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Summary

A common problem for genome-wide association analysis (GWAS) is lack of power for detection of quantitative
trait loci (QTLs) and precision for fine mapping. Here, we present a statistical method, termed single-step
GBLUP (ssGBLUP), which increases both power and precision without increasing genotyping costs by taking
advantage of phenotypes from other related and unrelated subjects. The procedure achieves these goals by
blending traditional pedigree relationships with those derived from genetic markers, and by conversion of
estimated breeding values (EBVs) to marker effects and weights. Additionally, the application of mixed model
approaches allow for both simple and complex analyses that involve multiple traits and confounding factors,
such as environmental, epigenetic or maternal environmental effects. Efficiency of the method was examined
using simulations with 15 800 subjects, of which 1500 were genotyped. Thirty QTLs were simulated across
genome and assumed heritability was 0.5. Comparisons included ssGBLUP applied directly to phenotypes,
BayesB and classical GWAS (CGWAS) with deregressed proofs. An average accuracy of prediction 0.89 was
obtained by ssGBLUP after one iteration, which was 0.01 higher than by BayesB. Power and precision for
GWAS applications were evaluated by the correlation between true QTL effects and the sum ofm adjacent single
nucleotide polymorphism (SNP) effects. The highest correlations were 0.82 and 0.74 for ssGBLUP and CGWAS
with m=8, and 0.83 for BayesB with m=16. Standard deviations of the correlations across replicates were
several times higher in BayesB than in ssGBLUP. The ssGBLUP method with marker weights is faster, more
accurate and easier to implement for GWAS applications without computing pseudo-data.

1. Introduction

As a result of commercial availability of highly dense
single nucleotide polymorphism (SNP) chips in
humans, genome-wide association analysis (GWAS)
has proven to be a powerful tool to identify genes for
common diseases and complex traits (Hirschhorn &
Daly, 2005; Visscher et al., 2007). Similarly, GWAS
has been applied to animals for the discovery of genes
that are associated with disease and production traits
(Karlsson et al., 2007; Bennett et al., 2010; Bolormaa
et al., 2010; Orr et al., 2010; Pryce et al., 2010). In
animal breeding, a closely related procedure that
makes use of the same SNP chips, but for an entirely
different purpose, is the genomic estimation of

breeding values (GEBVs) for genomic selection
(GWMAS), a form of marker-assisted selection.
GWMAS is often performed with procedures called
BayesA or BayesB that consider all genetic associa-
tions derived from markers (Meuwissen et al., 2001).
Moreover, BayesA and BayesB solutions provide
SNP effects ; thus, these methods can be applied to
GWAS (Goddard & Hayes, 2009; Sun et al., 2011)
with the additional advantage of accounting for popu-
lation stratification and cryptic relatedness (Sillanpaa,
2011). The classical GWAS (CGWAS) is based on a
test of a single marker, which treats each SNP marker
as a covariate in the model (Hirschhorn & Daly,
2005). The main advantage of CGWAS is the ease of
significance testing; however, it is likely to result in
reduced fit to the data compared with methods where
all SNPs are jointly considered. Additionally, neither
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Bayesian methods nor single-marker analysis can di-
rectly include genetic association found in the pedigree
of animals that have not been genotyped. Although
such information can be considered indirectly in mul-
tiple-step procedures in which phenotypic data from
relatives are summarized to create pseudo-data for
genotyped individuals (VanRaden et al., 2009), new
problems can arise, such as information loss, hetero-
geneity caused by different amounts of information in
the original dataset and bias (Vitezica et al., 2011).
Thus, multiple-step methods for computing genomic
predictions are not only complicated but likely
suboptimal for GWAS. This is particularly true in
livestock species, where pedigrees are complex, and
nuclear families are the exception rather than the
rule. In contrast Misztal et al. (2009) and Christensen
& Lund (2010) proposed a single-step GBLUP
(ssGBLUP) that integrates phenotypes, genotypes and
pedigree information. Such information can be com-
bined with genomic data for greater detection power
and estimation precision through aproperly scaled and
augmented relationship matrix (Legarra et al., 2009;
Misztal et al., 2009). The ssGBLUP method has been
shown to provide more consistent solutions and better
accuracy than the multiple-step approach (Aguilar
et al., 2010; Chen et al., 2011; Forni et al., 2011).

