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ABSTRACT

Motivation: Identification of conserved motifs in biological sequences
is crucial to unveil common shared functions. Many tools exist for
motif identification, including some that allow degenerate positions
with multiple possible nucleotides or amino acids. Most efficient
methods available today search conserved motifs in a set of
sequences, but do not check for their specificity regarding to a set
of negative sequences.

Results: We present a tool to identify degenerate motifs, based
on a given classification of amino acids according to their physico-
chemical properties. It returns the top K motifs that are most frequent
in a positive set of sequences involved in a biological process of
interest, and absent from a negative set. Thus, our method discovers
discriminative motifs in biological sequences that may be used to
identify new sequences involved in the same process. We used this
tool to identify candidate effector proteins secreted into plant tissues
by the root knot nematode Meloidogyne incognita. Our tool identified
a series of motifs specifically present in a positive set of known
effectors while totally absent from a negative set of evolutionarily
conserved housekeeping proteins. Scanning the proteome of M.
incognita, we detected 2,579 proteins that contain these specific
motifs and can be considered as new putative effectors.

Availability and Implementation: The motif discovery tool
and the proteins used in the experiments are available at
http://dtai.cs.kuleuven.be/ml/systems/merci.

Contact: celine.vens@cs.kuleuven.be

1 INTRODUCTION

Physico-chemical properties and three-dimensional structures
of proteins are more conserved than the suite of amino-acids
itself. Thus, at a given position in a protein sequence, different
amino-acids may have similar structural or physico-chemical roles.
Degenerate motifs allowing multiple possible amino-acids at one
position are necessary to comply with this variability. Several
methods allow for discovery of degenerate motifs (Bailey and Elkan,
1994; Ji and Bailey, 2007), but few of them take into account
similarity in terms of physico-chemical properties of amino acids
at a given position (Jonassen, 1997; Rigoutsos and Floratos, 1998).

When the purpose of the obtained motifs is to scan large
datasets (e.g. genomes, proteomes) in order to find new sequences
potentially involved in the same biological process, another relevant
point in the motif discovery is the specificity of the identified
motifs regarding the biological process. Some systems make use
of statistics to attach a measure of significance to each of the
discovered patterns, as deduced from a model based on the input
sequences or a public sequence database (Bailey and Elkan, 1994;
Jonassen, 1997; Rigoutsos and Floratos, 1998). For many biological
applications, however, a negative set of sequences not involved in
the process of interest can be compiled, and this set can be used
as a more direct way to evaluate the relevance of the motifs. While
several motif discovery processes take into consideration a negative
sequence set (Redhead and Bailey, 2007; Baitegl., 2010), this
setis often used to guide the search towards motifs over-represented
in the positive sequences, rather than discriminating motifs.

In this article, we propose a method that identifies motifs
consisting of specific amino acids and physico-chemical properties,
that can be used as discriminators to identify new sequences
involved in a biological process of interest. To our knowledge, no

