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Joint genomic evaluation of French dairy cattle
breeds using multiple-trait models
Sofiene Karoui1*, María Jesús Carabaño1, Clara Díaz1 and Andrés Legarra2

Abstract

Background: Using a multi-breed reference population might be a way of increasing the accuracy of genomic
breeding values in small breeds. Models involving mixed-breed data do not take into account the fact that marker
effects may differ among breeds. This study was aimed at investigating the impact on accuracy of increasing the
number of genotyped candidates in the training set by using a multi-breed reference population, in contrast to
single-breed genomic evaluations.

Methods: Three traits (milk production, fat content and female fertility) were analyzed by genomic mixed linear
models and Bayesian methodology. Three breeds of French dairy cattle were used: Holstein, Montbéliarde and
Normande with 2976, 950 and 970 bulls in the training population, respectively and 964, 222 and 248 bulls in the
validation population, respectively. All animals were genotyped with the Illumina Bovine SNP50 array. Accuracy of
genomic breeding values was evaluated under three scenarios for the correlation of genomic breeding values
between breeds (rg): uncorrelated (1), rg = 0; estimated rg (2); high, rg = 0.95 (3). Accuracy and bias of predictions
obtained in the validation population with the multi-breed training set were assessed by the coefficient of
determination (R2) and by the regression coefficient of daughter yield deviations of validation bulls on their
predicted genomic breeding values, respectively.

Results: The genetic variation captured by the markers for each trait was similar to that estimated for routine
pedigree-based genetic evaluation. Posterior means for rg ranged from −0.01 for fertility between Montbéliarde and
Normande to 0.79 for milk yield between Montbéliarde and Holstein. Differences in R2 between the three scenarios
were notable only for fat content in the Montbéliarde breed: from 0.27 in scenario (1) to 0.33 in scenarios (2) and
(3). Accuracies for fertility were lower than for other traits.

Conclusions: Using a multi-breed reference population resulted in small or no increases in accuracy. Only the
breed with a small data set and large genetic correlation with the breed with a large data set showed increased
accuracy for the traits with moderate (milk) to high (fat content) heritability. No benefit was observed for fertility,
a lowly heritable trait.

Background
Increasing the accuracy of the prediction of breeding
values has become a major objective in genomic selec-
tion (GS). The success of GS depends on many factors
[1,2], some of which cannot be easily controlled, such as
linkage disequilibrium (LD) between markers and quan-
titative trait loci (QTL), the size of the training dataset,
and marker densities at a given cost. The heritability of
the trait is also a limiting factor.

It has been observed that accuracy increases with in-
creasing size of the training data [3,4]. For this reason,
joint genomic evaluations based on data from a consor-
tium of countries are being carried out for a given breed,
such as for the Holstein breed in the EuroGenomics [3]
and North-American consortiums [1] and for the Brown
Swiss breed in the Intergenomics consortium [5]. How-
ever, for local breeds and/or of small size, an alternative
is to train on data from several breeds simultaneously
[6,7]. A multi-breed reference population could be an
appealing solution to increase the reference population
size, especially if some of the analyzed breeds have small
population sizes. However, most multi-breed studies
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assume that marker effects are the same across popula-
tions [6,8-10]. This assumption, albeit useful, is hardly
tenable, because it assumes that the pattern of linkage
disequilibrium is the same in each breed. Also, the
underlying architecture (QTL frequencies and interac-
tions) does not need to be the same between breeds.
Furthermore, if breeds are not crossed (which is the case
for the above studies and in this one), there is no interest
in estimating breeding values of composite animals on a
hypothetical “multiple breed” base population. Quite the
opposite, dairy cattle breeders are interested in estimated
breeding values (EBV) expressed on the scale of each
pure breed. Several recent studies have used approaches
that overcome the assumption of equal marker effects
across populations. Makgahlela et al. [11] proposed to
define multiple breeds as an admixture of populations
by taking breed proportions into account in the context
of a random regression model. However, in most cases,
this admixture of breeds does not exist or cannot be
identified. Varona et al. [12] used models that allow for
SNP (single nucleotide polymorphisms) effects to differ
in variance, value and sign between populations in he-
teroscedastic or multiple trait settings. In this work, we
investigated the impact on accuracy of increasing the
size of the training set by using a multi-breed French
reference population under differing assumptions for the
genetic correlations between breeds, in contrast to single-
breed genomic evaluation.
Three traits (milk yield, fat content and female fertility

