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Abstract

The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To
gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association
and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic
regions were associated with flowering time. The number of early alleles cumulated along these regions was highly
correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to
Arabidopsis major flowering time (FT) gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor
of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the
genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed
supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel,
whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when
structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods
are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD) estimates corrected for
population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs
contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is
controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic
conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination
of diverse maize genetic resources under a wide range of environments.
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Introduction

Maize was domesticated in tropical conditions in the lowlands

of southwest Mexico and later adapted to the broadest range of

climatic conditions of all crops, from 40uS in Chile to 50uN in

Canada and Russia, from sea level in the West Indies to elevations

above 3400 m in the Andes [1–4]. Maize has high molecular

diversity, with landraces pooling most of the nucleotide diversity

(83%) from their wild ancestors, contrary to many other species

[1]. This illustrates that a limited bottleneck occurred during

domestication [2–4], probably due to the landrace outcrossing

mating system and the continuous gene flow between cultivated

and wild Zea mays L. subspecies. Modern breeding seems to have

had little impact on genome-wide diversity and mostly affected

genes that had already undergone selection during domestication

[1,2].

Despite this limited loss of diversity, phenotypes have been

dramatically modified by domestication, large-scale migration/

adaptation and selection cycles that gave rise to modern hybrids.

In particular, flowering time evolved to adapt to short growing

seasons, long days and low temperatures under temperate

climates. Among the germplasm available, for maize landraces,

the time from planting to the mature grain stage ranges from 2 to

11 months [3]. Silk emergence date (female flowering) varies by 32

days among the founder lines of thenested association mapping

(NAM) population and by 28 days among the recombinant inbred

lines derived from these parents [4].

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71377



Flowering time plays a key role in the acclimation of plants to

different environments by integrating diverse environmental and

endogenous signals that control the optimal moment for the

transition from the vegetative to the reproductive phase. It allows

the plant to avoid drought and thus kernel abortion, or to optimize

the light interception period and yield for instance. The synchrony

of male and female flowering is also an important adaptive trait in

maize as high asynchrony can result in yield losses, especially in

modern uniform varieties [5].

Compared to some other species like Arabidopsis [6] sorghum

[7] and rice [8,9], for which natural variations at a limited number

of genes have been shown to have a large effect, flowering time

architecture in maize is more complex. Several tens of small effect

QTLs have been detected [4,10]. This suggests that maize

flowering involves a network of genes interacting in many

signaling pathways. Among the loci that have been highlighted,

the maize INDETERMINATE1 (ID1) gene is an important

regulator of maize autonomous flowering that acts in leaves to

mediate the expression of mobile signals that are hypothetical

flowering hormones called florigens [11,12,13] which promote

flowering at the shoot apical meristem. ZCN8 was found to be

controlled by ID1 and to express a florigen in leaves [14]. It is

homologous to the Arabidopsis FLOWERING LOCUS T (FT), a

kinase regulator [15]. FT is a key integrator because almost all

flowering pathways (autonomous, gibberellins, photoperiod and

vernalization) converge on it, and FT transmits the floral inductive

signal to downstream floral identity genes [16]. In maize, a family

of 25 FT homologues including ZCN8 have been published [17].

They are named Zea CENTRORADIALIS (ZCN) genes. Expression

analysis demonstrated that some of them are involved in

developmental processes. A second gene that has been shown to

have a major downstream effect is Dfl1 (Delayed flowering1), a

transcription factor that expresses in the shoot apical region [18].

Mutants, however, exhibit a less severe flowering time defect

compared to ID1. Another major factor in flowering time

variation, Vgt1, was detected in both linkage-based QTL analyses

and association genetics studies [4,10,19,20,21,22,23,24]. It has

been cloned and described as a regulatory factor that controls the

expression of an Apetala2-like gene, ZmRap2.7 [24].

Further investigations to identify the main factors controlling

maize flowering time in a panel representative of diverse migration

routes would be beneficial: (i) to gain insight into the adaptation

mechanisms under changing environments, (ii) to identify alleles

for introgression into existing varieties in order to adapt them to

different environmental conditions, and (iii) to better predict

flowering time to the benefit of global crop management and local

breeding programs, since flowering time is often considered as a

major covariate in yield estimation. This latter objective can

presently be approached through genomic selection models. The

choice of suitable models should consider the complexity of trait

architectures in terms of relative individual effects of loci and

possible existence of non-additive effects due to interaction with

the genetic background (GxQ epistasis) or gene-environment

interactions (GxE) [25,26,27]. In maize, neither Buckler et al. [4]

nor Steinhoff et al. [28] identified major effects for GxQ or GxE

interactions for photoperiod insensitive QTLs of flowering time.

They concluded that a simple additive model can accurately

predict flowering time, in contrast to the genetic architecture

observed in the selfing plant species like rice and Arabidopsis.

Steinhoff et al. [28], however observed some regions presenting

epistatic interactions between chromosomes 4 and 8, and between

chromosome 9 and chromosomes 2, 7 and 8, so these questions

generally remain open.

High density genotyping tools available today are expected to

help in the discovery, fine mapping and allele diversity character-

ization of regions involved in flowering time. However, the choice

of panel is very important as the level of polymorphism in each

genetic group will determine the power of the analysis. In

domesticated species like maize, loci that are critical to both local

adaptation and yield performance, such as flowering time loci, are

often targets of both natural and artificial selection, leading to

complex forms of allele sharing and admixture among diverse

genetic groups. Differentiation of flowering time between maize

genetic groups is actually clear at the QTL level [29,30]. Genome-

wide association mapping and selection scans can provide

complementary information to help decipher the architecture of

such adaptive traits. For example, in the case of extreme

differentiation leading to fixation of different alleles in different

groups, the loci will be undetectable when association genetics

approaches are used that include structure in the model, but will

show significant tests of selection.

This study was thus designed to assess the potential of currently

available mid-density arrays [31] in order to gain further insight

into the maize flowering time architecture. We analyzed a panel

representing a broad range of lines adapted to different

environments (tropical lines, Corn-Belt Dents and Stiff Stalk,

Northern and European Flints) that has proven efficient in

previous flowering time candidate gene-based association studies

[21,30,32]. We therefore first compared the structure of the panel

as obtained with different marker sets in order to use the most

appropriate one for statistical analyses. In order to determine the

extent and variation of LD [33] and to estimate the number of

markers required to cover the genome for future exhaustive

genome scans, we looked at LD using an unbiased measure that

extracts the part of the correlation of allelic frequencies that is due

to the intrinsic structure of the panel [34]. We then looked at

diversity, LD patterns and selection signature along the genome.

We conducted association studies focused on female (FFLW) and

male flowering (MFLW) dates and anthesis-to-silking date intervals

(ASI). The selection test and association study results were

considered to identify key genomic regions involved in adaptation.

We compared diversity and recombination patterns in flowering

time QTLs compared to the rest of the genome in order to identify

putative selective events that may have shaped flowering time

along ancient migration routes.

Material and Methods

Genetic materials
A sample of 375 maize lines representing the worldwide

diversity was considered [30]. A conformity check of newly

extracted DNA samples compared to reference DNA samples

revealed 10 illegitimate or strongly divergent samples that were

removed (see Data S1 in Text S1). Among the 365 remaining lines

genotyped with the 50K Illumina array, 29 were removed since

they had more than 10% missing data or 5% heterozygosity.

Among the remaining 336 lines that presented good quality SSR

and Illumina genotyping, the panel was composed of five genetic

groups according to the STRUCTURE results obtained with 55

SSRs [30]. The respective contribution to each group was

calculated as the sum of quantitative assignments of all lines to

this group, which led to 57 Northern Flints (NF), 62 European

Flints (EF), 26 Iowa Synthetic Stiff Stalks (SS), 115 Corn Belt

Dents (CBD) and 76 tropical lines (Trop). Overall, 242 lines were

assigned to one group (with a major contribution of .80%) and

are further referred to as ‘‘non-admixed’’ lines. This sub-sample of

Genome Scan of Flowering Time Adaptation in Maize
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relatively non-admixed lines consisted of 30 NF, 39 EF, 9 SS, 109

CBD and 55 Trop (Table 1).