Conserved motifs in biological sequences reflect functionallymotif discovery method exists that combines these two features. Our
important shared features. In genome sequences, conserved motifeethod outputs the toff’ motifs that are most frequent in a positive
can point to promoters or regulatory elements, regions of spliceset of proteins and are absent from a negative set of proteins.
junctions between protein-coding exons or regions affecting the We applied this method to find motifs in root-knot nematode
shape of the chromatin. In protein sequences, such conserved motiéffectors. Root-knot nematodes are the most damaging plant-
can highlight signals that are important for controlling the cellular parasitic animals to the agriculture worldwide, causing billions of
localization (e.g. nucleus, cytoplasm, extracellular compartment)guro losses every year (Agrios, 1997). They have sophisticated
regions shared between proteins that interact with a same partner mteractions with plants that include penetration of root tissue and
regions important for the biochemical function itself. establishment of a feeding site. A set of effector proteins that are
secreted by the nematode into plant tissue is believed to be crucial
for these processes. Most known effectors to date are expressed in
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Table 1. Koolman and Rohm (1996) amino acid classification. Table 2. RasMol's classification of amino acids
(Sayle and Milner-White, 1995).
Property Amino acids Property Amino acids
Property Amino acids
aliphatic AG, LV neutral S,T.N,Q
sulfur containing C,M acidic D,E acidic D,E
aromatic FY,W basic R,H,K a:yCIiC A,R,N,D,C,E,Q,G,l,L,K,M,S,T,V
cyclic P aliphatic A,G,ILV
aromatic H,F,W,Y
basic R,H,K
buried A,C,I,LLM,FWV
charged D,E,R,H,K
nematode secretory glands and delivered to plant tissueghra cyclic H,F,P,W,Y
syringe-like stylet. With the availability of two annotated genome hydrophobic ~ A,G,I.L,M,F,P,W,Y,V
sequences for root knot nematodes (Alsachl, 2008; Opperman large R.E.Q.HLLKMFWY
et al, 2008), identifying the whole set of candidate secreted medium N.D.CPTV
effectors can now be envisioned. Although many effectors possess ”elmrral Q:::S(C?S "’L|_’|MK’FS'P+S’T'W'Y’V
a signal peptide for secretion, others clearly present in secretory Sr?n:” A,YG:SY EQHKS,

glands and/or nematode secretions have no predicted signal peptide surface RN,D,E,Q,G,HK,P,S,T,Y
(Bellafioreet al., 2008; Jauber¢t al., 2002). Similarly, many root-

knot nematode proteins bearing a signal peptide are not delivered to
the plant but have conserved functions in different species. Hence,
the presence of a signal peptide can not be used as a discriminator to
identify new effectors, and no reliable motif to predict secretion of aring: the set of K motifs, using symbols irC' U A, that are maximally
nematode protein in plants is currently available. We constructed &equent inP and are absent from (or infrequent in, see Section 218.2)
positive set of proteins known to be secreted by root-knot nematodes

into plant tissue and a negative set of evolutionarily conserved®.3 Algorithm

prqtelns, in order to identify speqﬂc m9t|fs in positive protelns.. The algorithm we propose is based on the well-known candidate generation
Using these datasets, our method identified a set of effector-specnflg.incime, introduced in sequential pattern mining by the ApriorAl
motifs at the N-terminal region of the positive proteins. algorithm (Agrawal and Srikant, 1995). At each iteration, a set of candidate
patterns is generated, whose frequency is tested. In order to search
for discriminative patterns, we change the basic algorithm, such that
it essentially looks for those patterns that are frequent in the positive
2 METHODS sequences, and meanwhile tests if they are absent from the negative
2.1 Classification schemes sequences. In order to include physico-chemical properties of the amino acid

. . I . ) . residues, we extend the candidate generation step. In the next sections, we
Several amino acid classifications group amino acids according to the'Bescribe the different steps of the algorithm

physico-chemical properties. In this work, we consider two classification

schemes. The first one was proposed by Koolman and Rohm (1996). b 3 1 Candidate generationIn order to perform a complete and
contains 7 non-overlapping properties, see Table 1. The second one igficient search, it is important that each relevant candidate is generated,
RasMol's classification (Sayle and Milner-White, 1995), which is much 4ng that no candidate is generated more than once. To achieve this, most
larger, see Table 2. It contains 15 cladseith a lot of overlap. candidate generation algorithms structure the search space as a lattice
We can view the classification schemes as directed acyclic graphs (DAG§hpresenting a general-to-specific structure. Generating candidates then

representing the superclass relationship. In its simplest way, the DAGomes down to traversing the lattice, thereby pruning as much as possible.
contains two levels: the classes and the amino acids. However, a closer 100k e follow the same approach and consider a pasasn, p2, p3, ..., pn >