defined as non return rate at 56 days), which have diffe-
rent genetic backgrounds were analyzed in three major
French dairy cattle breeds: Montbéliarde (M), Normande
(N) and Holstein (H).

Methods
Estimation of genetic correlation between breeds using
genomic information
Varona et al. [12] suggested that the SNP effects could be
modeled assuming that there is a genetic correlation of
SNP effects across breeds. These authors modeled breed-
ing values (u) as a sum of marker effects (g) so that u=Zg
and ordered by breed (breeds 1 and 2 for illustration):

u ¼ ubreed1

ubreed2
¼ Zbreed1gbreed1

Zbreed2gbreed2
¼ Zg

��

Marker effects were assumed to have a multivariate
distribution:

gbreed1
gbreed2

� �
∼ N

0

0

� �
;

Iσ2g1 Iσg1;2

Iσg2;1 Iσ2g2

 !" #

¼ N 0;B⊗ Ið Þ

Where I is an identity matrix of order equal to the
number of SNP markers and B is a 2 x 2 breed covari-
ance matrix for SNP effects.
VanRaden [13] (and also [14]) showed how models

that assume normality of marker effects (the so-called
“BLUP-SNP”, [15]) can be transformed into equivalent
BLUP animal models (usually known as GBLUP) that
use a “genomic” relationship matrix, usually termed G,
rather than a pedigree-based relationship matrix. Matrix
G is an estimator of the “true” proportions of genes that
are identical by descent between individuals [16,17].
Based on this equivalence, the model by Varona et al.
[12] can be transformed into the following model:

u ¼ ubreed1

ubreed2
∼ N

0

0

� �
;

Gσ2
u1 Gσu1;2

Gσu2;1 Gσ2u2

 !" #(

¼ N 0;G0 ⊗Gð Þ;

Where ubreedi is a vector of genomic breeding values
(GBV) for breed i, G is a matrix of genomic relationships
(animals in all breeds), and G0 is a matrix of variances
and covariances associated to GBV in each breed for a
given trait. This model is, thus, a multiple-trait model
with two “pseudo-traits”, reflecting the breeding value
for the trait in breeds 1 and 2. This model resembles the
MACE model [18] in which the breeding values of each
bull in different countries are seen as different, corre-
lated traits. In this model, the genetic distance (for each
trait) between breeds is quantified by the genetic corre-
lations between ubreed1 and ubreed2 (similar to the genetic
correlations across countries in MACE). Note that if
σu1
2 = σu2

2 = σu1,2, the model reduces to the regular GBLUP
model as used, for instance, by Hayes et al. [6] or [9]. In
addition, if σu1,2 = 0, the model reduces to two independ-
ent GBLUP models, one for each breed. In addition to
the theoretical appeal, one advantage of a multi-trait
GBLUP model is the possibility of using standard estima-
tors and existing software to predict breeding values and
estimate variance components.