A limitation of the ssGBLUP methodology is that
it is based on an infinitesimal model, which assumes
equal variance for all SNP marker-QTL associated
effects. An advantage of the infinitesimal model is that
the resulting genomic relationship matrix is identical
for all traits within a population (Aguilar et al., 2010).
In contrast, although BayesA or BayesB is limited in
that neither can include phenotypic information
from non-genotyped individuals, they remove the as-
sumption of equal variance for all SNP marker-QTL
associated effects, which appears to be a more realistic
situation. Unfortunately, relaxing this assumption
comes at a cost of orders of magnitude more
computing time in a Bayesian framework. Combining
the strengths of both methods (i.e. allowing for
unequal variances in an ssGBLUP context) could
improve the accuracy of the estimation of GEBVs for
breeding and selection applications, and precision for
the estimation of SNP effects for GWAS applications.

Estimation of weights for SNP variances can be
achieved without sampling. Zhang et al. (2010) de-
rived SNP weights as functions of squares of SNP ef-
fects and incorporated those variances as weights in
GBLUP. Sun et al. (2011) developed an iterative
procedure for GBLUP, in which GEBVs were con-
verted to SNP effects and weights were obtained
similar to those in Zhang et al. (2010). However, nei-
ther study could directly utilize phenotypes of un-
genotyped animals.

The objectives of this research were to
investigate the optimal weights on marker variances

for improving accuracy and precision in GWAS and
GEBVs by ssGBLUP, and to compare results from
ssGBLUP, CGWAS and the BayesB methods as de-
scribed by Meuwissen et al. (2001).

2. Materials and methods

(i) Data simulation

Data were simulated using QMSim (Sargolzaei &
Schenkel, 2009) for an additive trait with a mean of
5.0, phenotypic variance 1.0 and heritability 0.5.
Two 100 cM chromosomes were simulated, with each
chromosome containing 15 uniformly distributed
QTLs. For chromosome 1 and chromosome 2, on
average 1552 and 1448 SNP markers, respectively,
were evenly distributed. Both SNP markers and QTLs
were assumed to be bi-allelic, and no marker loci
overlapped with the QTLs. Minor allele frequencies
were >0.05. Effects of QTLs were randomly sampled
from a Gamma distribution with a shape factor of 0.4
and a scale factor of 1.36. All additive genetic vari-
ance resulted from the QTLs. A simulated population
started at generation 1001 (i.e. base population) and
consisted of 100 individuals. For generations, 1001 to
1, mutation rate of 0.000025 was simulated for each
locus of both QTLs and SNPs per generation, and
non-overlapping generations were simulated with
population size per generation increasing gradually
from 100 to 2800. In generations 0–4, 80 randomly
chosen males and 520 randomly chosen females were
genotyped and produced 2600 progenies by random
mating. The phenotypic information was recorded
for all animals in generations 0–5. Genotypes were
recorded for all parents in generations 3 and 4, and
300 random individuals in generation 5. For recent
generations 0–5, the complete datasets contained
15 800 individuals in pedigree with records, of which
1500 individuals were genotyped. The simulation was
replicated ten times. Some statistics of the simulated
dataset are shown in Table 1.

(ii) Model and methodology

The single-trait model for ssGBLUP was

y=1m+Zaa+e, ð1Þ

where y is a vector of simulated observations
(phenotypes), 1 is a vector of all ones, m is the overall
mean of phenotypic records, Za is an incidence matrix
that relates individuals to phenotypes, a is a vector of
individual animal effects and e is a vector of residuals.
The variances of a and e are

var
a
e

� �
= Hs2

a 0
0 Is2

e

� �
, ð2Þ
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where sa
2 and se

2 are total genetic additive and re-
sidual variances, respectively, and H is a matrix that
combines pedigree and genomic relationships as in
Aguilar et al. (2010), and its inverse is

Hx1=Ax1+
0 0
0 Gx1xAx1

22

� �
, ð3Þ

where A is a numerator (pedigree) relationship matrix
for all animals ; A22 is a numerator relationship matrix
for genotyped animals ; and G is a genomic relation-
ship matrix. Matrix G was constructed based on
VanRaden et al. (2009) that assumed allele fre-
quencies of the current population and adjusted
for compatibility with A22, which was applied in ‘GC’
and ‘BLUPa ’ in Chen et al. (2011) and Vitezica et al.
(2011).

