 2005). However, forest management usually focuses on
one or relatively few tree species and may even aim at removing non-commercial species from

production stands.

A particular concern is the use of non-certified reproductive material for amenity tree planting
along roads and for other similar purposes. These activities rarely follow well-regulated forestry
practices and they often use reproductive material which does not comply with the international
labelling schemes of the material, such as those developed by the European Union or the
Organization for Economic Co-operation and Development (OECD) (Ackzell and Turok, 2005).
Assisted migration can enhance adaptation to climate change (Hewitt et al., 2011) but in case of
amenity tree planting, the risks of introducing alleles resulting in maladaptive traits into nearby
genetic conservation units is higher than in the forestry operations which are obliged to use well-
documented reproductive material that is usually also tested in different site conditions prior to its

deployment.
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In Europe, most national conservation strategies for forest genetic resources are based on the
dynamic approach and several countries have also revised their strategies based on the expected
impacts of climate change (e.g. Hubert and Cottrell, 2007; Lefévre, 2007). The national strategies
aim at conserving dynamically a representative sample of the genetic diversity found within a
country and for this purpose, many countries have created a network of genetic conservation units
(Graudal et al., 1995; Behm et al., 1997; Teissier du Cros, 2001). The networks are typically based
on ecogeographical zonation and the distribution of tree species in a given country. In other
regions, such as Asia and Africa, similar conservation networks have also been established for
some commercially important species (FAO,DFSC, IPGRI, 2001). However, these networks are still
largely based on tree populations occurring in protected areas and production forests (see Eyog-
Matig et al., 2002; Luoma-aho et al., 2004) rather than populations which are specifically managed
for genetic conservation. Ideally, if all countries had national conservation strategies in place, the
conservation networks would cover the whole distribution range of a tree species. In practice,
however, countries have different priorities for implementing genetic conservation and selecting
tree species, as well as different levels of resources available for this work. As a result, there are

often gaps in genetic conservation networks in Europe and elsewhere.

4. Pan-European minimum requirements for the dynamic conservation units

4.1. Basic requirements

Genetic management of forest trees requires long-term commitment, planning and action.
Therefore, we identified several basic requirements for genetic conservation units of forest trees

(Table 1). Firstly, each unit should have a designated status as a genetic conservation area,
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recognized by the appropriate authorities or agencies in a country to ensure its long-term
management for this purpose. The designated status does not necessarily mean that the units
should have a legal status. As countries have organized their conservation work in various ways,

the designated status can also be based on an administrative decree or other similar arrangement.

Secondly, the units should have a basic management plan that includes generation turnover and
genetic conservation of forest trees should be recognized as a major management goal. All
management efforts carried out within a unit should also be documented in detail and the records
should be maintained either by the landowner, the organization responsible for the management
of the unit or a relevant national authority. The management plan should be updated based on

systematic field inventories conducted every five or ten years, depending on the planning cycle.

The third basic requirement is related to tree species and the genetic background of their
populations. For each unit, one or more tree species should be recognized as target tree species
for genetic conservation in the management plan. This means that management efforts to
maintain genetic processes are applied to favour these species. If a genetic conservation unit has
several target species, each target species must meet the appropriate minimum population size as

described in detail below.

The target tree species can be either native or introduced ones. In the case of native tree species,
the units should ideally consist of autochthonous tree populations but well-adapted populations

originating from other locations can also be designated as conservation units. Several introduced
tree species have been used for forestry and environmental restoration in Europe for decades or

even hundreds of years. Many of these species have developed into landraces that are adapted to
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333 European conditions and have, in some cases, developed distinct characteristics from their original
334  source populations (K6nig, 2005). Such landraces constitute a valuable genetic resource that needs
335 to be managed according to the principles of dynamic conservation. Furthermore, genetic material
336 of both native and introduced tree species conserved in Europe may be useful in the future for
337 restoring lost tree populations in their original locations (Kénig, 2005; Chalupka et al., 2008). The
338  target tree species may grow in pure or mixed stands and a unit may consist of one or more stands
339 of different age classes. No unknown or maladapted genetic material of the target tree species

21 340  should be growing within a unit.