Data
Table 1 gives details on the constitution of the different
validation and reference populations. The reference popu-
lation included data on 4896 bulls from the M, N and H
breeds and was used to estimate genetic parameters and

Table 1 Number of animals genotyped by breed and size
of the training and validation datasets

Dataset Montbéliarde Normande Holstein Total number

Training 950 970 2976 4896

Validation 222 248 964 1434

Total 1172 1218 3940 6330

Karoui et al. Genetics Selection Evolution 2012, 44:39 Page 2 of 10
http://www.gsejournal.org/content/44/1/39



GBV. Thus, the multi-breed reference population
included M (n = 950), N (n = 970) and H (n = 2976) bulls
with a large number of daughters. The average equivalent
daughter contributions (EDC) ranged from 407 to 513
for M and H, respectively. The validation populations
included the youngest bulls (born after year 2004) from
each breed that had at least 40 daughters in production
since October 2009. These bulls were used to evaluate
the accuracy of the genomic estimated breeding values
(GEBV).
All bulls were genotyped with the 50k SNP using the

Illumina Bovine array. The SNP were filtered by extreme
Hardy-Weinberg disequilibrium (p < 10-6) and Mendelian
inconsistencies (the genotype of the father was deleted if
more than 20% of his progeny showed contradiction).
Editing was within-breed. Genotypes of the three breeds
were merged, including only SNP which segregated
(minor allele frequency > 3%) in each breed. In the final
data set, only those loci fulfilling all requirements in all
breeds were considered. Finally, 43 852 SNP were used.
Pseudo-phenotypes for each bull were daughter yield
deviations (DYD), as in VanRaden and Wiggans [19],
with weights corresponding to the equivalent daughter
contributions for each bull.

Models
In all analyses, a given trait (i.e., milk production) was
considered a different trait for each breed. To avoid con-
fusion, these will be referred to as traits (milk produc-
tion, fat content, fertility) and as scales (breeding values
on the M, N or H scale).
In the first analysis, we estimated genetic variances and

correlations between breeds and the heritability of each
trait and each breed using a combined data set including
the three breeds. For computational reasons (see later),
instead of the multiple-trait model (MTM), an almost
equivalent Random Regression Model (RRM) was used,
similar to that used by [11]. The general equation for this
model was:

y ¼ XbþWMuM þWNuN þWHuH þ ε

Where, y is a vector of 2*DYD; X is a matrix that
allocates each DYD to a breed and b a vector of average
breed effects; Wi are design matrices allocating DYD to
GBV (uM, uN and uH) for the M, N and H scales con-
secutively. For example, the equation corresponding to
bull t of breed H, will have a value of 1 in the (t,t) pos-
ition of WH and 0 in WM and WN, since no bull has
daughters in several breeds. Vector ε is a vector of uncor-
related random normal pseudo-errors (“pseudo”, because
they include Mendelian sampling effects of the daughters
and part of the breeding value of the mates). Homo-
geneous pseudo-error variances were assumed across

breeds. The co(variance) structure for GBV, ui,i=M,N,H,
for one trait was:

Var

uM

uN

uH

0
B@

1
CA ¼ G0⊗G;

G0 ¼
σ2uM σuM;N σuM;H

σuN;M σ2uN σuN;H

σuH;M σuH;N σ2uH

0
B@

1
CA;

G ¼
GM GM;N GM;H

GN;M GN GN;H

GH;M GH;N GH

0
B@

1
CA

Where, G0 is the matrix of (co) variances of GBV in
each of the three scales, M,N,H, for a given trait, named
as genetic (co)variances henceforth; G is the genomic re-
lationship matrix relating animals of the same and differ-
ent breeds. The correlation of GBV in different scales
for a given trait is denoted by rg, and it will be named as
genetic correlation between breeds henceforth.
Matrix G was created as in VanRaden [13]:

G ¼ 0:95�
zz0

2
X

ipiqi
þ 0:05 I;