(iii) Derivation of SNP effects from breeding values

Let the animal effects be decomposed into those for
genotyped (ag) and ungenotyped (an) animals. The
animal effects of genotyped animals are a function of
SNP effects :

ag=Zu, ð4Þ

where Z is a matrix relating genotypes of each locus
and u is a vector of SNP marker effects.

Thus, the variance of the animal effects is

var(ag)=var(Zu)=ZDZ ks2
u=G*s2

a, ð5Þ

where D is a diagonal matrix of weights for variances
of SNPs (D=I for GBLUP), su

2 is the genetic additive
variance captured by each SNP marker when no
weights are present and G* is the weighted genomic
relationship matrix.

The joint (co)variance of animal effects (ag) and
SNP effects (u) is

var
ag
u

� �
=

ZDZ k ZD k
DZ k D

� �
s2
u , ð6Þ

subsequently

G*=
var(ag)

s2
a

=
var(Zu)

s2
a

=ZDZk
s2
u

s2
a

=ZDZ kl, ð7Þ

where l is a variance ratio or a normalizing constant.
According to VanRaden et al. (2009),

l=
s2
u

s2
a

=
1

gM

i=12pi(1xpi)
,

Table 1. Description of genomic data from simulation

Means (SDs*) Chr1# Chr2 Total

SNPs Number 1552 (22) 1448 (22) 3000
AvgMAF$ 0.28 (0.004) 0.28 (0.005) 0.28 (0.005)

QTLs Number 16 (2) 14 (2) 30
AvgEffect· 0.15 (0.04) 0.16 (0.04) 0.16 (0.04)

*SDs: standard deviations.
#Chr1 and Chr2: chromosome 1 and chromosome 2.
$Average minor allele frequencies of SNPs.
·Average effects of QTLs.

Table 2. Correlations (SDs) between TBVs from simulation with EBVs and DP from regular BLUP, GEBVs
from ssGBLUP and from BayesB with non-weighted and weighted (c=0.1) DP

EBVs DP

BLUP 0.81
(0.01)

0.77
(0.01)

SsGBLUP

it1* it2 it3 it4 it5 it6 it7 it8

0.87
(0.01)

0.89
(0.01)

0.88
(0.01)

0.88
(0.02)

0.88
(0.02)

0.87
(0.02)

0.87
(0.02)

0.87
(0.02)

BayesB_DP

NW# c=0.1

0.88
(0.02)

0.88
(0.02)

*GEBV solutions using ssGBLUP from iteration 1 (it1) to iteration 8 (it8).
#Non-weighted DP, and weighted DP with c=0.1.
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where M is the number of SNPs and pi is the allele
frequency of the second allele of the ith marker.
Following Stranden & Garrick (2009) one can derive

û=
s2
u

s2
a

DZkG*x1 âg: ð8Þ

Therefore, the equation for predicting SNP effects
which uses weighted genomic relationship matrix G*
becomes

û=lDZkG*x1 âg=DZk[ZDZk]x1 âg: ð9Þ

This is the best predictor of SNP effects given animal
effects (Henderson, 1973). Estimates of SNP effects

can be used to estimate individual variance of each
SNP effect (Zhang et al., 2010) :

ŝ2
u, i=û2

i 2pi(1xpi): ð10Þ

(iv) Computing algorithm

The above formulae can be used to create an algor-
ithm for estimation of D from ssGBLUP. Denote
t as an iteration number and i as the ith SNP. The
algorithm proceeds as follows:

1. t=0, D(t)=I ;G*(t)=ZD(t)Zk l.
2. Compute âg by ssGBLUP.
3. Calculate û(t)=lD(t)ZkG(t)*

x1 âg:

4. Calculate di(t+1)
* =û2

i(t)
2pi(1xpi) for all i as in Zhang

et al. (2010).
5. Normalize D(t+1)=

tr(D(0))

tr(D
(t+1)
* )

D
(t+1)
* :

6. Calculate G(t+1)* =ZD(t+1)Zkl:
7. t=t+1.
8. Exit, or loop to step 2 or 3.

In looping to step 3 (scenario S1), one applies the re-
vised G* only for the prediction of SNP effects, while
calculating the animal effects only once, thus âg does
not change during iterations. In looping to step 2
(scenario S2), both animal and SNP effects are re-
computed. Whether scenario S1 is sufficient as op-
posed to scenario S2 and how much iterations are
necessary is not clear and needs to be determined ex-
perimentally. In particular, scenario S1 is applicable
to multiple-trait models where the relationship matrix
needs to be identical for all traits.

Table 3. Average correlations (SDs) between QTL effects and sum of cluster of m SNP effects using ssGBLUP

S1* 1# 2 4 8 16 40

it1 0.53 (0.07) 0.68 (0.05) 0.79 (0.03) 0.81 (0.02) 0.80 (0.03) 0.62 (0.08)
it2 0.46 (0.07) 0.66 (0.05) 0.78 (0.02) 0.82 (0.02) 0.81 (0.02) 0.63 (0.08)
it3 0.43 (0.07) 0.64 (0.05) 0.77 (0.02) 0.81 (0.02) 0.80 (0.02) 0.62 (0.08)
it4 0.42 (0.07) 0.63 (0.05) 0.77 (0.02) 0.81 (0.02) 0.80 (0.02) 0.62 (0.08)
it5 0.41 (0.07) 0.63 (0.05) 0.76 (0.02) 0.80 (0.02) 0.79 (0.02) 0.61 (0.08)
it6 0.41 (0.07) 0.62 (0.05) 0.75 (0.02) 0.80 (0.02) 0.79 (0.02) 0.61 (0.07)
it7 0.41 (0.07) 0.62 (0.05) 0.75 (0.02) 0.80 (0.02) 0.79 (0.02) 0.61 (0.07)
it8 0.41 (0.07) 0.62 (0.05) 0.75 (0.02) 0.80 (0.02) 0.79 (0.02) 0.60 (0.07)

S2 1 2 4 8 16 40

it1 0.53 (0.07) 0.68 (0.05) 0.79 (0.03) 0.81 (0.02) 0.80 (0.03) 0.62 (0.08)
it2 0.44 (0.09) 0.65 (0.06) 0.77 (0.03) 0.82 (0.03) 0.81 (0.02) 0.63 (0.06)
it3 0.41 (0.08) 0.62 (0.05) 0.75 (0.03) 0.79 (0.03) 0.79 (0.03) 0.65 (0.06)
it4 0.40 (0.07) 0.61 (0.05) 0.73 (0.03) 0.77 (0.03) 0.78 (0.03) 0.64 (0.06)
it5 0.40 (0.07) 0.60 (0.05) 0.72 (0.04) 0.76 (0.04) 0.77 (0.04) 0.64 (0.06)
it6 0.40 (0.07) 0.60 (0.05) 0.72 (0.04) 0.75 (0.04) 0.76 (0.04) 0.63 (0.06)
it7 0.40 (0.07) 0.60 (0.05) 0.72 (0.04) 0.75 (0.04) 0.76 (0.04) 0.63 (0.06)
it8 0.40 (0.07) 0.60 (0.05) 0.71 (0.04) 0.75 (0.04) 0.76 (0.04) 0.63 (0.06)

*S1: update weights for SNP effects but not for GEBVs; S2: update weights for both GEBVs and SNP effects in each
iteration.
#Number of SNPs (i.e. m ranges from 1 to 40) in each cluster.