at the latter classification scheme can introduce more structure and levelg,gre general than another patterty:, ¢z, g3, ..., gm >, if and only if
For_ instar_lce, albasicamino acids arehargedandlarge, and allcharged n < m and for each pai(p;, ¢;) it holds thatp; < g;. Our candidate
amino acids arpolar andsurface generation method traverses the lattice from general to specific, which is
22 Formal Task Description done by starting with an artificial root ele_ment thaF denotes the empty _pqttern,
and at each step performing two basic operations to generate minimally
We define the task of identifying the taff’ discriminative protein motifs  specialized new candidates given a pattern: (1) add a top-level element of
with amino acid properties as follows: the DAG (extension), and (2) minimally specialize an element of the pattern
(specialization).

In order to ensure that no pattern is considered more than once, we only
add elements to the end of the pattern, and only specialize the last element in
the pattern. We transform the DAG into a tree in a preprocessing step, such
that only one path leads to each amino acid. This is trivially fulfilled for the
Koolman and Rohm classification. A possible spanning tree for the hierarchy
by Sayle and Milner-White is shown in Fig. 1. The specialization operator is
1 We have discarded the classpesitive and negative since they are  performed by replacing the last element in the pattern by each of its children
equivalent toacidic andbasic We also changed the classificationf we in this tree. The candidate generation process is illustrated in Figure 2.
only classify it adasic instead of both abasicandneutral

Given: (1) a set of positive protein® and a set of negative proteing, (2) a
parametetk’, and (3) a set of amino acid properti€sand a partial ordex
(structured as a DAG) defined on the uniontband the amino acid alphabet
A.Forallei,co € CUA: e1 X c2ifand only if there is a directed path
from ¢ to cz in the DAG.
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’//}oi\\ which the pgrents are present. There_fore, we adopt a verticgl id-list dgt.aset
neutrar Ay dlic Pydrophabic large  cyclic Surface ~polar medium format (Zaki, 17998): Where we associate tq each pattern a list of (pos_ltlve)

sequence IDs in which it occurs. Before testing the frequency of a candidate,
we check whether its parents are frequent, and if yes, intersect their sequence
ID lists. Only the sequences in the intersection are checked for presence of
the pattern. If the pattern passes the minimal frequency constraint, we store
it together with the sequences in which it occurs.

When a candidate has been found frequent in the positive set, we test its
frequency in the negative set. As mentioned above, if a candidate’'s parent
was infrequent in the negative set, we can output this candidate as a valid
motif without any testing. In the other case, we iterate over the negatives,

buried small aliphatic 1,L,M aromatic G,Y charged Q,S N,D,C,P,T,V
FW basic acidic
RHK E

Fig. 1. Spanning tree for the classification of Sayle and Milner-White

(1995). counting hits, and stop searching if the maximal frequehgy is reached.
Note that, if the maximal frequency condition is not met, we still have to
0 keep the candidate for further processing, because the maximal frequency
/ / _ condition can become true for any of the new candidates generated from it.
.27 _ [polar] _ [medium]
/ VAN 2.3.4 Organization of the searchThe search space lattice can be
[polar neutral] .=~ [polar medium] [charged] ~ [Q] ~[S] traversed using several search strategies, a.o. depth-first and breadth-first
/ search. We opt for the former, since it requires less main memory: it
[charged neutral] .=~ [charged medium] [basic] [acidic] only needs to keep sequence id lists for candidates along a singfe path

This implies that pruning (checking whether the parents are frequent and
Fig. 2. Candidate generation using the amino acid classification of Sayléntersecting their sequence id lists) can not be performed using all parents
and Milner-White (1995) and the spanning tree of Fig. 1. of a candidate. Therefore, we perform pruning only using the minimal
generalizations of the last element of the pattern as parents (removing the
last element if it corresponds to the highest level in the DAG).
2.3.2 Finding the topk motifs. We introduce two parameters;p In _order to perform pruning correctly, we have to malfe sure tha_tt all
considered parents have been tested before a pattern is tested, i.e. the

and F, which denote the minimal frequency threshold for the positive ; : 8 . ;
. . gpanning tree of the amino acids and their properties has to be constructed
sequences, and the maximal frequency threshold for the negative sequencegs,

respectively. By defaultFy is set to zero, and motifs are searched that In"a way that, in depth-first traversal, all DAG parents of a node are visited