23 34

26 342  The reasons for establishing genetic conservation units often depend on where a country is

28 343 located in respect to the distribution range of a target tree species. Many stand-forming tree

30 344  species have large, continuous populations at the centre of their distribution range while they

33 345 grow in disjunct populations at the margins. There are scattered tree species which rarely, if ever,
35 346  form stands and subsequently their population density is low throughout their distribution range.
347 Furthermore, a tree can be rare or endangered in one country but more common in another

40 348  country. There are also endemic tree species which may occur only in specific areas within a

42 349  country. Thus conservation objectives for tree species often vary among countries. The objectives
350 for the genetic conservation units can be classified into the following categories; 1) to maintain

47 351  genetic diversity in large tree populations, 2) to conserve specific adaptive or other traits in

49 352 marginal or scattered tree populations which are often relatively small, and 3) to conserve rare or
52 353 endangered tree species with populations consisting of a small number of remaining individuals.
54 354  The fourth basic requirement is that one of these objectives has been clearly stated for each target
56 355 tree species within a unit.
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4.2. Size of a dynamic conservation unit

The size of conservation populations is commonly determined with two goals in mind; 1) to
increase the probability of capturing the existing diversity of alleles (sampling perspective), and 2)
to reduce the risk of loosing genetic diversity during the course of evolution (dynamic
perspective). To our knowledge, no theoretical or let alone practical recommendations have yet
been elaborated based on the concept of allelic associations which play an important role in

adaptation of forest trees (Kremer et al., 2010).

4.2.1. Sampling perspective

Marshall and Brown (1975) presented a conceptual framework for prioritizing genetic
conservation efforts and grouped alleles into four classes, 1) common and widespread, 2) common
and local, 3) rare and widespread, and 4) rare and local. They argued that common and local
alleles should be given a priority in genetic sampling as this class presumably includes those alleles
behind adaptation to the local conditions. Brown and Hardner (2000) recommended that a
sampling strategy targeting this same allele class is also well suited for forest trees as their
populations demonstrate geographical patterns in adaptive traits. However, recent work based on
DNA sequencing suggests that these highly differentiated adaptive alleles are also rare (Grivet et
al., 2011). Any sampling strategy will capture the first allele class while the sampling of the third
allele class depends on the number of units within the species’ distribution range and not on the

number of trees within a unit (Brown and Hardner, 2000).
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The alleles in the fourth class are the most difficult ones to sample but they are of low priority for
two reasons (Brown and Hardner, 2000). Firstly, conserving all rare and local alleles is practically
impossible considering the resources available for conservation work and secondly, even with
unlimited resources available to sample all these alleles, it would be difficult to maintain them in
the long-term as they include recent and deleterious alleles which are likely to be eliminated by
natural selection. Yanchuk (2001) calculated that almost 280 000 trees would need to be sampled
to include 20 individuals with recessive alleles of low frequency (less than 1%). This would require
an area of nearly 700 ha (assuming an average density of 400 reproducing trees per hectare) and
would make the establishment of genetic conservation units nearly impossible not only for most
tropical tree species but also for many scattered or rare tree species in the temperate and boreal

zones.

In forest trees, some 10-20% of allozyme alleles are common and local (Brown and Hardner, 2000).
Considering this, the same authors defined an adequate sampling strategy as one that captures
with 95% certainty at least one copy of alleles with a frequency of 0.05 and stated that this
requires 59 unrelated gametes. Taking into consideration differences in the breeding systems of
trees, Brown and Hardner (2000) recommended that a sample should include a minimum of 50
random and unrelated trees. As a worst-case scenario, Brown and Hardner (2000) concluded that
open-pollinated seed collected from a minimum of 15 maternal trees would sample a large part of

genetic diversity within a population.

4.2.2. Dynamic perspective
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Applications of MVP and ESU to improve the genetic management of conservation populations
have been debated extensively during the past 30 years (see Traill et al. (2010) and Flather et al.
(2011) for MVP; Fraser and Bernatchez (2001) for ESU). Various MVP and ESU approaches have
been defined using different criteria but they all have a common goal, i.e. long-term conservation
of evolutionary processes and adaptive diversity. However, no single ESU approach is the best one
for all situations (Fraser and Bernatchez, 2001) and there is no universal threshold for MVP either

(Flather et al., 2011). MVP also depends on context-specific factors (Traill et al., 2007).

The minimum size of a genetically viable population is commonly defined using effective
population size (N.), which is a parameter measuring the intensity of random genetic drift in the
Wright-Fisher model population (e.g. Hartl and Clark, 1997). Based on theoretical studies,
recommendations for the minimum population size range from N.=500 (Franklin, 1980; Soulé,
1980; Lande and Barrowclough, 1987) to N.=5000 (Lande, 1995) when the goal is to maintain
evolutionary potential. A meta-analysis by Traill et al. (2007) found a median, standardized MVP
estimate of 4169 individuals based on published studies on 212 species (mainly animals). If the
goal is to maintain reproductive fitness in the short term (over a few generations), the minimum

population size of N.=50 has been suggested by many studies (see Frankham et al., 2002).