Table 4. Average correlations (SDs) between QTL
effects and sum of cluster of m SNP effects using
BayesB and WOMBAT

Item*

BayesB WOMBAT

NW# c=0.1 NW

1$ 0.48 (0.27) 0.47 (0.25) 0.57 (0.14)
2 0.65 (0.16) 0.64 (0.16) 0.68 (0.11)
4 0.78 (0.11) 0.78 (0.10) 0.73 (0.08)
8 0.82 (0.08) 0.82 (0.08) 0.74 (0.07)
16 0.82 (0.07) 0.83 (0.07) 0.73 (0.05)
40 0.66 (0.21) 0.67 (0.21) 0.63 (0.09)

*DP used as DV in BayesB and classical GWAS using
WOMBAT.
#Non-weighted DP and weighted DP with c=0.1.
$Number of SNPs (i.e. m ranges from 1 to 40) in each
cluster.
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(v) Computations

Computations with ssGBLUP involved program
BLUPF90 (Misztal et al., 2002) modified for genomic
analyses (Aguilar et al., 2010), and used simulated
parameters. Comparisons involved BayesB procedure
as implemented in the GenSel package (Habier et al.,
2010). These procedures used the model :

~yy=1m+Zuu+e, ð11Þ

where ~yy is a dependent variable (DV) for genotyped
animals, with options being non-weighted deregressed
proofs (DP) or weighted DP (Stranden & Garrick,
2009). For non-weighted DP, all weights were as-
sumed equal to each other being 1; for weighted DP,
the weight for ith individual was calculated as

wi=
(1xh2)

[c+(1xr2i )=r
2
i ]h

2

based on equation (10) in Garrick et al. (2009), where
c is the fraction of the genetic variance not accounted
for by SNPs, and was assumed to be 0.1 (Ostersen
et al., 2011), h2 is the heritability and ri

2 is reliability of
DP for the ith individual. Moreover, 1 is a vector of
all ones, m is the overall mean, Zu is a matrix relating
SNP marker effects to phenotypic information, u is a
vector of SNP marker effects, e is a vector of residuals
distributed as N(0, Dbse

2), where Db is a vector of
weights as in Stranden & Garrick (2009). For BayesB,
marker effects were assumed to be distributed as
uj � N(0, s2

uj
), where s2

uj
is the variance of the jth SNP,

and the proportion of SNPs with no effects (s2
uj
=0)

was set to 90%. As for ssGBLUP, the total genetic
variance of BayesB methods was equal to the simu-
lated value of 0.5. Priors for variances of SNP effects
and residuals followed a scaled inverse Chi-square
distribution with degrees of freedom 4 and 10, re-
spectively. The Monte Carlo Markov Chain was run

Fig. 1. SNP solutions and their four-point moving averages from ssGBLUP/S1 and ssGBLUP/S2 in the first iteration: (a)
SNP solutions and (b) four-point moving average.
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for 100 000 iterations (first 10 000 rounds were
discarded as burn-in) with Gibbs sampling, with 100
of Metropolis–Hastings sampling within each Gibbs
sampling cycle. Estimates of GEBVs and SNP effects
were based on the posterior means according to the
remaining 90 000 iterations. Accuracies of genotyped
animals were defined as correlations between true
breeding values (TBVs) and GEBVs. Accuracy of
GWAS was determined by correlations of QTL effects
with the sum of m SNP solutions adjacent to each
QTL, where m varied from 1 to 40. We did not at-
tempt to declare detection thresholds, or P-values,
because they are difficult to define and compare with
classical frequentist test of hypothesis, in the context
of shrunken or Bayesian estimators, as is the case here
(Servin & Stephens, 2007; Wakefield, 2009).

For comparisons, SNP solutions were also esti-
mated by CGWAS using a ‘Snappy’ approach im-
plemented in WOMBAT (Meyer & Tier, 2012). When
CGWAS analyses are repeated for a large number of

SNPs, the computing time can be large, especially for
large SNP panels. In ‘Snappy’, matrices common to
all SNPs are pre-computed, greatly reducing the
computation time for the complete scan.