Molecular markers
The panel of maize lines was described using two different sets

of SSR markers. The first one was described in [30]. It was

composed of 54 tri-nucleotidic and 1 di-nucleotidic SSRs. The

second one, reported here for the first time, consisted of 49

additional di-nucloetidic SSR markers. Di-nucleotidic SSRs have

a higher mutation rate than tri-nucleotidic SSRs [35]. The panel

was also genotyped with 57838 SNP markers synthesized for

Illumina Golden Gate. Among them, 56110 (97%) markers passed

the bead representation and decoding quality metrics, 49585

(88%) passed the analytical phase and could be scored with

GenomeStudio v2009 software [31]. Then 45747 (92%) of these

were polymorphic in the panel of 336 lines with less than 20%

missing data and 15% heterozygosity and 45615 (99.7%) were not

redundant according to the probe sequences. Among those, 43589

(95%) had a minor allele frequency (MAF) above 0.05. Finally

43224 (95% of polymorphic markers) non-redundant with

MAF.0.05 were physically mapped on version 2 of the B73

genome sequence (called RefGen_v2) and were then used for

linkage disequilibrium (LD) and association analyses. A subset of

29911 markers (65% of polymorphic markers, not always

physically mapped) designed from 27 diverse founder lines called

the Panzea diversity panel [36], non-redundant and potentially

rare (MAF.0.01), were used for the diversity statistical calcula-

tion. Most of the additional markers were designed for mapping in

B736Mo17 populations [31]. They were considered for compu-

tation of diversity indexes in comparison with Panzea SNP

information and association genetics. Additional markers not

belonging to these two main sets were from diverse origins and

considered only for association genetics investigations.

As a reference, we considered 535 SNPs discovered on regions

that were fully sequenced in the same panel around Vgt1 on

chromosome 8 [21], ZmCCT on chromosome 10 [32] and Tb1-

D8 on chromosome 1 [30] in order to compare the MAF

distributions.

Similarity and Structure matrices
Similarity. We computed two different similarity matrices

between lines (kinship), one considering the identity by state (IBS)

with r-Emma [37] and the second considering the identity by

descent (IBD), estimated following [38], taking the allele frequency

into account with Cocoa software [39]. These were applied to the

three different sets of markers (55 SSRs, 94 SSRs and 29911 SNP

Panzea markers). We compared the correlation between the three

sets of markers, while removing the diagonals of the matrices.

Structure. Population structure was investigated in order to

define suitable covariates for association genetics models and

investigate genetic diversity trends among genetic groups. We thus

used two different sets of SSR markers (55 SSRs and 94 SSRs) and

STRUCTURE [40,41] software. We considered that lines were

haploids and replaced heterozygous genotypes by missing data.

We assumed a single domestication event and restricted our

analysis to the correlated frequency model [41]. We set other

parameters at their default values using the admixture model and

infer ALPHA option. We used a 104 burn-in period and 106

iterations. Allele frequencies in each of the K clusters (from 2 to

15) were estimated, and the percentage of genome derived from

each cluster was estimated for each accession.

The structure matrix built with 29911 Panzea SNP markers was

estimated by ADMIXTURE, which computes maximum likeli-

hood estimations of individual ancestries from multilocus biallelic

genotype datasets using the same statistical model as STRUC-

TURE with a very fast numerical optimization algorithm [42].

Diversity levels revealed by the 50K Illumina array within
and among genetic groups

Diversity parameters were estimated for the total panel and

within each of the five main genetic groups determined from 55

SSRs [30], considering only 242 non-admixed lines (assigned to

the different groups with a threshold of .0.8) and the set of 29911

Panzea markers. The minor allele frequency (MAF), observed

(HO), expected (HE) heterozygosity, differentiation (FST) corre-

sponding to the ratio of inter-group diversity over the total genetic

diversity according to Nei [43,44] were calculated for each locus

and overall loci at the group and panel levels. Bootstrap

confidence interval (over loci) for pairwise genetic group FST

[45] were calculated with one hundred permutations. All statistics

were computed with r-Hierfstat [46].

Finally, we considered the classification based on 55 SSRs as a

reference to estimate SNP allelic frequencies in each genetic

group, as,

Table 1. Diversity statistics computed using 29911 Panzea SNP markers over the whole panel and five main genetic groups.

Group Abba Nq
b Nq.0.8c Mean Simd HE

e Polymf

Northern Flint NF 57 30 0.73 0.276 0.84

European Flint EF 62 39 0.70 0.299 0.89

Iowa Stiff Stalk SS 26 9 0.80 0.214 0.52

Corn Belt Dent CBD 115 109 0.65 0.349 0.98

Tropical Trop 76 55 0.67 0.339 0.98

Whole panel S1P9 336 242 0.64 0.36 -

aAbb: abbreviation describing the group,
bNq =gi diq with i the index of lines and q the index of groups, diq the assignment proportion of line i to group q according to STRUCTURE software [40,41] using 55
SSRs, Nq the number of lines in group q;
cnumber of lines assigned to group q with a genome proportion above 0.8;
dmean similarity within each group, calculated with IBS (identity by state);
eexpected heterozygosity inside each group computed with r-Hierfstat [46];
f percentage of polymorphic loci within each group,
d,e,fstatistics were computed considering lines with assignment to one group above 0.8.
doi:10.1371/journal.pone.0071377.t001
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Pk(l)q~
X

i

diqXik(l)=
X

i

diq

Where, Pk(l)q is the frequency of allele k at locus l in group q, diq is

the assignment proportion of line i to group q, Xik(l) is the presence

or absence of allele k at locus l for line I, coded as 0 and 1,

respectively.

They were calculated for all lines using only lines with

assignment to one group above 0.8.

Detection of loci presenting a selection signature
When taking the structure obtained with 55 SSRs as the

reference, we identified loci under selection according to

differences in allele frequencies between genetic groups using

BayeScan [47]. This program simulates correlations of allele

frequencies among groups on the basis of the multinomial-

Dirichlet likelihood [48]. The relative differentiation of a given

population (genetic group in our case) at a given locus (FSTB) is

decomposed into a population-specific component (beta) shared by

all loci and a locus-specific component (alpha) shared by all

populations using a logistic regression. Departure from neutrality

at a given locus is assumed when the locus-specific component is

necessary to explain the observed diversity pattern (alpha

significantly different from 0). A positive alpha value suggests

diversifying selection, whereas negative values suggest balancing or

purifying selection.

BayeScan uses posterior odds (PO) instead of Bayes factors to

make decisions about the chance that each locus is under selection.

The ratio of posterior probabilities is PO~
P(M2=N)

P(M1=N)
, M1 and M2

being the models without and with selection and N the number of

loci tested. It copes with unequal population sizes and posterior

probabilities allow control of the false discovery rate (FDR), i.e. the

expected proportion of false positives among outlier markers. We

used Jeffrey’s scale of evidence [49] with posterior odds and

defined selected loci as markers having log10(PO).1. These values

were highly correlated to Q-values, which are the minimum FDR

at which the loci may be deemed significant.

Linkage disequilibrium analysis
Linkage disequilibrium (LD) was first calculated as the squared

correlation between allelic doses at two loci (r2 using Plink [50]. As

the presence of individuals from different genetic origins within the

panel produces LD between unlinked loci (long-range LD), simply

because of differences in allele frequencies all along the genome,

this measure may lead to underestimation of the number of

markers needed for whole genome association genetics scans. We

therefore also estimated the r2s measure developed by [34] in r-

LDcorSV that corrects LD for structure effects and can be directly

linked to the power of the association tests obtained with models

that include structure. We therefore used the structure matrix

calculated with STRUCTURE and 55 SSRs as input.

The LD curve of both statistics (r2 and r2s) according to the

increase in physical distance was modeled with two non-linear

regression models [51] according to [52] and [53] using the r-Nls

package. The LD decay for each chromosome was obtained as the

abscissa of the intersection between the LD decay curve and the

horizontal lines y = 0.1 and 0.3. We compared these results with a

sliding window approach (20 kb). This analysis was performed for

all chromosomes together and each chromosome separately.

Each SNP was assigned to 20 haplotype clusters according to

[54]. The rate of imputation error was minimal (3.5%) for this

number of clusters. Individual chromosomes were regrouped

locally using the multipoint linkage disequilibrium model of

FastPHASE [55]. This model allows cluster memberships to

change along the chromosome according to a hidden Markov

model. For each SNP, we estimated the number of lines sharing

each of the five major haplotypes and represented the probability

of haplotype switch from one SNP to another along with the

genetic recombination rate.