The question of how many individuals should be included in a conservation unit has also been
studied extensively in forest trees. However, as N, is extremely difficult to determine accurately in
tree populations, it is frequently approximated by the number of reproducing trees (N,), i.e. the
effective size of an observed biological population instead of a model one (e.g. Hattemer, 2005a).
The recommendations for N, range from 50 (e.g. Brown and Hardner, 2000) to 500 (e.g. Hattemer,

2005b) and 1000 (Lynch, 1996).
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Franklin (1980) and many other theoretical studies on MVP are based on the assumption that
additive genetic variance (V,) rather than allelic diversity determines evolutionary potential, and
that its level depends on the balance between random genetic drift and mutation. The change in
additive genetic variance (AV,) is calculated as the difference between the increase in genetic
variation per generation due to mutation (V,,) and the loss of additive genetic variation per
generation due genetic drift (V,/2N.) (e.g. Frankham et al., 2002). At mutation-drift equilibrium
(AV,=0), N. equals V,/2V,,. Various theoretical studies have estimated V,, differently and this
explains the large variation in the recommended minimum population sizes. These
recommendations can thus be debated until it is better known which mutations are always
deleterious, and which ones are deleterious in some conditions and beneficial in others (Frankham

et al., 2002).

Expected heterozygosity (H.) and V, are expected to decline in a population by a factor of 1-1/2N,
per generation (e.g. Hartl and Clark, 1997). The assumptions of this model include equal sex ration,
random mating and non-overlapping generations, and that no selection, mutation or migration
take place. However, these assumptions do not often hold in case of tree populations.
Furthermore, this model probably over-estimates the decrease of V, because they do not take into
account the role of linkage disequilibrium and interactions among loci (Carter et al., 2005; Kremer

and Le Corre, 2012).

4.2.3. Recommendations for the sizes of the dynamic conservation units of forest trees
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Genetic conservation is obviously more secure with a population size of a few thousand trees
instead of a few hundred or tens. However, setting thousands of trees as the minimum population
size is not practically feasible. The size requirement should be reasonable and flexible for different
kinds of tree species. It should also take into account different conservation objectives across
species’ distribution ranges. Considering resource allocation at the range-wide level, the size
requirement for a unit needs to be set at a level which allows establishment of a network of units

to cover all ecogeographical zones within a species’ distribution range.

Considering the real-life fact that resources are limited for conservation, Frankham et al. (2002)
proposed that maintaining 90% of genetic diversity for 100 years is a reasonable goal for genetic
management of conservation populations. Using this goal, we first considered how long period is
100 years in terms of tree generations (t), and then calculated, based on the random genetic drift

model, the decline in genetic diversity during this period as (1-1/2N.)" using different values of N..

Generation time in forest trees, i.e. the time from seed to seed (Petit and Hampe, 2006), is
somewhat difficult to establish accurately for a number of reasons. Temperate and boreal tree
species, for example, reach reproductive maturity typically at the age of 20-30 years but in open
and dense stands, this takes place several years earlier or later, respectively. The reproductive
cycle usually takes two or three years, year-to-year variation in seed production is large and mast
years occur infrequently. It may then take several years, decades or even centuries before a new
tree generation has been established successfully, depending on whether a species is a pioneer or
climax one, and how a forest is managed. The life span of individual trees can extend up to several

hundreds of years and as a result, tree populations often consist of overlapping generations.
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However, assuming that the average generation time of a European tree species is 50 years, a
model population with N.=500 would maintain 99.8% of its original genetic diversity after 100
years. Smaller populations with N.=50, 15 or 5 would maintain 98.0%, 93.4% and 81.9% of their
genetic diversity, respectively. These calculations do not take into account any outside gene flow
which is likely to offset some part of the loss of in genetic diversity, nor bi-parental inbreeding
that, on the contrary, can reduce the diversity. Furthermore, spatial genetic structure is not
considered. Using a simulation approach and the most realistic seed dispersal functions for a
model population, Sagnard et al. (2011) showed that a spatial genetic structure (non-random

distribution of related genotypes in space) could result from a single mating event when N, < 16.