3. Results and discussion

(i) Accuracy of estimated breeding values (EBVs)

EBVs had been obtained through regular BLUP,
ssGBLUP and Bayesian methods (BayesB using non-
weighted or weighted DP), respectively. Accuracies of
genotyped animals are shown in Table 2, and defined
as correlations between TBVs and EBVs: EBVs for
regular BLUP and GEBVs for other approaches.
Accuracies of ssGBLUP ranged from 0.87 (0.02) to
0.89 (0.01) depending on iterations, and they were
always higher than EBVs for BLUP. For S1, ac-
curacies of GEBVs remained 0.87 (0.01). This result
occurred because GEBVs were not recomputed (only
SNP effects). For S2, however, the accuracy increased

Fig. 2. SNP solutions and their four-point moving averages from ssGBLUP/S1 in the third iteration: (a) SNP solutions
and (b) four-point moving average.
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to 0.89 (0.01) by the second round, then dropped to
0.88 (0.01 or 0.02) until the sixth round, and then
dropped to 0.87 (0.02). The slight decrease of accu-
racy in the later rounds could be due to excessive
weights given to SNPs associated with few QTLs with
larger effects, and reduced weights for numerous
QTLs with smaller effects.

For BayesB methods, the accuracies of non-
weighted DP were 0.88 (0.02) and were the same as
the result of weighted DP (c=0.1). As using DP as
DV yields more reliable breeding value solutions than
using EBVs in genetic evaluation (Ostersen et al.,
2011), other types of DV (e.g. phenotypic records and
EBVs) were not considered in this study. For both
scenarios of using non-weighted and weighted DP as
DV, accuracies from BayesB methods were similar to
ssGBLUP with slightly larger standard deviations
(SDs) across replications. Although the Bayesian
methods lose accuracies when pseudo-data are used

(Vitezica et al., 2011) that loss of accuracy seems to be
similar to the loss of accuracy in ssGBLUP by as-
suming variances of all SNPs are equal. In the work of
Vitezica et al. (2011), genotyped animals do not have
observations of their own, whereas here genotyped
animals do have associated phenotypes. Therefore
information from related animals added little to EBV
accuracies.

(ii) Accuracy of QTL estimates

Table 3 presents accuracies of ssGBLUP for QTLs
defined as correlations between QTL effects and the
sum of m adjacent SNP marker effects, where m var-
ied from 1 to 40. SNP effects under scenarios of S1
and S2 were updated iteratively resulting in similar
results. For both S1 and S2, and all iterations, ac-
curacies of QTLs increased from m=1 to m=8, and
decreased sharply for m=40. Iterations improved the

Fig. 3. SNP solutions and their four-point moving averages from BayesB with weighted DP (c=0.1) as the DV: (a) SNP
solutions and (b) four-point moving average.
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accuracy of the S1 and S2 options but only for m=8
and m=16. With iteration and subsequent re-
computation of SNP weights, small SNP effects were
reduced every round while the large effects became
even larger. Iteration for new GEBVs (S2) allowed
corrections to SNP with small effects. The highest
correlation at m=1, 2 and 4 was after the first iter-
ation. The highest correlation was 0.82 withm=8 and
the second iteration. In both S1 and S2, iteration for
GEBVs maximized the accuracy of GEBVs given
weights. The highest accuracy was achieved by having
a combination of weights that minimized estimation
errors but reflected the reality that SNPs adjacent to a
QTL contribute to estimation of that QTL.

The advantage of S2 over S1 is dependent on the
number and distribution of QTL effects. With many
QTL effects and relatively equal distribution, assign-
ing differential weights to SNPs does not greatly im-
prove the accuracy of GEBVs, and therefore little is

gained by iteration on GEBVs. Greater improvements
with S2 are expected when differential weights on
SNP improve accuracy to a greater degree. In a sep-
arate study (results not reported), the realized accu-
racy of S2 improved up to the third iteration for some
traits, while deteriorating for other traits in sub-
sequent round. Further research may establish an
optimum number of rounds for each particular situ-
ation.