Where Z is a centered incidence matrix of genotype
covariates (0/1/2); 2

P
pi qi is a scaling parameter in

which pi and qi are the allelic frequencies for SNP i
(i = 1: 43852), which were computed across breeds; I is
an identity matrix (included in order to make G invert-
ible). Matrix I could have been replaced by A, following
VanRaden et al. [20], but this is not expected to affect
results considering the low weight assigned to I.
To implement this model, the regular relationship

matrix was replaced by G using facilities in the Blupf90
series of programs [21,22]. Variance and covariance
components in the RRM were estimated using Bayesian
procedures via Gibbs sampling by the Gibbs2f90 pro-
gram [23]. Moreover, estimates of genetic correlations
between breeds were computed from the corresponding
estimates of the genetic (co)variance components. The
interest in using the RRM with Gibbs sampling rather
than, e.g., REML or a multiple-trait model, was the fact
that, on one hand, the relationship matrix needed to be
stored just once (in contrast to regular REML, for in-
stance), and on the other hand, no “data augmentation”
of missing traits was needed with the RRM, in contrast
to using regular Gibbs sampling with a multiple-trait
model. Both of these resulted in large reductions in com-
puting time and memory requirements. For instance,
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storing G (which is a 6330 x 6330 dense matrix) for the
MTM would take nine times as much space.
The Gibbs sampler was run for a total of 20 000 itera-

tions. The first 4000 iterations were discarded as burn-in.
Convergence was checked visually and by the Geweke
diagnostic of the Markov chain [24]. Posterior means of
genetic variances for each trait and for each breed and of
the correlation between breeds were computed. After the
parameters were estimated, the (co)variances in the
model were fixed at their estimates and the RRM was
used in a GBLUP analysis to estimate the GEBV of all
genotyped candidates in the validation dataset.
In a second set of analyses, BLUP with a multi-breed

genomic relationship matrix (GBLUP) was applied to
estimate the GBV of all genotyped bulls using the fol-
lowing MTM:

yi ¼ bi þWiui þ εi;

Where yi is a vector of 2*DYD for breed i = {M,N,H}.
In this model, each record is allocated to its breed-
specific effects and breeding values.
The covariance structure of u was as for the RRM and

estimated (co)variances obtained with the RRM were
used in the MTM to estimate the corresponding GEBV.
However, in the MTM, different residual variances for
each breed were used:

Var
εM
εN
εH

0
@

1
A ¼ Ro ⊗ I; Ro ¼

σ2εM 0 0
0 σ2εN 0
0 0 σ2

εH

0
@

1
A

Because 2*DYD is pre-corrected data, its pseudo-
residual variance is not the same as the actual residual
variance. Thus, we used σɛ,i

2 = (4σɛ,i
*2 + 2σu,i

*2 ), where the σ*

indicates values from routine genetic evaluations for
these breeds (S. Fritz, UNCEIA, Jouy-en-Josas, personal
communication).
In both models (RRM or MTM), EDC were used as

weighting factors and the GEBV were computed using
BLUP90iod2 modified by Aguilar et al. [21].

Accuracy of GEBV
For each model (MTM and RRM), three scenarios for
the genetic correlation between breeds, rg, were assumed
to compare the accuracy of GEBV. In scenario 1, rg was
set to zero to simulate a situation where breeds were
uncorrelated, which is equivalent to performing single-
breed evaluations. In scenario 2, the estimated value for
rg was used and in scenario 3, rg was set to 0.95, which
is equivalent to the assumption that the population is
close to homogenous (rg = 1) [6,9].
Accuracy and bias of the GEBV were assessed in the

validation datasets, separately for each breed, by the co-
efficient of determination (R2) and the estimated linear

regression coefficients, δ0 (intercept) and δ1 (linear term)
of the linear regression of 2*DYD on GEBV, weighted
by the corresponding equivalent number of daughters
(EDC), respectively.

Results
Distribution of genomic relationship coefficients within
and between breeds
Figures 1 and 2 show the distributions of genomic rela-
tionship coefficients within and between breeds, respect-
ively. Figure 1 shows a higher level of relationship within
the M and N breeds compared with breed H. This might
be due to the larger number of individuals in breed H
than in the N and M breeds, because allele frequencies
were computed considering all animals. Using breed-
specific allele frequencies is expected to give different
results (e.g., [20]). Pedigree relationships were ascer-
tained as well, resulting in an average within-breed rela-
tionship of 0.10. The choice of allele frequencies to be
used may depend upon the goals of the analyses [20] but
the effect of this choice on the results of genomic evalu-
ation is still an open issue, particularly in the multi-breed
context. Figure 2 shows a moderate level of genomic
relationships between breeds compared to the within-
breed relationships, as expected.