Migration can play a significant role in maintaining genetic diversity in tree populations. Long-
distance gene flow via seed and pollen dispersal increases genetic variation in tree populations in
two ways (Kremer et al., 2012). Firstly, long-distance effective pollen dispersal increases the
genetic diversity in seeds produced by the current tree generation. Secondly, migrant seeds can
accumulate in a population over many years, increasing the number genotypes in the next tree
generation. This suggests that long-distance gene flow can compensate partly or fully the loss of
genetic diversity due to genetic drift in small tree populations or even increase their genetic

diversity, depending on the situation.

Based on the theoretical considerations and practical aspects, we propose that the minimum size
of a genetic conservation unit should be either 500, 50 or 15 reproducing individuals depending on
tree species and conservation objectives (Table 1). As some tree species are capable of vegetative

reproduction (through root sprouts or partially buried shoots), efforts should be made to check if
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there are identical genotypes (clones) of such tree species present within a unit and take this into

consideration when estimating the number of reproducing genotypes.

In Cases 1 (N,=500) and 2 (N,=50) (Table 1), the minimum number of reproducing trees can be
temporarily lower than what is indicated if it is necessary to create gaps to promote natural
regeneration, for example. The prerequisite is that the minimum number of reproducing trees has
contributed to mating (and seeding depending on the species) before the regeneration process
has been initiated with silvicultural measures. Furthermore, N, should recover to the minimum
level or above in the near future after a management intervention. We consider Case 3 (N,=15) as
an exceptional case. All units with such a low number of reproducing trees should be subjected to
appropriate measures to increase their population size. Furthermore, seed or other reproductive

material from these units should be collected urgently for ex situ conservation.

4.3. Management of dynamic conservation units

Management of the units should aim to maintain and enhance the long-term evolutionary
potential of the target tree populations. Subsequently, two management objectives are necessary
for reaching this goal (Table 1). Firstly, management should ensure the continued existence of
target tree populations and secondly, it should create favourable conditions for growth and vitality
of the target tree species and their natural regeneration (Rotach, 2005). This means that
management should be active, i.e. various measures and silvicultural techniques are applied,
whenever needed, to enhance genetic processes that maintain the long-term viability of the target
tree populations. The management interventions should also favour all tree species that have

been recognized as target species and result in adequate natural regeneration, both in terms of
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guantity and genetic quality. In some particular cases, such as riparian pioneer tree species,

ecological engineering may be needed to ensure natural regeneration (Lefévre et al., 2001).

Under the first objective, management efforts should aim to protect the units against natural or
man-made catastrophes. Obviously, the units can never be fully protected against these stochastic
events but management can increase the resilience of the tree populations so that they can persist
during a catastrophe and recover from it. In the absence of any catastrophe, successional
development may also threaten the existence of tree populations and management efforts are

needed to halt or reverse this natural process, depending on the target species.

Under the second objective, silvicultural techniques, such as thinning, are often needed to
maintain the vitality of the target tree populations and to avoid stands becoming too dense with
reduced health, vigour and seed production. Thinning typically removes out-competed individuals
or it can be applied in a systematic way but as long as stand density remains above a certain
threshold, thinning usually has limited genetic consequences (El-Kassaby and Benowicz, 2000;
Lefevre, 2004). After thinning, target tree populations should still have a sufficient number of
effectively mating and reproducing trees to prevent reduction of genetic diversity through
demographic bottlenecks and consanguineous mating, and to maintain genetic diversity.
Furthermore, the spatial distribution of trees should be such that it is reasonable to assume that
sexual reproduction takes place randomly, and that the level of relatedness among the next

generation of trees, or spatial genetic structure, is as low as possible (Sagnard et al, 2011).

Silvicultural techniques should be applied in such a way that they support reproductive processes

and result in adequate regeneration of the target tree species. Natural regeneration should be
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favoured as a regeneration method, but tree populations can also be regenerated by planting or
seeding. If stands are regenerated artificially, the reproductive material should originate from the
same genetic conservation unit, or, if not available, from another autochthonous stand nearby. In
this case, the number of trees which contributed to the artificial regeneration process should also
meet the minimum requirements. If a unit is large, different selective cutting and regeneration
techniques could be used within and among the units to promote variability in mating patterns

(e.g. clustered, random and regular spacing of seed trees).