. . ... before the node itself. The tree shown in Figure 1 fulfills this constraint.
are absent from the negative set. However, since for some applications,

constructing a pure negative set can be difficult, setfingto a higher value  2.3.5 Implementation.We provide a Perl implementation of the
can be useful. The parametBl> defines the threshold above which motifs proposed algorithm, called MERCI (Motif - EmeRging and with Classes -
are retained. Initially it is set to one or to a user defined value, and it increasegjentification), at http://dtai.cs.kuleuven.be/ml/systems/merci. Pseudo code
throughout the execution of the algorithm: is given in Supplementary Table S1. Counting frequencies is done by Perl’s
pattern matching operator, using regular expressions to represent classes.
e Initially, after finding K motifs, F'p is updated to the minimum of the  The implementation provides the following additional features:
frequencies of thos& moitifs in the positive sequences.

o In later stages, if a valid motif is found, it is inserted into the current list ~ ® The user is not restricted to use one of the classifications discussed here,

of motifs, which is sorted according to their frequency in the positive but can define his own classification scheme of amino acid properties.

sequences. If the firdt’ motifs have a frequency higher thdip, then e There is an option to find gapped motifs. The algorithm is easily

Fp is updated to the minimum of thed¢ frequencies. extended to include gaps by splitting the extension operator into two

basic operations: (1) add a top-level candidate to the end of the pattern,

Itis possible that more thaR” motifs have a frequency abové- at the end. and (2) add a gap followed by a top-level candidate to the end of the
In this case, one can either randomly pick motifs with frequeRgyuntil pattern. The program supports gaps of variable length, i.e., the user
K motifs are obtained, or one can output all of them. We opted for the latter provides a maximal gap length, and a gap symbol then denotes any
approach, so that the user has maximal control over the output. number of amino acids betwe&rand L. The maximal number of gap

. . . symbols is also set by the user.
2.3.3 Candidate pruning and testingin order to conduct the search 4 y

efficiently, the algorithm exploits the anti-monotonicity properties of the
frequency constraints. This results in the following rulgsdg(X,Y)
returns the number of proteins in $étthat contain the motifX):

e The program includes a searching tool, which can be used to locate the
discovered motifs’ occurrences in any set of sequences.

2.4 M. incognita dataset

e If a patternM has freq(M, P) < Fp, then we should not consider e first describe how the positive and negative protein sets were constructed.
new candidateg’ that are more specific thak/, since they will have  giatistics about the resulting sets are given in Table 3. Then we explain how
freq(C, P) < Fp, and thus can be discarded. the resulting motifs are evaluated.

e [fapatternM hasfreq(M, N) < Fy, then all new candidates that
are more specific thai/ will have freq(C, N) < Fn, hence we do
not need to count their frequency in the negative set.

2.4.1 Positive set. We constructed a positive set with proteins that are
known to be secreted or likely to be secreted by the nematode into plant root
tissue (Bellafioreet al., 2008; Dinget al., 2000; Dubreuikt al,, 2007; Huang

When checking a candidate’s frequency in the positive set, we make thgt al, 2003; Wanget al, 2007). The data consists of 59 proteins whose

following two observations. First, we only have to check the frequency of
a candidate in case all the candidate’s parents in the lattice have passédThe number of motifs that are frequent in the positive set can be very
the minimal frequency thresholHp. Second, it is not necessary to check large, especially when using amino acid properties. Therefore, memory
the complete set of positive sequences, it suffices to check the sequencesrgquirements can be an issue in breadth-first search.