Variance components and heritability estimates
Table 2 contains estimates of genetic variances (by breed)
and pseudo-error variances for milk production, fat con-
tent and female fertility estimated in the multi-breed
reference population using RRM. Genetic variance esti-
mates were similar to those used in the routine genetic
evaluation (S Fritz, UNCEIA, Jouy-en-Josas, personal
communication) and the latter were included in the 95%
high probability density regions (HPD95%) interval of
the estimates from the genomic data, except for the gen-
etic variance for fertility in breed H. Estimated posterior
genetic variances showed a narrow HPD95% interval,
indicating a high precision of the estimates using the
molecular information. Pseudo-error variances differed
from the residual variances used in routine genetic evalu-
ation (not shown in the table). This result is explained
by the use of the 2*DYD as a pseudo-phenotype, hence
the use of the term pseudo-error variance.
Posterior means and HPD95% intervals of the herit-

ability for each trait and breed are in Table 3. Herit-
abilities were calculated using as genetic variances the
GBV variance estimated in the RRM. The phenotypic
variance was obtained subtracting the “true” residual
variance from the pseudo-error variance estimate and
adding the variance of the permanent environmental
effect of the cows used in the routine genetic evaluation
(S Fritz, UNCEIA, Jouy-en-Josas, personal communica-
tion) , which was not estimable in our data because our
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DYD are “free” of permanent environmental effects. He-
ritabilities estimated by the RRM were then rather similar
compared with those used in routine genetic evaluation.

Estimation of genetic correlations between breeds
Table 4 shows the posterior means of the genetic corre-
lations between breeds for each trait when combining
information from the M, N, and H reference popula-
tions. Posterior means of genetic correlations for milk
production and fat content were moderately high, par-
ticularly for correlations between breeds M and H (0.66
and 0.79 for fat content and milk production, respec-
tively), whereas genetic correlations between breeds for
female fertility were relatively low (−0.01; 0.39).
Estimated posterior correlations showed large HPD95%

intervals, especially between breed M and N and breeds
N and H, whereas the genetic correlation between
breeds M and H showed the narrowest HPD95% inter-
vals. Female fertility showed the largest HPD95% inter-
vals, indicating that the available information was not

sufficient to estimate accurately the genetic correlations
between breeds for this trait.

Accuracies in prediction of the validation data set
Estimated accuracies calculated as R2 for the validation
populations in each breed are in Table 5 for each sce-
nario and each model (RRM vs. MTM). The R2 in the
reference data was close to 1 for all the traits and
breeds, as expected (results not shown). Estimated ac-
curacies in the validation populations were slightly
greater under the nonzero rg scenarios (2 and 3), as
compared to accuracies, estimated in a single-breed sce-
nario (rg = 0), for both models for milk production and
fat content. The most important increase of accuracy
was observed for fat content for breed M (from 0.27
with the single-breed scenario to 0.33 in the nonzero rg
scenarios). Female fertility was the only trait for which
accuracy was not improved in any population or model
when the genetic correlation between breeds was
allowed to be different from zero. This result may be
because of the low heritability and the smaller estimates

Figure 1 Distribution of genomic relationship coefficients within breeds.
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of genetic correlations between breeds for this trait,
which may indicate that fertility is biologically different
between breeds.
Accuracies of GEBV were largest for the H breed for

milk production (0.30 and 0.31 under RRM and MTM,
respectively) and fat content (0.52 and 0.48 under RRM
and MTM, respectively) traits because of the larger
number of genotyped animals in this breed (Table 1).