Genetic conservation of forest trees can be integrated fairly easily with other management goals
of forests and it does not prevent forests from being used for different purposes. As dynamic
conservation of genetic diversity may require active management, it can be easier to implement it
in forests that are managed for multiple-uses as compared to nature reserves and other protected
areas which are often managed passively without silvicultural interventions. However, it is
important to note that genetic conservation of forest trees cannot be practised in all managed
forests. For example, stands established using reproductive material from unknown sources do
not meet the minimum requirements. Furthermore, seed orchards and many seed stands, i.e.
areas identified as being suitable for seed collection for forestry, do not meet the requirements for

dynamic genetic conservation either.

Detailed guidelines for field-level management of the units are already available (e.g. Koski et al.,
1997; FAO, DFSC, IPGRI, 2001; Lefevre et al., 2001; Rotach, 2005) so we do not discuss them here.
However, we want to highlight the importance of relevant practices and policies in supporting
management of the units. As countries are ultimately responsible for conserving genetic resources

within their territory, management of the units needs overall coordination at the national level.
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The management of networks of units across a country is best undertaken by a designated
authority working in collaboration with relevant agencies, forest owners and other interested
parties. This often facilitates the process of obtaining the designated status for a unit and
incorporating genetic conservation as a management goal into the management plan.
Furthermore, conservation of forest genetic resources should be incorporated into relevant
national policies, such as national forest programmes, national biodiversity action plans and

national adaptation strategies to climate change (see Koskela et al., 2007).

4.4. Monitoring of dynamic conservation units

Monitoring is crucial for the successful management of the units. Once basic information on the
target tree populations has been collected for the establishment of the units and for the
development of a management plan, field inventories should ideally be carried out every five or

ten years to assess the success of the conservation work and to update the management plan.

As a minimum level of monitoring, the field inventories should collect data on natural
regeneration of target tree species and their population sizes. In case natural regeneration is
inadequate or if the number of reproducing trees has decreased, urgent management
interventions may be necessary to improve the situation. Between the inventories, the units
should also be visited regularly to check for any damages caused by storms, forest fires or insect
outbreaks, for example. Regular visits can also detect problems in the viability or reproduction of

target tree populations before they become a serious threat.
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Ideally, monitoring efforts should also track temporal changes in the genetic variation and
structure of the target tree populations, as this is the only way to verify directly how well genetic
diversity is maintained over time. Namkoong et al. (1996; 2002) proposed a genetic monitoring
system for forest trees based on four indicators (levels of variation, directional changes in allele or
genotype frequencies, migration among populations and reproductive system) and a combination
of demographic and genetic verifiers. However, this system is rather expensive and time-
consuming to be used as part of practical conservation work, and it requires a high level of
scientific skills. Furthermore, several difficult questions remain unsolved. These include selection
of species, how to characterize genetic variation, what threshold values of different verifiers
should be used and how to combine information from multiple indicators to reach clear

conclusions on the success of genetic management (Boyle, 2000).

Development of a more operational genetic monitoring system for forest trees is a necessary and
urgent task as problems in the genetic processes of tree populations are usually not immediately
observable by measuring natural regeneration or vitality of seeds (Konnert et al., 2011).
Aravanopoulos (2011) proposed a simplified genetic monitoring approach which includes only
three indicators (natural selection, genetic drift and a gene flow-mating system), to be evaluated
based on three demographic (age and size class distribution, reproductive fitness and regeneration
abundance) and four genetic (effective population size, allelic richness, latent genetic potential
and outcrossing/actual inbreeding rate) verifiers. This new scheme is a useful step towards making
genetic monitoring more feasible and cost-effective in terms of field and laboratory work, but it
does not solve all the problems (e.g. multiple indicators may still give conflicting results) and it still

needs to be tested.
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As development of more powerful and affordable molecular markers and novel statistical and
modelling tools is making genetic monitoring more feasible and cost-effective, it is reasonable to
expect that an operational genetic monitoring system can be established for the dynamic
conservation units in the near future. Genetic monitoring systems have also been proposed for

other plant species and animals (Schwartz et al. 2007; Laikre et al., 2008).

4.5. Deployment of the pan-European minimum requirements

The pan-European minimum requirements for genetic conservation units of forest trees are now
being used by 36 countries to improve management of forest genetic diversity. To support the
related documentation efforts, the countries have also agreed common data standards for the
units. The data on those units which meet the minimum requirements was collected by a network

of national focal points for the EUFGIS Portal (http://portal.eufgis.org). This new database

provides geo-referenced data on the genetic conservation units based on 26 data standards at the
unit level (geographical area) and 18 data standards at the population level (target tree species
within a unit). In January 2012, the portal contained data on 2369 units, which are managed for
genetic conservation of nearly 100 tree species in Europe. The units harbour a total of 3154 tree
populations. In addition to conservation work at the national level, the countries have used the
EUFGIS Portal for international reporting efforts, such as the State of Europe’s Forests 2011 report
(FOREST EUROPE et al., 2011) and the forthcoming State of the World’s Forest Genetic Resources

report.