For all diversity indexes, we used a sliding window of 1 Mb and

steps of 500 kb to visualize regions that underwent specific

evolutionary events/selection leading to different allele frequencies

in different groups and eventually higher LD.

Phenotypic data
The whole panel was tested at three different locations

(Germany_Einbeck: 52uN, 10uE, France_Gif-sur-Yvette: 49uN,

2uE, Saint-Martin-de-Hinx: 43uN, 1.3uW). The two latest groups

of lines were also evaluated at France_Mauguio (44uN, 4uE).

French locations were evaluated over 3 years (2002–2004) and the

Einbeck location over 1 year (2005). Note that only 2002 data

were considered in [30].

Lines were repeated twice at each location using a complete

block design. In order to limit competition effects, each block was

organized into four sub-blocks corresponding to earliness groups

based on a priori information. Each individual plot consisted of a

row of 15 plants planted at a density of approximately six plants

per square meter.

Days to anthesis for male flowering (MFLW) and days to silking

for female flowering (FFLW) and anthesis to silking interval (ASI)

were measured in thermal time (GDD: growing degree-days)

according to [56], with parameter values (Tb = 8u and To = 30uC)

that maximized correlations between sites (MFLW8, FFLW8,

ASI8).

A global ANOVA of the data was performed to test the

genotype, location and genotype-by-location interaction signifi-

cance. For association analyses, considering that the genotype-by-

location interaction was low compared to the genotype effect, we

estimated the adjusted mean of each genotype in the total trial

network.

We fitted the mixed model

yijkl~mzxizzjzvjkzeijk,

where yijkl was the phenotype of the l individual of the i inbred line,

in the j field trial, in the k subplot. m indicates the mean. Inbred

lines (xi) were considered as fixed effects. Field trial (zj) and subplot

(vjk) were considered as random effects. eijk was the residual error.

For each trait, LSMEANS of each inbred line i was calculated with

SAS PROC GLM as m̂mzx̂xi.

Whole genome association genetics
To investigate the effect of population structure, the proportion

of genetic variance of each trait explained by the first four columns

of the five group Q matrix obtained with 55 SSRs [30] was

calculated with a linear model that did not take relatedness into

account. We estimated group adjusted means as the predicted

values of hypothetic pure lines that would be assigned 100% to

each of the five groups.

As the structure of a population and/or the relatedness within a

sample can increase the long-range LD, and consequently the rate

of false positives, we corrected tests using a linear mixed model

using the approach described by [57]. We considered two different

four-column ancestry matrices obtained with STRUCTURE

Genome Scan of Flowering Time Adaptation in Maize
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[40,41] and 55 SSRs (called Q55SSRs), or ADMIXTURE [42] and

29911 SNPs (called Q30KSNPs). We compared the results obtained

with four different kinship matrices obtained with 94 SSRs, using

(1) identity by state (IBS) similarity obtained with the Rogers index

[58] (called KIBS(94SSRs)) and (2) the normalized IBS index (called

KNORM.IBS(94SSRs) [59]) or (3) identity by descent (IBD) calculated

with the Loiselle index [38] (called KIBD(94SSRs)). We also tested the

kinship (4) obtained with 29911 SNPs and IBS (called

KIBS(30KSNPs)).

We considered at each SNP the association model:

y~mzSazQvzZuze,

where y is the vector of phenotypes, m is the mean, S the vector of

individual genotypes, a the SNP fixed effect, Q the matrix of

assignment of each line to each genetic group, v the vector of

genetic groups fixed effects, Z the matrix of line occurrences, u the

vector of line genetic background effects and e the vector of

residuals. Var(u) = 2KVg, where Vg is the genetic variance and K is

a matrix of similarity between lines.

We took the Q55SSRs+KIBS(94SSRs) model as the reference to avoid

having to use SNP as candidate loci and for population structure

and kinship estimations. We compared P-values as obtained with

the naive model (only the marker was included in the model) and

those obtained with Q55SSRs, KIBS(94SSRs), Q55SSRs+KIBS(94SSRs),

Q30KSNPs+KIBS(94SSRs), Q55SSRs+KIBD(94SSRs), Q55SSRs+KIBS.-

NORM(94SSRs), KIBS(30KSNPs), Q55SSRs+KIBS(30KSNPs) models.

We then considered associations obtained within the three main

groups (dents, flints, tropicals) obtained with STRUCTURE and

55 SSRs, using the corresponding K obtained with 94 SSRs in the

linear mixed model.

In addition to these single locus models we used two

complementary multi-locus models. First, since Vgt1 was shown

to be a major QTL involved in flowering time variation [21,24],

we used a second model that includes Vgt1 as a supplementary

fixed effect in the Q55SSRs+KIBS(94SSRs) model to further test the

significance of SNPs that may be involved in flowering. Second, a

forward variable selection was applied to the 96 markers with P-

value,1025, using the same mixed linear model used above

(Q55SSRs+KIBS(94SSRs)). In order not to eliminate an increasing

number of lines during the procedure, we used genotypes imputed

with FastPHASE. At each step, a marker i chosen among 96-i+1

markers was added in the model. The relative quality of the

statistical models was estimated for all data sets with the Akaike

Information Criterion (AIC) that penalizes the likelihood by the

increasing number of parameters to estimate (number of structure

covariates + number of markers + polygenic variance + residual

variance). The marker i added at each step was chosen to

minimize this criterion. We stopped the procedure when the AIC

criterion stabilized and the last marker added was not significant

conditionally to the n–i markers included before in the model. All

models were analyzed using r-Asreml [60]. Wald tests of fixed

effects were based on variance estimates using the restricted

maximum likelihood (REML) method and denominator degrees of

freedom approximated by the method of Kenward and Roger

[61]. We dealt with the multiple testing problem by applying both

Bonferroni [62] and FDR approaches for P-values implemented in

r-Fdrtool [63,64]. The proportion of genetic variance explained by

significant SNPs was computed based on the relative reduction in

polygenic variance when the SNPs were added to the linear mixed

model [65]. We compared these values with the proportion of

genetic variance obtained with a linear model that includes

structure only.

Genes located in the vicinity of QTLs or regions presenting

non-neutral patterns were identified according to maize annota-

tion version 2 (maizegenome.org).

Centromeric regions were consensually defined from maize

GDB (maizegdb.org) and [66] flanking markers. Mega Blast of

primers was performed on the B73 maize RefGen_v2 sequence.

Results

Genotyping
The SNP genotyping reproducibility was assessed with 20 DNA

replicates and was above 0.999. The mean interval between

successive markers was 50 kb (Table S1 in Text S1). Markers were

relatively evenly distributed along chromosomes. However, one

gap above 2 Mb was observed on the long arm of chromosome 1

(184908147 bp) and another one above 6.5 Mb on the small arm

of chromosome 6 (9501960 bp) (Figure S1 and Figure S2 in Text

S1).

Polymorphism and MAF distribution
Among the 43224 polymorphic SNP markers or the 29911

Panzea SNPs (see Material and Methods for marker sampling

details), 4% displayed rare alleles (MAF,0.05). The distribution of

MAF for the 29911 Panzea SNPs showed a deficit in rare alleles

(MAF,0.1) compared to other frequency classes (Figure S3 in

Text S1). In order to compare polymorphism within the different

genetic groups defined by Camus-Kulandaivelu et al. [30] without

eliminating markers which may be monomorphic among non-

admixed lines, we considered all 336 lines and calculated allele

frequencies in each group on the basis of the quantitative

assignments. The deficit in rare alleles was visible for tropicals

(Trop), Corn Belt Dents (CBD), Stiff Stalk (SS) and, to a lesser

extent, Northern and European Flints (NF and EF) (Figure S3 in

Text S1). When considering only 242 non-admixed lines, 98% of

the markers were polymorphic in Trop and CBD, only 84 and

89% were polymorphic in NF and EF, and 52% in SS (Table 1).

Polymorphic rates were significantly different between groups (All

pairwise Chi-squared tests with P-value,10216). The observed

heterozygosity was low (0.036), as expected for inbred lines. The

average genetic diversity of the panel was 0.36. A lower genetic

diversity value was obtained in NF (0.28) and EF (0.30) genetic

groups relative to CBD (0.34) and Trop (0.33). The Wilcoxon

Signed-Rank Test that does not assume normal distribution [67]

showed that the pairwise within-group per-loci diversity distribu-

tions are significantly different, also when compared to the global

diversity of the panel (P-values,10215).