Postprint
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Bioinformatics, 2011, vol.27, no.9,
DOI: 10.1093/bioinformatics/btr110

Vens et al
Table 3. M. incognitaprotein set statistics. more than 5 motifs, since there are multiple motifs with the cut-
off frequency of 5 (see Section 2.3.2). Second, we notice several
Positive set  Negative set motifs that are very similar. More precisely, mo#fTLLIIS > is
present together with its two parent mo#fJ LLII > and<LLIIS >,
the latter being the most frequent motif in the result. Many pattern
Number of sequences ., 100 459 discovery algorithms restrict their output to a set of closed patterns,
Shortest/longest sequence Ien.gth (residues)  43/902 57/2106 i.e, patterns that do not have any specializations with the same
Average sequence length (residues) 2703 438.8 frequency, and would thus discardTLLII >. Instead, in this
Sequences with signal peptide 57 43 ! : !

work we output the complete set of tdg motifs. The reason is
that our motifs can be used as discriminators to identify unknown
positive sequences. Depending on the application, one might be
more interested in maximizing precision (the proportion of positive
expression in subventral and/or dorsal secretory gland®és shown, 38 predictions that are Correct)l in which case one would prefer to
proteins that have been identified in the secretome of root-knot nematodegge the most specific motifs, or in maximizing recall (also called

and 3 translated EST contigs identified by mass-spectrometry in "emat°d§ensitivity the proportion of positive sequences that are correctly
secretions. The resulting 100 sequences were scanned with SignalP 3 '

S . p?edicted), in which case one would use the most general motifs.

(Emanuelssoret al., 2007) for presence of a potential signal peptide. The . - .
criterion used was detection of a signal peptide with either one of the two .When en_ab“ng the use of a gap position (see Table 4, mlddle),
methods (artificial neural networks or hidden Markov models) integrated inWith @ maximal gap length of 5, we see that teLIIS > motif,
SignalP. In total, 57 sequences have a predicted signal peptide. which was the most frequent pattern in the previous experiment,

) ) ) ~can be extended to the left and to the right without decreasing the
242 Nega_ltlve set.As negative set, we used a series of proteins frequency. Note that th&s threshold has changed from 5 to 7.
encoded by single-copy genes widely conserved throughout evolution. Such In a second set of experiments, we allowed physico-chemical

proteins are very unlikely to be secreted by plant-parasitic nematodes S . . . .
in plants as they are highly conserved in non-parasitic species. Troperties in the motifs, starting with the simple Koolman and Rohm

identify these proteins we ran an all versus all comparison of 7(1996) classification. Table 4 (lower part) shows the results, only the
proteomes Neloidogyne incognita Meloidogyne hapla Brugia malayj  results without gaps are shown. Again, we seehé|lS > motif,
Pristionchus pacificusCaenorhabditis elegansCaenorhabditis briggsae  this time together with a number of degenerate variants.
and Drosophila melanogastgrusing OrthoMCL (Li et al, 2003). We Closer inspection of thezLLIIS> motif and its variants showed
identified 459 groups of conserved proteins present as a single copy in athat they always occur near the start of the protein sequences. This
of the seven different proteomes. We retrieved the corresponding proteins iy consistent with most reported cases in the literature, which state
M. incognitaand checked for the presence of a signal peptide using SignalRhat the signals that control compartment of destination of proteins
We found that 43 out of these 459 proteins bear a predicted signal peptidey ¢ sfien positioned at their N-terminal region. Therefore, in the
;rre;%rt\;: i?]ijir:ttiigihvgI?r:szlr?gsloﬁzpstjigial?;gztizeegawe set avoids b'as"}qext experiment, we searched for motifs specifically in this region.
' We only considered the 30 first positions in this analysis, both