5. Conclusions
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The pan-European minimum requirements for genetic conservation units of forest trees presented
in this paper constitute a major step in improving genetic management of forest trees in a large
geographical scale. They provide managers, forest owners and policy makers with practical,
science-based recommendations for implementing dynamic conservation of forest trees in a
coordinated manner across different countries and situations. The presented requirements were
developed for the European tree species and conditions so they cannot be applied to other
regions without modifications. However, we believe that they provide other regions with a useful
example on how such requirements can be developed through regional collaboration.
Furthermore, as range-wide genetic studies and mapping of valuable populations are increasingly
carried out also for tropical and sub-tropical tree species (e.g. Kadu et al., 2011; van Zonneveld et
al., 2012), countries in other regions would also benefit from having common requirements for

genetic conservation units of forest trees modified for their conditions.

In addition to secured regeneration and adequate number of reproducing trees within a
conservation unit, it is crucial that a network of the units has a sufficient coverage of the spatial
genetic variation present in a given species (Koski et al., 1997; Crandall et al., 2000). As it is very
difficult to define a universal minimum number of units for a conservation network that could be
justified for all tree species (Brown and Hardner, 2000), we did not include this aspect to the
minimum requirements. Instead, we argue that the minimum number of units for conservation
networks of forest trees should be defined species by species using available data on the existing
conservation units, species distribution, range-wide genetic diversity studies and results of
common garden tests or other information on adaptive traits. This would also allow assessment of

duplication in conservation efforts between countries and, considering the level of threats for a
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given species, decisions on what level of duplication is needed to minimize the risks of loosing

genetic resources within a species.

The minimum requirements have prompted various actions by European countries to improve the
management of their forest genetic resources and to better document their conservation units.
They have been particularly useful for countries with limited budgets and human resources
available for genetic conservation by focusing their efforts to key issues. In other countries, they
have increased collaboration between forest owners and managers, forest geneticists and the
broader biodiversity conservation community to explore whether existing protected areas or
production forests meet the minimum requirements and whether such areas can also obtain
designated status as genetic conservation units. There are a few countries which have no units
that meet the minimum requirements. The reason for this is usually missing designated status or a
management plan which includes genetic considerations. Therefore, the minimum requirements

have also been useful for pointing out these shortcomings to managers and policy makers.
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Table 1. Pan-European minimum requirements for genetic conservation units of forest trees.

Requirement group

Detailed requirements

Basic requirements

The unit has
1) adesignated status as a genetic conservation area of forest trees,
recognized by the appropriate authorities or agencies in a country.
2) amanagement plan in which genetic conservation of forest trees is
recognized as a major management goal.

One or more tree species have been recognized as target tree species for genetic
conservation in the management plan.

One of the following conservation objectives has been clearly stated for each
target tree species within a unit:
1) to maintain genetic diversity in large tree populations;
2) to conserve specific adaptive or other traits in marginal or scattered
tree populations; or
3) to conserve rare or endangered tree species with populations consisting
of a small number of remaining individuals.

Population size

The minimum population size depends on the conservation objective as follows:
Case 1: If the purpose of the unit is to maintain genetic diversity of widely
occurring and stand-forming conifers or broadleaved species, the unit must
consists of 500 or more reproducing trees.

Case 2: If the unit was established to conserve specific adaptive or other traits in
marginal or scattered tree populations, the unit must harbour a minimum of 50
reproducing trees or, in the case of dioecious tree species with sexual
dimorphism, 50 seed bearing trees.

Case 3: If the unit is aiming to conserve remaining populations of rare or
endangered tree species, it must harbour a minimum of 15 unrelated
reproducing trees.

Management

Silvicultural interventions are allowed within the unit and they are actively
applied, as needed, to:
1) ensure the continued existence of target tree populations; and
2) create favourable conditions for growth and vitality of the target tree
species and their natural regeneration.

Monitoring

Field inventories are carried out every five or ten years to assess regeneration
success and the population size, and to update the management plan.

Between the inventories, the units are visited regularly to observe that they still
serve their purpose and that they have not been damaged or destroyed.