Among the 987 markers which were monomorphic in tropicals,

921 (93%) presented a different allele in dents, 610 (62%) in flints,

with 589 (57%) being common to dents and flints. Considering the

3346 alleles that were rare (,0.05) in tropicals, 30% were lost in

NF and EF, 57% in SS and 6% in CBD. Looking at the frequency

of these alleles that were rare in tropicals (Figure S4 in Text S1),

we observed that some of them increased in frequency until near

fixation in flints and SS, but none reached a frequency of higher

than 0.6 in CBD.

Comparison of similarity matrices and structure with
three different sets of markers

Similarities between lines obtained with Panzea and non-

Panzea SNP markers were not linearly correlated (Figure S5 in

Text S1). Similarities between one dent line and any other line

were underestimated with non-Panzea markers relative to Panzea

markers. This underestimation was particularly marked for

similarities between CBD and SS dent lines. We therefore kept

Genome Scan of Flowering Time Adaptation in Maize
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only Panzea SNPs for the diversity statistics calculation. The

average IBS calculated with Panzea SNPs was higher in SS (0.80)

and flints (NF: 0.73, EF: 0.70). Average similarities were 0.65 and

0.67 within tropicals and CBD, respectively, and 0.64 within the

entire panel. When comparing IBS and IBD (Loiselle similarity

[38],) obtained with different sets of SSR and SNP markers, we

observed (Figure S6 in Text S1) different ranges of similarities: 0.2

to 1 with SSRs and IBS, 0.5 to 1 with SNPs and IBS, 20.4 to 1.2

for SSRs and IBD and 20.2 to 1.5 for SNPs and IBD.

Correlations were high between IBS and IBD for 55 SSRs

(R2 = 0.77), 94 SSRs (R2 = 0.77) and 30K SNPs (R2 = 0.81). IBS

similarities calculated with 30K SNPs were more correlated with

IBS calculated with 94 SSRs (R2 = 0.32) than with IBS calculated

with 55 SSRs (R2 = 0.29) (Figure S7 in Text S1). When tested with

a Mantel test, all correlations were significant with P-value below

10216. Among the IBS similarity indexes, variation was higher

with 94 SSRs. As expected, variation was higher with the IBD

index which standardizes with diversity. Differentiation between

groups was also consistent between SNPs and SSRs, with the

largest differentiation being observed between NF and SS (Table

S2 in Text S1).

Group assignments were consistent between 55 SSRs and 29911

Panzea SNPs for structure levels ranging from 2 to 5 (Figure S8 in

Text S1). Groups obtained with 94 SSRs sometimes differed. For

instance, tropicals clustered with flints instead of dents at Q = 2,

European and Northern Flints separated at Q = 9 instead of Q = 5

with 55 SSRs or Panzea SNPs. Admixture levels were slightly

higher for Panzea SNPs (Figure S9 in Text S1), with mean

assignment to the main genetic group of 0.82 on average for 55

SSRs or 0.80 for 94 SSRs (not significantly different according to

Wilcoxon Signed-Rank Test considering sampling of individuals,

P-value = 0.24), 0.70 for 29911 Panzea SNPs (distribution

significantly different from SSRs, P-value,10216).

Identification of loci under selection
For SNPs, Hierfstat FST (FST) based on non-admixed lines

(assignment to groups .0.8) ranged from 0 to 0.95. According to

Hierfstat, 86% of FST values were significant (P-value,0.05, 1000

permutations) and 5% were above 0.42 (Figure S10 in Text S1, see

Figures S11 and S12 for visualization along the genome).

According to BayeScan (Figure S13 in Text S1), 91 markers had

a log10(PO) above 0, including 34 substantially significant (ranging

from 0.5 to 1) and 18 highly significant (ranging from 1 to 3.1). All

of these markers had a positive alpha value corresponding to

diversifying selection. Their FST values ranged from 0.36 to 0.72

when calculated with Hierfstat and from 0.38 to 0.51 when

calculated with BayeScan. Therefore, only FST found within the

range 0.4–0.6 when computed with BayesScan (FSTB) were

detected as outliers. Figure S14 in Text S1 illustrated that FST

and FSTB are constrained in a different way by MAF, with only loci

with MAF above 0.3 being detected as outliers (log10(PO).1)

according to BayeScan.

Extent of LD and estimation of the number of markers
needed for association genetics

On average, over the entire genome, LD decreased below

r2 = 0.1 after 200 kb according to the Hill and Weir model [53]

(Table 2). This estimation was 160 kb when considering average

LD by class of 20 kb, and 6400 bp when using the Sved model

[52] (Table S3 in Text S1). According to the Hill and Weir model,

LD ranged from 100 to 300 kb depending on the chromosome

(Table 2). It was generally low for markers that were on different

chromosomes with a 95 quantile pairwise r2 (1 billion values) of

1025. Some long distance LD was nevertheless observed between

centromeric regions (see Table S4 in Text S1 for positions), for

chromosomes 1, 5 and 8 in particular (Figure 1).

Extracting the variation due to population structure in LD

measures (see Material and Methods for details) led to a decrease

in r2s relative to r2 (Figure S15 and Figure S16 both in Text S1). In

contrast to r2, r2s values above 0.2 were obtained almost exclusively

for physically linked markers (Figure 1). This led to an estimate of

LD decay of 150 kb, i.e. a correction of 23% (Table 2). Such

corrections were particularly marked in some centromeric regions

(e.g. chromosome 8). We nevertheless detected some regions

where r2s corrected by structure was higher than r2 (Figure S11),

and some markers on different chromosomes that were in LD even

after correction for structure.

Diversity, LD and differentiation trends along
chromosomes

Based on LD analysis, we plotted all diversity and LD statistics

using a sliding window of 1 Mb by steps of 500 kb. Centromeric

regions showed specific patterns (Figure 1, Figure S11 and S12),

with a general trend towards higher LD (0.39 compared to 0.14

outside centromeres), especially on chromosomes 1, 3 and 8 (0.45,

0.44 and 0.69, respectively). The highest local LD outside

centromeric regions was found for a region between Su1 and Bt2

on chromosome 4 (between 40 and 60 Mb).

When assigning each line to 20 estimated clusters for each SNP

position using FastPHASE algorithm [55], we found that the

probability of cluster switch at each SNP was lower in centromeric

regions (0.02 compared to 0.04 genome wide, Figure S17 in Text

S1), in accord with the recombination rate calculated with genetic

maps (Figure S11). The percentage of lines carrying the major

haplotype increased to 67% in centromeric regions compared to

53% genome wide.

Table 2. Extent of linkage disequilibrium and number of
markers needed to reach average r2 = 0.1 for individual
chromosomes and the whole genome.

Chromosome r2 extent (kb)a r2
s extent (kb)a #Markersb

1 111.11 (2711) 78.61 (3832) 6892

2 230.50 (1028) 183.25 (1293) 4963

3 191.37 (1213) 146.75 (1582) 4938

4 286.24 (843) 233.92 (1031) 4784

5 144.89 (1503) 112.97 (1927) 4711

6 156.89 (1078) 121.36 (1393) 3456

7 199.92 (881) 154.89 (1137) 3562

8 303.90 (578) 211.58 (831) 3719

9 228.62 (685) 176.52 (887) 3129

10 289.97 (518) 237.90 (631) 3070

Whole genome 197.75 (10402) 152.37 (13500) 43224

LD extent was computed with 43224 SNPs having MAF.0.05.
aPhysical distance to reach r2 or r2

s equal to 0.1 estimated using the non-linear
regression implemented in r-nls obtained by fitting Hill and Weir model [53]. r2

and r2
s obtained with Plink software [50] and r-LDcorSV [34], respectively. The

number reported in brackets indicates the number of equidistant markers that
would be needed to reach an average r2 of 0.1 between adjacent markers;
bnumber of markers used to estimate LD extent for each chromosome and the
whole genome.
doi:10.1371/journal.pone.0071377.t002
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Total diversity was higher in centromeric regions (Figure S17 in

Text S1). Diversity within different genetic groups was slightly

lower in centromeric regions (0.26 compared to 0.30 genome

wide) and systematically for flints (0.21 for NF and 0.26 for EF)

(Figure S17 in Text S1). This pattern was particularly clear on

chromosomes 1, 2, 4, 6 and 8. Centromeric regions of these

chromosomes also presented high relative differentiation among

groups (FST) (0.31, 0.21, 0.25 compared to 0.16 genome wide). For

other chromosomes, centromeres did not display a specific

differentiation pattern.