However, for fertility, the M breed had the largest accu-
racies (0.19 under the two models).
A small difference in accuracies was observed between

the RRM and MTM models, with the RRM showing a
slightly higher accuracy (Table 5).
Table 6 shows the estimated accuracies of EBV

obtained from routine genetic evaluation based on pedi-
gree for each breed (S Fritz, UNCEIA, Jouy-en-Josas,

Table 2 Posterior means (σ2) and HPD95% intervals for each breed and pseudo-error variances (σ2ε) estimated for
three traits

Trait σ2 Montbéliarde σ2 Normande σ2 Holstein σ2ε

[HPD95%] [HPD95%] [HPD95%] [HPD95%]

Milk 0.420 / 0.423* 0.383 / 0.358* 0.532 / 0.512* 1.866

[0.369; 0.473] [0.336; 0.428] [0.487; 0.575] [1.570; 2.141]

Fat content 5.566 / 5.115* 7.950 / 7.642* 12.692 / 12.225* 14.95

[4.876; 6.250] [6.898; 8.770] [11.810; 13.700] [12.39; 17.89]

Fertility 32.775 / 34.342* 41.505 /41.145* 57.055/ 47.321* 2238.48

[25.960; 38.660] [33.450; 50.150] [50.020; 63.430] [2078; 2408]

σ2 and σ2ε estimated by a multi-breed reference population for milk production, fat content and female fertility using a random regression model; *variances used
in routine genetic evaluations.

Figure 2 Distribution of genomic relationship coefficients between breeds.
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personal communication). Estimated accuracies of GEBV
(Table 5) were larger than those obtained using pedigree
information for milk production and fat content. For
female fertility, only a small gain was observed. Again,
the low heritability of this trait is the likely reason of this
result.
The coefficient of regression of 2*DYD on GEBV (δ1)

was also used to test the impact of increasing the size of
the reference population using multi-breed data. The
expected value of δ1 is 1, and this is desired to avoid
inflation (or under-inflation) of GEBV’s of young bulls.
Table 7 shows the regression coefficients estimated by
the two models and for each scenario and breed. The
estimates were larger for MTM than for RRM for all
traits, breeds, and scenarios. Female fertility for breed M
presented the worst estimate of δ1 (1.50 and 1.80 for
RRM and MTM, respectively), whereas accuracies esti-
mated by R2 for this breed were largest. Thus, the results
show some degree of trade-off between R2 and δ1 used
to evaluate the GEBV predictions. It is important to
note that the H breed presented the best quality of
predictions in terms of δ1 for all traits and breeds.

Discussion
This study shows that the use of a multi-breed reference
dairy cattle population did not have a large impact on

the accuracy of prediction of GBV for young bulls. This
confirms the findings of Hayes et al. [6] and also of
[9,25] for multi-breed reference populations. However,
using a combined H and Jersey reference population and
Bayes type methods that rely on estimates of SNP effects
to predict the genomic breeding values, Hayes et al. [6]
found an increase of up to 17% in the accuracy of GEBV
for fat yield and for fat and protein percent for young
Jersey bulls. Other studies [3,4] have reported an import-
ant increase in accuracies (up to 20%) if the size of the
training set increases when using one breed from diffe-
rent countries (international evaluation). Olson et al.
[26] found a general increase of 2% from pooling U.S.
and Canadian H populations and 5% for the Brown
Swiss from European countries when using multiple trait
methodology. Given that large or moderately large ge-
netic correlations have been estimated for the same trait
measured in different countries but on the same breed
(see, e.g., [3] for Holstein populations), larger benefits in
accuracy of GEBV from using a combined reference
population seem to be obtained when the genetic

Table 3 Posterior means and HPD95% intervals of the
heritability estimated by a multi-breed reference
population

Trait Montbéliarde Normande Holstein

[HPD95%] [HPD95%] [HPD95%]

Milk 0.33 / 0.30* 0.33/ 0.30* 0.37 / 0.30*

[0.29 ; 0.38] [0.29 ; 0.38] [0.33 ; 0.41]

Fat content 0.42/ 0.50* 0.44 / 0.50* 0.48 / 0.50*

[0.36 ; 0.46] [0.39 ; 0.49] [0.45 ; 0.51]

Fertility 0.05 / 0.02* 0.06 / 0.02* 0.08 / 0.02*

[0.04 ; 0.06] [0.04 ; 0.07] [0.06 ; 0.09]

*Heritabilities estimated in routine genetic evaluation.