2.4.3 Evaluating motifs. The identified motifs were scanned against for positive and negative sequences. As motifs controlling protein
the proteome oM. incognita (Abad et al, 2008), consisting of 20,359 |gcalization are usually short, we set a maximal motif length of
proteins. Moreover, the genome df. incognita is known to encode a 15 and disabled gaps. Without classification, the motif with the
repertoire of’plant (_:eII wall-degrading proteins. Among these pmtei”s'maximal frequency is<LIIS> (note the slight difference with the
gj:;::g:i E&iﬁ:ﬁﬂg:&gﬁ;og;{)g‘;gsslty E;';ég?ﬁ;':gzzgt(?;’uﬁﬁ)’ previous<LLIIS>), which occurs in 10 positive sequences. When

: ) ! using the more complex RasMol (Sayle and Milner-White, 1995)

2002), and Pectate lyases (Huaegal, 2005) have been shown to be . : . . .
expressed iM. incognitasecretory glands. A total of 16 full length proteins  ¢l@ssification, the maximal motif frequency obtained is 38 (see

bearing a signal peptide and corresponding to these cell waII—degradina-ab!e 5 for an example). When reporting the top 100 motifs, 97
enzymes were identified from the genome annotation and from the literaturdnotifs have a frequency of at least 35, with a total coverage of 68
Half of them were initially included in the positive set, the rest can be usedpositive proteins. Taking a closer look at the coverage, we observed

as a positive control. several things. First, some sequences are covered by almost all
motifs, meaning that there is a lot of overlap between the motifs.
3 DISCUSSION Second, we see that the identified motifs are preferentially found

L . . . in positive proteins bearing a signal-peptide (SP). Since SPs are
31 .Flndln.g proteins secreted into plant tissues bid. present in the negative set, and none of the negatives is covered,

Incognita these motifs do not indicate the SP itself, but a pattern within the SP
Using the datasets described in Section 2.4, we have identifiethat is probably related to secretion in plants. We therefore focused
motifs that are specific to the positive proteins, i.e., we searched fosur analysis on the subset of motifs that cover as many as possible of
motifs that are absent from the negative set by setfingo zerd. the 57 SP-bearing positive proteins, and none of the non-SP-bearing

In a first set of experiments, we searched for the top 5 motifspositives. This subset still contains 66 motifs, covering all but one

without considering physico-chemical properties. Disabling the usef the SP-bearing positives. To reduce this number, we applied a
of gaps resulted in the motifs shown in Table 4 (top). We canheuristic set covering algorithhrto find a small subset of motifs
make two observations from this result. First, the result contains

4 Initially none of the sequences is covered, and we iteratively add a motif
3 In this discussion, we focus on the motifs found by MERCI. For more with maximal score, until the maximal coverage is obtained. The score of
information about running times, refer to Supplementary Section S2. a motif is defined as the sum of the sequence scores of the not-yet-covered




Postprint
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Bioinformatics, 2011, vol.27, no.9,
DOI: 10.1093/bioinformatics/btr110

Identifying Discriminative Classification Based Motifs

Table 4. Motifs found in the secreted proteins. The symb@l/, N) denotes  efficient data structures to represent the string data set (Fischer
a gap of minimal length\/ and maximal lengtiV. The last column denotes et al, 2006; Weese and Schulz, 2008), and avoid the candidate

the frequency of the motifs in the positive proteins. generation approach. However, these techniques are limited to
finding motifs defined over the same alphabet as the sequences.
Classific.  Motif freq(Motif,P) Some form of degenerate motifs can be obtained by searching for

so-called approximate frequent motifs (Ji and Bailey, 2007; Zhu
et al, 2007), meaning that some mismatches are allowed when