Phenotypic variation for male (MFLW), female flowering
time (FFLW), anthesis to silking interval (ASI) and
association genetics

The analysis of the present design included eight additional field

experiments compared to our previous studies which included only

two experiments [21,30]. Plot heritability was 0.96, 0.97 and 0.45

for FFLW8, MFLW8 and ASI8, respectively. It confirmed high

phenotypic variation for FFLW8 (sd = 168 GDD or 13.6 days),

MFLW8 (sd = 161.5 GDD or 12.9 days), ASI8 (sd = 26 GDD or

2.2 days). This variation appeared to be closely related to the

population structure (R2 = 0.51, 0.54 and 0.11 for FFLW8,

MFLW8 and ASI8, respectively). For FFLW8, the group adjusted

means were 762 (641), 763 (635), 943 (673), 889 (623) and 1181

(633) for NF, EF, SS, CBD and Trop, respectively (see Table S5

in Text S1 for other traits).We tested several structure and kinship

matrices for FFLW8 association studies in order to avoid an excess

of false positives. Figure S18 in Text S1 illustrates the logarithm of

cumulative P-values obtained. The stronger correction was

obtained with the model involving the kinship matrix calculated

with 29911 Panzea SNPs. Adding a structure matrix did not

change the P-values in that case. The models involving structure

matrix calculated with 55 SSRs and either IBS or IBD kinship

calculated with 94 SSRs were equivalent. Considering the limited

differences between SSR and SNP based estimates of population

structure and kinship, we used the model Q55SSRs+KIBS(94SSRs) as

reference to avoid using SNPs as candidate loci and for population

structure and kinship estimations. As illustrated by Figure S18 in

Text S1, P-values obtained with model Q55SSRs+KIBS(30KSNPs)

were globally higher than with Q55SSRs+KIBS(94SSRs). However,

most associations significant with P-values,1025 obtained with

model Q55SSRs+KIBS(94SSRs) remained highly significant (P-val-

ues,1023) with model Q55SSRs+KIBS(30KSNPs). P-values of the two

models were globally strongly related, the most notable exception

being the centromeric region of chromosome 8, for which markers

with a P-value of 1027 Q55SSRs+KIBS(94SSRs) were never below

1023 with Q55SSRs+KIBS(30KSNPs). This probably relates to the

large number of markers in high LD in this region, which

consequently have an important contribution to the KIBS(30KSNPs)

kinship estimation (Rincent et al., pers. com.).

The association statistics obtained for FFLW8 are summarized

in Figure 2. The FDR 5% corresponded to P-value,1023.

Considering this threshold, 673 markers were associated with

FFLW8, 843 with MFLW8 and 145 with ASI8. Among

associations for FFLW8, 96 (corresponding to 18 regions) had a

P-value below 1025, 50 below 1026 (corresponding to Bonferroni

correction) and 7 below 1027 (corresponding to a break point in

Figure 1. Genome-wide linkage disequilibrium between all loci within and between chromosomes. The upper triangle corresponds to
the LD r2 measure calculated with Plink [50], the lower triangle to the LD r2

s measure [34] corresponding to r2 corrected for structure, using the Q
matrix obtained with STRUCTURE software [40,41] and 55 SSRs. Values above 0.2 are highlighted by colored dots.
doi:10.1371/journal.pone.0071377.g001
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the P-value distribution, Figure S18 in Text S1). These two latter

categories corresponded to 14 and 5 regions, respectively.

Considering MFLW8, 108 markers had P-values below 1025,

including 77 in common with FFLW8. For ASI8, seven markers

had P-values below 1025 and were not shared with FFLW8 or

MFLW8 (Table S6 and Table S7 in Text S1). When adding Vgt1

(presence-absence of the Mite allele), which has a strong effect on

flowering time (7 days) according to [21], as a covariate in the

model, all markers remained significant for FFLW8 (results not

shown). The estimated effects of markers having P-value,1025

ranged from 44 (3.5 days) to 123.5 GDD (9.9 days), with a

majority of small effects and a few strong effects (Figure S19 in

Text S1). The bottom envelope in Figure 3 illustrates that loci with

low MAF necessitate greater absolute effects to pass the

significance threshold. We also observed that for the significant

tests the early allele generally had the highest frequency and that

the highest absolute effects corresponded to extreme frequencies

(Figure 3). Estimated genetic variances associated with loci with

significant effects ranged from 0 (after discarding a limited number

of low negative values) to 34%, with three-quarters of the values

below 10% (Figure S20 in Text S1) according to the linear mixed

model (lmm) and from 0 to 9% according to the linear model (lm).

The proportion of early alleles in one line was negatively

correlated (20.84) with FFLW8 and therefore positively correlated

with its precocity (Figure S21 in Text S1). This analysis was

complemented by a multi-locus analysis of FFLW8 starting of the

96 markers with significant individual effects (P-value,1025). The

first marker included was ZCN8 (#23) as expected. The nine first

markers added in the model were significant with (P-value,1023)

conditionally to the previous model. The last marker entering the

model with (P-value,0.05) was the 29th. AIC then continued to

decrease until 71 markers were included in the model (see Table

S8 for the order of inclusion of markers). The polygenic variance

explained, once structure effect was removed, was 62% when

considering the 29 first markers and 66% with 71 markers.

Finally, to avoid possible confusion between population

structure and marker effects, we estimated marker effects with

an ANOVA in three different genetic groups (flints, dents and

tropicals). For the 96 markers with P-value,1025 for FFLW8 in

the entire panel and lmm, marker effects were higher in tropicals

(median = 162 GDD) compared to dents (75 GDD) and flints (53

GDD). Among them, 70 were significant in tropicals, 34 in dents,

6 in flints (P-value,1023). All significant effects had the same sign

in the three genetic groups. In addition, 110 markers that were not

significant in the entire panel were highly significant (P-

value,1026) in at least one group, 9 in flints, 63 in dents and

39 in tropicals, with a mean effect of 80, 120 and 230 GDD,

respectively.

Regions with the highest contribution to flowering time
variation

Table 3 summarizes information on the 18 most significant loci

selected among cluster of loci along the genome and showing

major contributions to flowering time variation according to

models Q55SSRs+KIBS(94SSRs) and Q55SSRs+KIBS(30KSNPs), as well as

10 additional loci strongly under selection. Regarding the first

aspect, the marker that explained the highest genetic variance (24

and 9% for lmm and lm, respectively) with the highest P-value

(10213, 10212, 1024 for FFLW8, MFLW8 and ASI8, respectively)

was located on chromosome 8 (#23 in Table 3, 123506141 bp),

5000 bp from the Zea CENTRORADIALIS gene ZCN8

(GRMZM2G179264, 123501085 bp). There was no other marker

in the 50K Illumina array closer to this gene. Its effect was 108

GDD (9.7 days). It was 1 Mb apart from PZB02155.1

(124657056 bp), which was found to be associated with flowering

time in the NAM population [4] but not in this panel when

including structure in the model. It was 8 Mb apart from Vgt1

Mite (131984851 bp), a major flowering time QTL that has been

cloned [24]. Vgt1 Mite presented an association P-value,10214

with SAS GLM [32] and P-value,1029 with lmm in this study.

LD (r2) between ZCN8 (marker #25) and Vgt1 Mite was 0.3. This

marker remained significant when adding Vgt1 Mite in the linear

mixed model. ZCN8 was located between two flowering time meta

QTL defined in the meta analysis of [22] (green meta QTL Vgt2

and blue meta QTL Vgt1 in Figure 3 of the above paper), between

marker pdc1 (118167604 bp) and marker umc1592

(125903155 bp), at the border of the Vgt1 QTL.

Other markers with a main contribution to FFLW8 were

located on chromosomes 1 (#2), 2 (#5), 3 (#7,#9), 4 (#11), 5

(#14), 8 (#24), 9 (#27, #28), with a genetic variance ranging

from 10 to 23% according to lmm and 3 to 6% according to lm.