Table 4 Posterior means and HPD95% intervals of genetic correlations between breeds estimated by a multi-breed
reference population

Trait Montbéliarde-Normande Montbéliarde-Holstein Normande-Holstein

[HPD95%] [HPD95%] [HPD95%]

Milk 0.46 0.79 0.38

[0.26 ; 0.65] [0.63 ; 0.93] [0.19 ; 0.55]

Fat content 0.35 0.66 0.56

[0.07 ; 0.64] [0.50 ; 0.84] [0.34 ; 0.76]

Fertility −0.01 0.39 0.22

[−0.50 ; 0.54] [−0.05 ; 0.73] [−0.15 ; 0.54]

Table 5 Coefficient of determination of twice of the
daughter deviation yield on genomic estimated breeding
values in the validation bulls

RRM MTM

Trait rg M N H M N H

Milk 0 0.19 0.12 0.30 0.17 0.12 0.30

Estimated 0.21 0.13 0.31 0.19 0.13 0.30

0.95 0.21 0.14 0.31 0.19 0.13 0.30

Fat content 0 0.27 0.39 0.51 0.27 0.39 0.47

Estimated 0.33 0.39 0.52 0.32 0.40 0.48

0.95 0.33 0.39 0.52 0.33 0.40 0.49

Fertility 0 0.19 0.07 0.11 0.19 0.07 0.10

Estimated 0.19 0.07 0.11 0.20 0.07 0.10

0.95 0.19 0.07 0.11 0.20 0.07 0.10

M: Montbéliarde; N:Normande; H: Holstein; RRM: Random Regression Model
MTM: Multiple Trait Model; rg: genetic correlation between breeds.
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correlations between the trait measured in different
populations are larger.
In this study, a notable improvement in accuracy (6%)

from using a multi-breed reference population was
observed only for fat content in the M breed. The M
breed showed the largest estimated genetic correlations
with the H breed (0.79, 0.66 and 0.39 for milk yield, fat
content and fertility, respectively). This indicates that
the SNP effects are more similar between the M and H
breeds than with breed N. This might be because of the
introgression of Red Holstein animals in the M breed in
the 1970’s (e.g. [27]). Therefore, breed M would be the
one expected to obtain the largest benefits from multi-
breed evaluation. Although milk yield was the trait
showing the largest genetic correlation between breed M
and the other breeds, the improvement in accuracy was
very small (2%) for this trait. The larger response for fat
content might be related to the different genetic archi-
tecture of this trait. The 50k bovine chip contains SNP
that are in close LD with the DGAT1 polymorphism,
which explains about 40% of the genetic variation in fat
percentage in the milk of H cattle [28]. The “K” allele
for DGAT1 in breed M probably originated from breed
H [27] and is expected to show similar LD around it,
which may explain why this trait benefits most from
multi-breed evaluation; i.e., some chromosome segments

of large effect that segregate in breed M are better esti-
mated when including data on breed H. Fat content has
been found to show larger benefits from the use of ge-
nomic information in other studies [6,9]. The H breed
did not benefit from the large genetic correlations with
the other breeds, probably because, with the larger size
of the H breed reference population, the observed accu-
racy is close to the maximum achievable value given the
existing LD. The N breed had lower estimated genetic
correlations with the large H breed, and only showed
minor improvements in accuracy (1-2%) from multi-
breed evaluation for milk yield and fat content.
For female fertility, accuracies of GEBV in the vali-