None <LLIIS> 8 . .
(o gaps) <E G AG> 6 counting the frequency of a motif.
<ASKY> 5 In the area of mining frequent sequential patterns, often used
<AEGD> 5 in marketing applications where patterns are searched in ordered
<TLLII> 5 lists of transactions, an algorithm is proposed that can integrate
<TLLIIS> 5 user-defined taxonomies in the patterns. GSP (Srikant and Agrawal,
1996) is a candidate generation algorithm, where candidates are
None <Fx(0,5)LI1S> 8 generated by joining frequent sequences of the previous level,
(1 gap) <Fx(©0,5)LLIIS> 8 pruning away sequences that have a non-frequent subsequence. In
<LLIIS> 8 order to incorporate taxonomies, each data sequence is replaced
<LLIISX(0,5) 1> 8 by an extended sequence, by adding all ancestor items to each
+ 5 motifs 7 transaction. It does not exploit the generalization structure inherent
to the search space and does not find discriminative patterns.
Koolman <L L aliphatic | S aliphatic aliphatis 9 Two other pattern discovery approaches allow the user to provide
and Rohm <L L aliphatic | neutral aliphatic aliphatie 9 sets of amino acids, which are considered equivalent. However, they
(no gaps) <:: :_'Islg"phat'c aliphatic- 8 do not search for discriminative motifs. Teiresias (Rigoutsos and
EL aliphati>c 1lS> g Floratos, 1998) uses a convolution technique to generate new motifs

from two smaller motifs. It returns the set of closed patterns that
are frequent in a (positive) set of sequences. The amino acid sets
are introduced without any modification to the algorithm, i.e. no
generalization relation is exploited. The Pratt algorithm (Jonassen,
with the same coverage as the 66 motifs. This procedure egsinlt  1997) uses the concept of a pattern graph to guide the search, and
a subset of 4 motifs, shown in Table 5. uses a mix of specialization and generalization operators to generate
Scanning the complete proteomeMf incognita we found that  candidates. In a first stage, it searches motifs consisting of specific
the 4 motifs cover 2,579 proteins (12% of the genome). A total ofamino acids, and in an optional refinement stage, these motifs are
2,073 of these proteins (80.3%) are predicted to have an SP, whilmade more general by replacing amino acids by the amino acid sets.
only 17% (3,487 out of 20,359) of tHd. incognitaproteins have a However, it can operate in an exhaustive manner as well.
predicted SP. Interestingly, if we only consider the proteins that are Another set of related systems is based on probabilistic models.
covered by at least 2 motifs, then 1106 out of 1162 (95%) have aifhese systems return the discovered motifs as position-specific
SP. The 4 motifs cover 7 out of the 8 cell wall degrading proteinsweight matrices, which specify a score for each residue/position
from the evaluation set. Additionally, using the OrthoMCL analysis pair. This results in degenerate motifs Bypumeratingpossible
performed to construct the set of negatives (see Section 2.4.23lternative residues for each position, in contrastdéscribing
we noticed that 1,817 of the 2,579 proteins are parasite specifiossible alternatives, as in our approach. The enumeration does
i.e., they do not have orthologs i@. elegans C. briggsage D. not take into account any classification. Example systems that find
melanogasterandP. pacificus Given that the complete proteome discriminative motifs are DEME (Redhead and Bailey, 2007), which
contains 12,234 such proteins, the identification of this subset formsses a combination of global and local search to find a single best
an important contribution to the pipeline of experiments necessarynotif, and the widely used MEME software (Bailey and Elkan,
to identify the whole set of candidate effectors. It also introduces1994), which uses an Expectation Maximization algorithm, and
the open question of how these moitifs in the signal peptide regulate/as recently extended to incorporate negative sequences as input

secretion in plants. (Baileyet al,, 2010). However, these algorithms find motifs that are
overrepresenteth the positive andinderrepresenteih the negative
3.2 Related Work set; it is not possible to require total absence from the negatives.