Ten additional loci displayed intermediary effects. According to

the projection of flowering time meta QTL [10] on the maize

sequence, seven associated markers were found in meta QTLs

(#2, #4, #5, #6, #15, #16, #17). Five loci were next to one

NAM [4] association (#9, #11, #15, #16, ZCN8 #23). Note that

Figure 2. Manhattan plot for female flowering (FFLW8) associations across the whole genome. P-values were obtained with the mixed
model including the structure matrix obtained using STRUCTURE software and 55 SSRs and the kinship matrix obtained with 94 SSRs and IBS
measure. Horizontal dashed line indicates Bonferroni-corrected 5% significance threshold.
doi:10.1371/journal.pone.0071377.g002
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some other markers with slightly lower P-values (1027,P-

value,1025) were close to NAM associations [4] and were

included in the meta QTLs [10] for the majority (#4, #6, #17,

#21, #22). Several associated markers were close to ZCN genes

and loci associated with flowering time in other studies (#4 5 Mb

from ZCN4, 400 kb from NAM PHM3457.6, in meta QTL 2_4;

#17, 200 kb from NAM PHM4748.16, 1 Mb from ZCN7, in meta

QTL 6_3; #23 5000 bp from ZCN8, 1 Mb from NAM

PZB02155.1; #16, in meta QTL 6_1, 1 Mb from ZCN15, 5 Mb

from NAM PZA00355.2; #5: centromere of chromosome 2,

5 Mb from ZCN21, in meta QTL 2_4). Note that #15 may be

involved in the sugar pathway as observed in Arabidopsis [68].

LD, diversity and differentiation at markers associated
with FFLW8 and other regions under selection

Diversity and FST were higher at markers associated with

FFLW8 (P-value,1025) as compared to other parts of the genome

(HE of 0.42 compared to 0.36, FST of 0.27 compared to 0.16).

Within group diversity (HS) was also lower in these regions than for

the whole genome in NF (0.17) and EF (0.22) and in contrast

higher in tropicals (0.4) (Figure S17 in Text S1, Figure S12). For

these loci, the mean proportion of early alleles accumulated in NF,

EF, SS, CBD and Trop non-admixed lines was 0.87, 0.83, 0.41,

0.48 and 0.39, respectively (Figure S22 in Text S1), consistent with

the average flowering time of these groups. More balanced allele

frequencies in dent groups was noted in particular on centromere

of chromosome 2 (#5), chromosome 3 (#9), 4 (#11) and 8 (#23

close to ZCN8, see above). ZCN8 (Vgt2 locus) appeared to be

strongly under diversifying selection (log10(PO) = 3.1). Allelic

frequencies at Vgt2 were slightly more differentiated than those

observed for Vgt1 (for Vgt1 and Vgt2, the early allele was fixed in

NF, frequencies were 0.94 and 0.97 in EF, 0.5 and 0.7 in CBD,

0.17 and 0.13 in tropicals, respectively). As shown in Figure S11,

the region between Vgt2 and Vgt1 was characterized by low

diversity in flints and a low recombination rate. Differentiation was

high only around Vgt2.

Besides these diversity trends, regions associated with flowering

time also displayed higher LD (r2 = 0.2 compared to 0.14 for the

entire genome) and lower recombination (0.02 compared to 0.04).

The major haplotype in these regions was shared by 65% of lines

(compared to 50% for the whole genome) (Figure S11).

In addition, some markers were found to be under selection

although not related to flowering time in this panel. They

nevertheless were related to flowering time according to other

studies (#1, in meta QTL 1_5, 4 Mb from an association with P-

value 1025; #3 1 Mb from Phyc1; #18, 200 kb from NAM

PZA02722.1. This suggests that the association mapping power at

these loci may have been hindered by fixation in some of the

groups.

Figure 3. Distribution of SNP effects (GDD) according to the early allele frequency. In this figure, 673 markers with P-value,1023 are
represented. (A) For all inbred lines (rows) and SNPs (columns), red and blue colors correspond to the presence of late and early alleles, respectively.
(B) The absolute SNP effect versus the frequency of the early allele for significant associations. Different colors correspond to different P-value
thresholds.
doi:10.1371/journal.pone.0071377.g003
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Discussion

Suitability of the 50K Illumina array for investigating line
similarities, panel structures and local diversity trends
along the genome

Ascertainment bias due to the marker type and selection can be

a concern in diversity analyses. We confirmed that considering an

overrepresented set of B73 (SS)6Mo17 (CBD) SNPs lead to

overestimated genetic distances for dent (CBD and SS) lines

(Figure S5 in Text S1), as observed in other studies [31,69]. When

excluding these markers and considering only Panzea SNPs, we

did not observe this trend and obtained population structure

results that were highly consistent with those obtained with 55

SSRs, including mostly trinucleotides and more (Figure S8 in Text

S1). The differentiation between groups was also consistent

between SNPs and SSRs, with the greatest differentiation noted

between NF and SS (Table S2 in Text S1). This illustrates that

when based on a relevant marker sample, although not leading to

the discovery of new polymorphisms as compared to other

approaches like GBS [70] or sequencing [71], SNP arrays can be a

powerful tool for investigating population structure.

The average genetic diversity of the panel calculated with

Panzea SNPs was 0.36. This value was in the upper range of those

reported by other diversity analyses based on SNP genotyping,

ranging from 0.27 to 0.39 [72,73,74,75,76]. Only eight percent of

markers appeared to be monomorphic, showing that some rare

alleles discovered with the Panzea panel used to build the 50K

Illumina array were not represented in our panel. Considering the

MAF distribution, we observed a lower proportion of rare alleles

(,0.1) compared to other frequency classes and a slight excess of

intermediate alleles (Figure S3 in Text S1). This frequency profile

clearly deviates from the L-shaped pattern (excess of rare alleles)

expected at mutation drift equilibrium in the absence of bias in

polymorphism discovery [77]. This could be the result of specific

evolutionary processes and/or the experimental strategies used

during marker assembly. The deficit in rare alleles may be due to

some extent to SNP discovery, which was mostly based on 27 lines

[36,78] and followed by quality and polymorphism criteria in

favor of balanced polymorphisms [31]. The slight excess in

intermediate frequency alleles was consistent with the high

enrichment in intermediate frequency alleles observed for three

genomic regions that were sequenced (Figure S3 in Text S1). This

could be related to allelic differentiation between groups due to

drift and diversifying selection for some regions.

Beyond these trends for the global panel, we also noticed

contrasted frequency patterns across genetic groups. The high

deficit in rare alleles in tropicals was probably due to their under-

representation (relative to their very high diversity) at the SNP

discovery step. Other groups passed comparable sampling

procedures, so the differences that were observed suggest the

involvement of different evolutionary processes.

Fifteen percent of loci were monomorphic in flints, compared to

2% only in CBD and tropicals (Table 1). When looking at alleles

that were rare in tropicals (,0.05), the difference was even more

striking, with 30% of alleles lost in flints compared to only 6% in

dents. In contrast, some alleles that were originally rare in tropicals

reached near fixation in flints (NF and EF) (Figure S4 in Text S1).

This suggests that the NF group passed severe bottleneck(s) when

diverging from tropical germplasm approx. 1900 years ago

[79,80]. The relative (compared to other groups) overabundance

of rare alleles observed for Northern Flints suggests that the

population expansion that followed the differentiation of this

group was accompanied by limited introgression by external

genetic groups.
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As stated above, the level of polymorphism observed in CBD

presented only limited loss compared to tropical materials. Alleles

that were observed in flints while being rare or absent in tropicals

were also generally noted in dents (CBD), whereas the reverse was

not true. This is consistent with CBD originating in part from flints

(NF) and in part from a group relatively close to tropicals, approx.

400 ago [81]. The relative deficiency in rare alleles observed for

CBD (Figure S3 in Text S1) confirmed that they emerged recently

from a restricted number of founders from these two origins [82].

When comparing European flint diversity to that of Northern

flints, we found that 93% of alleles were common to both groups,

which was higher than in previous studies with multiallelic markers

(75%) [83,84]. Some alleles (5410) observed in EF were absent in

NF. These alleles were generally also observed in non-admixed

CBD (89%) or tropicals (94%). This confirms that EF is a recent

group mainly derived from NF after their introduction into

Europe and subsequent hybridization with materials of tropical

origin, probably different from those used to form CBD [84].

Consistent with these trends, we observed a lower genetic diversity

for NF (0.28) and EF (0.30) relative to CBD (0.35) and tropicals

(0.34).

Linkage disequilibrium and estimation of marker density
required for association studies

The genotyping method we used did not allow us to estimate

LD at the gene level as obtained by [85] but was adequate to

reveal the LD structure at the genome level when considering a

wide diversity of lines (tropicals, Corn Belt Dents, Northern and

European Flints).