dation populations were the same using multiple-breed
or a single-breed reference population (scenarios 2 and 3
versus scenario 1), showing low sensitivity to the value of
the genetic correlation. The small estimated correlations
between breeds for fertility (−0.01 to 0.39) could explain
the low gain in accuracies for fertility when GEBV were
estimated by a multi-breed reference population. This
might indicate that the LD between markers and QTL
does not persist between breeds and/or that the effects of
these QTL differ between breeds. In addition to no effect
on accuracy, the regression coefficient of 2*DYD on
GEBV was greater than one for fertility in the M breed,
which indicates a severe underestimation of GEBV.
De Roos et al. [7] and (also [29]) proposed the use of a

greater density of markers when the breeds that are used
as a reference population are too diverged to detect
enough marker-QTL relationships, such that the effect
of all QTL can be captured by the SNP [30]. However,
Harris et al. [31] did not find significant increase in ac-
curacies of GEBV when a higher density of markers was
used in the multi-breed analyses. Pryce et al. [9] sug-
gested and evaluated considering only the genomic
regions that are known to be associated with the traits of
interest for prediction of GBV. Shulman et al. [32]
reported SNP on nine chromosomes to be associated
with female fertility traits in Finnish Ayrshire bulls, and
that the BTA2 gene also contained a SNP that was sig-
nificantly associated with non-return rate in cows.
Overall, in this study the use of multi-breed instead

of single-breed analyses did not increase the accuracies
of GEBV in spite of favourable genetic correlations
between breeds, especially for milk production and fat
content. Thus, high (higher than 0.6) genetic correla-
tions between breeds were needed in this study to
achieve slightly higher precisions. Therefore, for traits
with moderately high heritabilities, and using existing
genomic relationships between breeds, the genetic cor-
relation between breeds might be an indicator of the
expected increase in accuracy of GEBV from the use of
a multi-breed reference population. In fact, the genetic
correlation provides an indication about the concordance

Table 6 Coefficient of determination of twice of the
daughter yield deviation on estimated breeding values
obtained from a routine genetic evaluation

Trait Montbéliarde Normande Holstein

Milk 0.08 0.09 0.14

Fat content 0.16 0.34 0.19

Fertility 0.18 0.06 0.08

Table 7 Coefficient of regression of twice of the daughter
deviation yield on genomic estimated breeding values of
the validation bulls

RRM MTM

Trait rg M N H M N H

Milk 0 0.81 0.68 0.74 0.89 0.71 0.80

Estimated 0.82 0.71 0.74 0.91 0.73 0.80

0.95 0.81 0.69 0.73 0.91 0.74 0.80

Fat
content

0 1.02 1.03 0.93 1.12 1.13 1.02

Estimated 1.11 1.02 0.93 1.21 1.13 1.02

0.95 1.08 0.98 0.93 1.20 1.10 1.01

Fertility 0 1.51 1.01 0.74 1.80 1.09 0.87

Estimated 1.51 0.99 0.74 1.80 1.09 0.87

0.95 1.48 0.91 0.73 1.78 1.05 0.86

M: Montbéliarde; N: Normande; H: Holstein; RRM: Random Regression Model
MTM: Multiple Trait Model; rg: genetic correlation between breeds.
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of the effect of the QTL on the trait between breeds
(e.g., it might be different, or the QTL might be fixed in
one breed and segregating in another) and about the
concordance of LD between markers and QTL between
breeds.

Conclusions
A model fitting data on a trait in multiple breeds as cor-
related pseudo-traits has been presented. The trait that
showed the lowest genetic correlation between breeds
was female fertility. The use of a multi-breed reference
population only increased the accuracy of GEBV for
traits and populations that showed the largest correla-
tions between breeds and in the breed with the smallest
data set. Accuracies of GEBV for fertility were lower than
for other traits and values of the regression of the DYD
on the GEBV showed severe underestimation of GEBV
for fertility in breed M.
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