Relatively lower correlations are not unexpected at
low m. Zondervan & Cardon (2004) have found that
the closest SNP marker is not always the best predic-
tor of its neighbouring QTL. There should be an
‘optimal haplotype length’ according to the marker
density and extent of linkage disequilibrium in
the population (Villumsen et al., 2009). Density of
SNP markers and QTLs in the simulated genome
was, on average, 0.067 and 6.06 cM, respectively.
With each QTL distributed approximately every 90

Fig. 4. SNP solutions and their four-point moving averages from r with non-weighted DP as the DV: (a) SNP solutions
and (b) four-point moving average.
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SNP markers, the QTL effects could be best approxi-
mated by the sum of the adjacent 90 SNP effects.
However, due to recombination and mutation for
1000 generations, the best haplotype length can be
much shorter than expected. In this study, approx-
imations with eight SNPs were the most accurate,
while those with close to 40 or more were not.
Decreases of accuracies in later iterations can be ex-
plained by excessive weights on larger SNPs in later
iterations. A different algorithm to calculate weights
of SNP effects, e.g. with a lower bound similar to Sun
et al. (2011), may improve accuracies in later rounds.
The form of constructing weights used here is indeed
suboptimal, because it considers that the estimate of
the jth SNP effect ûj is the true value, whereas in fact
it is a regressed value. An optimal procedure
would consider the uncertainty in the estimation of
SNP effects by expectation–maximization (EM) or by
Bayesian procedures (Xu, 2010; Legarra et al., 2011).

Table 4 shows the correlation between QTL effects
and the sum of m adjacent SNP solutions for BayesB
using non-weighted or weighted DP and for CGWAS
using non-weighted DP. When BayesB was applied,
weighting DP had little effect on the correlations,
which most likely was due to the simple population
structure in our simulated study and subsequently
similar weights for most genotyped animals.
Compared with ssGBLUP and iteration 1, the corre-
lations resulting from application of BayesB were
smaller for mf4 and slightly higher for mo16.
Although the average correlations using BayesB were
the same as, or even slightly better than when
ssGBLUP was used, the SDs calculated over 10 re-
plications were much higher for BayesB than
ssGBLUP. Even in the best situation, the SDs were
0.07 for BayesB with m=16, as compared to 0.02 (or
0.03) for ssGBLUP/S1 (or S2) with m=8. For other
m, SDs ranged from 0.08 to 0.27 for BayesB, and from
0.02 to 0.09 for ssGBLUP. Larger SDs with BayesB
could be due to its sampling structure (Gianola et al.,
2009), which also made BayesB less robust than
ssGBLUP. With CGWAS, the correlations were
higher than any other methods with m=1, matched
ssGBLUP in iteration 1 with m=2, and were lower
than the other methods with mo4. Due to fitting a
single SNP as a fixed effect, CGWAS is best for
identifying a single causative SNP, but seems less ef-
ficient in identifying regions containing the QTLs. In
general, SDs with CGWAS were lower than with
BayesB, but higher than with ssGBLUP.

(iii) Graphs of SNP solutions and their moving
averages

Figures 1–4 present SNP solutions or their four-point
moving averages for several methods. The graphs of
SNP solutions are the least noisy for BayesB, and the

noisiest for CGWAS, with ssGBLUP in between.
While most SNP solutions in BayesB are set to 0, lack
of shrinkage in CGWAS results in solutions with
more noise. Solutions from the third iteration of
ssGBLUP/S1 were more similar to those of BayesB,
as each round of ssGBLUP shrinks smaller solutions.
With averaging, graphs from all the methods were
more similar, with closest similarity between BayesB
and ssGBLUP/S1 in iteration 3, and CGWAS and
ssGBLUP in iteration 1. The similarities confirm that
for this particular dataset, most QTLs cannot be lo-
cated with a single SNP accurately ; however, all of the
methods are similar in identifying regions containing
large QTLs.

(iv) Computing considerations

In terms of computing time, one round of ssGBLUP
required about 2 min, a run of BayesB required about
5 h, and a run of WOMBAT only required 13 s. Long
running time in BayesB is due to long sampling. The
extraordinarily fast run in WOMBAT is due to an
ingenious algorithm; in testing, WOMBAT was over
100 times faster than previous CGWAS approaches.
However, the timing analyses were not fully compar-
able. Both BayesB and ssGBLUP are useful for cre-
ating prediction equations based on computed SNP
effects, while CGWAS is only useful for GWAS.
Comparisons based on computing times are not
complete, as BayesB and CGWAS require a BLUP
run to create DP, but no such step is required with
ssGBLUP.