LD between unlinked or distant polymorphisms was globally

low in the panel (quantile 95% of 1025 between different

chromosomes) with, however, notable exceptions between centro-

meric regions of chromosomes 1, 5, 8 and a few additional regions,

like the extremity of chromosome 10 (Figure 1). Correction for the

population structure (r2s) clearly removed long distance LD

(Figure 1, Figure S15 in Text S1), especially LD among

centromeres of different chromosomes. Some pairs of markers

located on different chromosomes still presented r2s above 0.2.

This could suggest that we did not perfectly correct the measure

for the structure effect and that alternative approaches such as

calculating r2vs [34] that corrects for relatedness should be

considered. Alternatively, LD between unlinked loci may be due

to loci that are involved in common functions and subjected to

joint selection pressure.

For closely linked polymorphisms, we observed a rapid decrease

in r2 values as the physical distance between SNPs increased. The

fitted LD values obtained with the non-linear model [53] and the

average obtained by the distance class approach were close. This

suggests that the Hill and Weir model [53], taking into account the

sample size and mutation rate, was more realistic than the Sved

model [52] which hypothesised that the size of the panel was equal

to the effective population size, the panel had undergone no

selection or mutations and the recombination rate was constant

along the genome. According to the Hill and Weir model, LD

dropped below 0.1 after 200 kb at the genome level and dropped

to almost the background level at around 500 kb-1 Mb. This value

was in the range of those reported in the literature for different

types of panels [85,86,87,88] and illustrates that linkage disequi-

librium in maize has markedly increased as a result of

domestication [1] and genetic improvement [2,74,89]. We

observed that the extent of LD varied among chromosomes, i.e.

100 kb on average along chromosome 1, between 140 and 200 kb

on average along chromosomes 5, 6, 3 and 7, between 200 and

300 kb along chromosomes 9, 2, 4, 10 and 8, which suggests

different selection pressures were involved. Note that this ranking

apparently varies among populations [74,89]. Extracting the

variation due to population structure did not much change these

trends, with an average decrease of around 150 kb instead of

198 kb. We noticed that correction of r2 by the r2s estimator was

generally less marked than for Vitis vinifera [34]. This suggests that

the maize genetic groups considered in our study were less

differentiated than groups of grape varieties corresponding to

different uses (table vs. wine production).

Visualization of LD as a sliding window (1 Mb) approach

revealed high variation along chromosomes (Figure S11). It

confirmed a general trend of higher LD in centromeres, as

expected given the low recombination rate of these regions

[31,36]. This was especially noteworthy on chromosomes 7, 8 and

10. We noted that, according to LD and the diversity profiles, the

position of the centromere of chromosome 5 obtained by [66] was

probably more realistic than that recorded in MaizeGDB

(maizegdb.org) (Figure S11, S12). With the FastPHASE algorithm,

we observed one predominant ancestral haplotype shared by 67%

of lines in centromeric regions, in contrast to the rest of the

genome, which presented more balanced frequencies of ancestral

haplotypes, with the predominant one being shared by 53% of

lines. The probability of haplotype switch from one SNP to

another computed with FastPHASE was also lower in these

regions. Interpreting these probabilities as recombination rates

could be questioned [55], but, overall, these results are consistent

with the hypothesis that centromeres have undergone less

recombination since domestication as compared to the rest of

the genome. This could be due to mechanical obstacles to

recombination and gene flow in the vicinity of centromeres and/or

selection forces that preferentially occur in these regions

[78,90,91,92]. High differentiation rates, indicating selection

forces, were indeed observed for centromeres of chromosomes 3,

5, 6 and 8 (FST of 0.22, 0.21, 0.25, 0.31, respectively, compared to

0.16 on average on the genome). Differentiation at some

centromeric regions was also observed by [1] in a panel that

included wild relatives.

We detected peaks of LD outside centromeres that suggested

different local histories of recombination [78] and highlighted

some putative selective events involved in flowering time or other

adaptive traits. The highest local LD was observed between Su1

[93,94,95,96], Tga1 [97] and Bt2 on chromosome 4, a region

involved in carbohydrate metabolism [98,99] known to have

played a key role in maize domestication. Generally, a r2 of 0.10 is

considered to be the minimum LD value needed to detect

associations with complex traits. This reasoning is based on a large

effect QTL that explains 10% of phenotypic variation (h2
q = 0.1),

which is a rather high expectation according to present knowledge,

as also discussed by Van Inghelandt et al. [89]. Detection of

markers that explain 10% of polymorphism at such QTLs

(r2 = 0.1) and thus 1% (r2|h2
q) of the phenotypic variation could

be considered as a minimum to have acceptable power with panel

sizes classically used in plants (generally several hundred individ-

uals) [100]. QTLs which explain less than 10% of the phenotypic

variation would then require higher LD and/or higher panel size

to achieve the same power [101]. Given LD decrease values

obtained in this study and considering that the size of the maize

genome is around 2.5 109 bp [102], an average r2 of 0.1 or 0.3

between adjacent markers would be expected when using 10450

(Table 2) or 75000 markers evenly distributed across the genome.

The 50K Illumina array should be sufficient to obtain a global r2s,

which better reflects the power of association genetics considering

the population structure [34], of 0.1 but not 0.3. We would

therefore require 100000 markers with higher density on
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chromosomes 1, 5 and 6 (Table 2). A slightly lower density would

be required to work on specific genetic groups (dents and flints, for

exemple, see [89]). However, given the LD variation between and

along the chromosomes, and the fact that r2
s does not account for

the bias due to relatedness, a higher marker density would be

preferable.

Association genetics and colocalisation with QTLs and
genes involved in flowering time

It is generally difficult to determine suitable significance

threshold in GWAS studies. Approaches such as Bonferroni or

FDR do not account for LD between markers and therefore are

generally too stringent. Moreover, the high genetic variance

estimates obtained with lmm (up to 34%) were difficult to interpret

biologically and may have resulted from confusion between

estimations of fixed effects and variance in random effects, i.e.

with random effects being putatively deflated by LD between the

marker tested as fixed effect and distant markers associated with

the variation of the trait. On the other hand, genetic variances

estimated with lm may be underestimated because of confounding

effects between structure and marker effects, as confirmed by the

high differentiation rate observed at these loci. The real genetic

variance is probably intermediate. The colinearity of markers with

genetic groups and families of related materials probably also

explains why highest absolute effects corresponded to markers with

extreme frequencies (Figure 3). Individual association signals

should therefore be examined in the light of associations in

independent experiments and/or further biological or functional

information.

Here we report information on markers associated to flowering

traits with P-value,1025 (Table S8), while highlighting markers

with P-value,1027 (Table 3), which represents a break point in

the logarithm of cumulative P-value curves. The multi-locus

analysis of FFLW8 showed that the nine first markers added in the

model were significant with (P-value,1023) conditionally to the

previous model and the last one to enter the model with (P-

value,0.05) was the 29th. The augmentation in P-values relative

to those observed in individual tests suggests that some colinearity

exists between flowering time QTLs beyond that expected when

considering relatedness and population structure only. This is

possibly due to differential selection. However, the main QTLs

detected in the single marker analysis remained significant in the

multi-locus analysis, which confirmed their effect. The fact that

AIC continued to decrease until 71 markers were included in the

model confirms that numerous regions are involved. Interestingly,

the multi-locus analysis also highlighted several cases where linked

markers entered the model. This suggests that several SNP

markers are necessary in these regions to tag allelic series with a

gradient of effects (see [4,32]) and that haplotype based models

should be considered in further investigations. This was the case in

particular for the ZCN8 region of chromosome 8 (see below), the

centromeric and an additional region of chromosome 8, two

regions of chromosome 2 and one of chromosome 5 (see Table

S8).