When implemented efficiently, the cost of BayesB is
linear for the number of SNPs and the number of
subjects (Legarra & Misztal, 2008). As currently im-
plemented, the creation of Gx1 in ssGBLUP is linear
with respect to the number of SNPs and cubic with
respect to the number of subjects (Aguilar et al.,
2011). With efficient implementation, the time to
create Gx1 is about 1 min for 7k genotypes and 1 h for
30k genotypes (Aguilar et al., 2011). The ssGBLUP
method has a potential of smaller than cubic cost
with respect to the number of genotypes with non-
symmetric mixed model equations and precon-
ditioned conjugate gradients (PCG) iteration (Misztal
et al., 2009; Legarra & Ducrocq, submitted).

(v) Additional considerations

In practice, GWAS (as practiced in humans) seeks to
find loci strongly associated across ‘unrelated’ in-
dividuals. Genomic selection works with closely re-
lated populations, and this relation generates strong
linkage (disequilibrium) within the sample that can-
not be ignored. As results from the three methods
are similar, none of the methods do a particularly
good job of distinguishing associations from that
due to linkage disequilibrium. Additional analyses are
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required to determine whether markers with large
effects are due to associated loci or to linkage dis-
equilibrium.

For the datasets in this study, in the best case,
ssGBLUP delivered more accurate GEBVs than the
best-case BayesB. All the methods delivered similar
predictions of QTL effects based on the sum of 2-SNP
effects. The ssGBLUP/S1 method is still relatively
new and can benefit from further refinements. In
particular, the refinements would involve more accu-
rate sampling of SNP variances as discussed before,
and a determination of the optimum number
of rounds in ssGBLUP/S2 for maximum accuracy of
GEBVs and GWAS. Another needed refinement for
ssGBLUP is methodology for significance testing.
Without such testing, the use of ssGBLUP for GWAS
is limited to identifying SNPs or regions of SNPs with
very large effects.

In general, ssGBLUP/S1 seems to provide more
consistent estimates than either BayesB or CGWAS
using DP. The ssGBLUP/S1 method is also much
simpler and therefore more robust to run as: (i) no
pseudo-data are required and (ii) no sampling is used.
Mrode et al. (2010) found large differences regarding
results and computing time among various im-
plementations of BayesB.

Models used in this study were very simple with a
relatively balanced population structure. For compli-
cated models, such as a multi-trait, maternal effect,
random regression or reaction norm models, DP are
hard or near impossible to create. Even if they can
be created, approximations of DP (Vitezica et al.,
2011) would reduce accuracy. The performance of
ssGBLUP is likely to improve with field data and
more complex models with additional refinements.

4. Conclusions

The ssGBLUP method can be modified to compute
SNP effects and estimate variances of SNP effects.
Such modifications allow for increased accuracy of
GEBVs and enable GWAS. The main advantage
of ssGBLUP for GWAS is the ability to incorporate
phenotypes of ungenotyped animals directly in a
BLUP-like approach, without computing pseudo-
data. Modified ssGBLUP may become the method of
choice for GWAS in the case where merely a fraction
of the population with phenotypes is genotyped. In
which case, the model for analysis is too complex for
use of other methods, and pseudo-data, such as DP,
for use with method BayesB and CGWAS, cannot be
obtained with sufficient accuracy. In addition,
ssGBLUP has the advantages of fast computing, ro-
bust estimates and simplicity.

We acknowledge helpful discussions and pointing to the
Zhang et al. (2010) study by R. L. Fernando. We used
moving averages of SNP solutions following examples by

J. Dekkers. This study was partially funded by the Holstein
Association and Agriculture and Food Research Initiative
grants 2009-65205-05665 and 2010-65205-20366 from the
USDA National Institute of Food and Agriculture Animal
Genome Program.
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