The most significant association in our study was found 5000 bp

from ZCN8 for the closest marker to this gene in the 50K Illumina

array. This position is 8 Mb from Vgt1 and 1 Mb from a marker

found to be associated in the NAM population [4]. The association

was higher than that reported for Vgt1 Mite with the same panel

[21]. A large family of 25 homologues to the Arabidopsis FT locus,

i.e. ZCN genes, was recently described in maize, suggesting that

maize like Arabidopsis contains FT-related proteins that act as a

florigen [17]. The question remains as to which maize ZCN genes

have a role similar to that of Arabidopsis FT. We confirmed above

that ZCN8, the most similar homologue to Arabidopsis FT, had a

major effect on flowering time variation. This is to our knowledge

the clearest evidence reported so on the involvement of this gene in

natural variation of flowering time in maize. Its expression and

function were already examined by [14]. In teosinte, which

requires short-day photoperiods to induce flowering, they showed

that ZCN8 was highly upregulated in leaves under inductive

photoperiods. A less prominent increase was detected in temperate

maize. QTLs in this region of chromosome 8 have been

highlighted in numerous studies and their meta analysis concluded

on the presence of two meta QTLs (green and blue zones in [22],

Figure 3). For the ‘‘blue zone’’, Vgt1 has been cloned by a map

based approach and confirmed in numerous association mapping

panels, including the present panel, and therefore has an

unambiguous position. For the ‘‘green zone’’, our results

positioned Vgt2 on ZCN8, outside but close to the zone proposed

by [22]. This suggests that meta QTL analyses are useful to

describe the number of QTLs underlying the variation of

flowering time, but caution is necessary with respect to the exact

position estimation. Association studies such as the whole genome

scan described here are of considerable interest for refining these

positions.

We found additional associations and/or traces of selection in

the vicinity of ZCN4, ZCN7 for which expression analysis

demonstrated involvement in developmental processes [17],

ZCN15 which is homologue to rice Hd3 according to [103] and

ZCN21, thus suggesting that they could be involved in flowering

time variation. We also confirmed, with an association study

approach, that Dfl1 or nearby polymorphism was involved in

flowering time variation. Dfl1 is known to regulate flowering time

in the shoot apical region and mutants exhibit a less severe

flowering time defect compared to ID1 [18]. We found that many

associations were close to regulation factors, binding sites, kinase

proteins (Table 3), which is consistent with the fact that trait

variation may be controlled by non-genic regions regulating gene

expression [104]. The broader integration of biological informa-

tion and annotation such as regulatory elements or gene pathways

would be of great value in gaining further insight into the control

of flowering time.

Divergent patterns of diversity and traces of selection
colocalise with flowering time QTLs

The progressive migration of maize from the tropics to

temperate environments has shaped adaptive traits like flowering

time and led to allelic differentiation among groups due to

selection and demographic events [105]. The fact that the

phenotype distribution matches the genetic structure makes it

difficult to distinguish between neutral loci versus loci that control

adaptive traits like flowering time. Association genetics leads to

many false positives when structure is not included in the model,

and differential allelic fixation at key causal polymorphisms sites

reduces the capacity to detect associations when population

structure is included as a covariate. We therefore used selection

tests as a complement to association genetics to detect loci that

presented significant levels of differentiation among groups.

Standard selection test approaches consist of finding putative

advantageous mutations that spread rapidly within the population,

eliminating variation at linked sites. These loci are detected by

comparing locus specific differentiation with a distribution of

differentiation rates simulated under demographic hypotheses/

scenarios such as infinite island or hierarchical models. An

alternative proposed by Foll and Gaggiotti [47] is to directly

estimate the probability that each locus is subject to selection using

a Bayesian method. According to this model, we found 52 markers
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(11 regions) presenting significant traces of selection

(log10(PO).0.5) and 18 markers or 9 regions that were highly

significant (log10(PO).1). Most markers associated with flowering

time (34/35) showed high differentiation among groups (Figure

S17 in Text S1), as observed previously for the Vgt1 locus [21]. In

particular, both ZCN8 and the centromere of chromosome 8

presented signatures of diversifying selection with a tropical allele

and a temperate allele. Considering all associations detected with a

P-value below 1025, we observed a general pattern of early allele

propagation in temperate lines that we could describe as being a

blue wave during maize expansion (Figure 3). The average

proportion of early alleles accumulated in NF, EF, CBD and

tropical genomes was 0.87, 0.83, 0.41, 0.48 and 0.39, respectively

(Figure S22 in Text S1), congruent with the precocity of these

groups (adjusted female flowering times in GDD were 762, 763,

943, 889 and 1181, respectively). The number of early alleles

gathered in one genome was closely correlated to the precocity of

the line (Figure S21 in Text S1), indicating that the loci were

putatively numerous and the effects were small and mainly

additive. The fact that early alleles were rare in the tropical

materials suggests that they are generally not beneficial in most

tropical conditions since they excessively shorten the plant cycle.

Conversely, selection rapidly drove these early alleles to near

fixation in early flowering flints. This is in line with the hypothesis

of a northward expansion through northern USA and Europe for

flints, accompanied by directional selection for early flowering that

gradually led to the accumulation of an increasing number of early

alleles. Corn Belt Dents, which are intermediate between flints and

tropicals with respect to flowering date, presented higher levels of

diversity at these QTLs. This is consistent with the development of

this material from an hybridization between Southern Dent

(derivated from tropicals) and Northern Flints (see [105] for a

review). This higher level of polymorphism allows many different

putative combinations of early-late alleles and adjustment of

flowering date to local environmental conditions. This also

explains why more associations could be detected within the dent

group.

We also observed that some additional markers which showed a

significant signature of diversifying selection were not associated

with flowering time in our panel. Markers #3, #8, #10 and #25

are located in regions that have never been reported as associated

to flowering time to our knowledge and illustrate the differenti-

ation of other adaptive traits. Some other outlier markers were

associated with flowering time in other studies, suggesting that they

were false negatives in our study. The best false negative example

was noted on chromosome 7 (#18), which was clearly associated

with flowering time in a NAM design [4]. We also observed some

markers on the centromere of chromosome 8 (50 and 95 Mb) that

could be closer to causative loci than surrounding associated

markers. This suggests that no single GWAS design or analysis

method is sufficient to unravel the complex genetics underlying

natural variation in complex traits like flowering time. The mixed

model has the greatest power to find associations when alleles

segregate within several genetic groups. When different alleles

have high frequencies in different groups, the naive approach

yields many false signals, while the mixed model approach misses

them entirely due to colinearity between causal polymorphism and

structure covariates. This highlights the utility of multiparental

linkage based approaches like NAM designs to break up the

observed structure in founder lines and reach more balanced allele

frequencies, thus increasing the statistical power [4].

From an evolutionary standpoint, geographical distance along

with flowering time divergence ultimately results in reproductive

barriers between lines. Even if admixture is still possible between

compatible lines, genomic regions involved in adaptive traits will

tolerate only restricted gene flow, resulting in lower efficient

recombination, lower diversity and higher LD compared to the

rest of the genome. This pattern can be dramatic when it occurs in

centromeric regions (see chromosome 8 in this study) that have

mechanical barriers against crossover. Recent empirical and

theoretical studies suggest that restricted recombination regions

play an important role in the formation of new genetic groups and

species. They could contain clusters of genes involved in

reproduction isolation and centromeres may be privileged regions

from this standpoint [106,107,108,109].

Conclusion
Our data generally show that major differences in flowering

time among inbred maize lines are caused by a few genes with

relatively marked effects (Vgt1-Vgt2/ZCN8, centromere of chro-

mosome 8), and the cumulative effects of many loci with small to

intermediate effects. In view of selection, this suggests that

predictive methods offering flexibility in effect magnitude such as

Bayes B [110], Bayes Cpi [111] or Lasso [112] should a priori be

more adapted than RA-blups [113] or ridge regression RR-blups

[110] methods which constrain the range of variation of effects to

fit the same distribution. The complex network of genes that may

be involved in signaling pathways that control levels of florigen

expression, accompanied by a wide range of QTL effects and an

open pollinated reproductive system, may have facilitated flower-

ing time adaptation to local environments. Alleles that increase

precocity were collectively found at higher frequencies in

European and Northern Flints than in dents and tropicals and

their number was correlated with precocity, consistent with the

assumption that this phenotypic shift is selectively driven by many

small effect loci. However, genes with larger effects remained

detectable via association genetics. This shows that polygenic

selection for flowering time does not necessarily lead to fixation,

which allows flexibility in flowering time and secure rapid

adaptation in case of environmental changes. This is of great

interest for conservation management and more efficient breeding

use of diversity available in maize germplasm repositories. It is

now essential to strive to gain greater insight into genetic-genetic

background (epistasis) and genetic-environment interactions and

their phenotypic consequences in order to enhance breeding

efficiency in the future under changing climatic conditions [114].
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