Finally, we mention two logic based methods. Warmr (Két@l.,
B '2001) is an inductive logic programming system searching frequent
we _focus on SV.Ste”?S that leam discriminative and/or degeneratﬁatterns. It can take background knowledge as input, that could
motifs among biological or other.sequer?ces. .. .. beused to represent the DAG. However, the system does not find

AIOt. of resggrch has been.carne.d .OUt in frequent or discriminative iscriminative patterns and, since it was not specifically designed
substring mining. Most string mining approaches make use OEor sequences, requires complex data formatting and language bias
descriptions from the user. MineSeqlog (Lee and De Raedt, 2004)

sequences it covers, where each sequence is scored by theeimfgthe IS @ system for mining discriminative logical sequences. It finds
number of motifs present in the sequence. This ensures that sequences tRa@tifs by applying a frequent subsequence mining algorithm twice:
are covered by few motifs have a high score. In case of multiple motifs withonce to find the set of most specific patterns that are frequent in the
the highest score, the one with the shortest length is taken. positive sequences, and once to find the most specific patterns that

A large body of literature in the area of motif discovery exists. Here
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Table 5. Motifs at N-terminal using RasMol’s classification. The last column denotes the frequency of the motifs in the positive proteins.

Motif freq(Motif,P)

<neutral buried neutral large buried neutral neutral neutral hydrophobic hydrophobic neutral acyclic acyclic acyclie buried 38
<large hydrophobic neutral buried neutral neutral buried buried neutral acyclic acyclic hydrophobic neutral acyclic-acyclic 35

<hydrophobic neutral buried acyclic neutral neutral neutral buried neutral large neutral acyclic neutral polaracyclic 35
<neutral neutral L buried hydrophobic buried neutral hydrophobic neutral neutral acyclic peutral 35
Table 6. Motifs found using MERCI. Table 7. Motifs found using Pratt.
Motif freq(Motif,P) Motif freg(Moatif,P)
<L L aliph | S x(0,2) aliph aliph- 10 <L L aliph aliph neutr aliph aliph x(0,2) aliph x(2)& 12
<L L aliph aliph neutral aliph x(0,2) & 10 <L L aliph aliph neutr aliph x(0,2) aliph aliph x(2)& 12
<L aliph aliph aliph neutral L x(0,2) aliph alipk 10 <LLx(1) 1S x(1) aliph x(0,2) aliph x(2) & 10
<L L aliph x(1) neutr aliph aliph x(0,2) aliph x(1) neutrE 10
<L aliph aliph aliph x(1) aliph I x(0,2) aliph x(1) neutr& 10

are frequent in the negative sequences. The resulting psittee
those that are more general than the former set and more specific

than the latter set. The double application of the frequent patterfime limitthat comes with the web version of Teiresias. Sisipgly,
miner results in a less efficient approach. the three motifs found by MERCI are not in Teiresias’s output list.

The reason is that MERCI uses variable length gaps, while Teiresias
. does not. For instance, the second MERCI motif occurs 3 times with

3.3 Comparison a gap length of 0, 5 times with a gap length of 1, and 2 times with
We have compared the output of MERCI to four methods from thea gap length of 2. Thus, Teiresias would need 3 motifs to represent
related work section, that also output degenerate motifs. We appliethis motif, and these motifs would have a frequency of 3, 5, and 2.
each method to identify motifs corresponding as much as possible
to a common set-up: we used the amino acid properties based a13.3 Pratt. Pratt also has a single input set of proteins. We set
the Koolman and Rohm (1996) classification, allowed at most 1 gaghe maximal gap length to 2 and allowed a single variable length
of maximal length 2, required a minimal occurrence in the positivesgap. We required Pratt to perform exhaustive search, in order to
of 10% and absence from the negative set. We looked for the 1bhaximize the output similarity to MERCI, which also performs
best motifs with these constraints. Parameters that are not discussgf exhaustive search. Pratt scores patterns based on information
were left to their default value. The systems MERCI, Pratt, andcontent. We considered the 10 best patterns, and counted their
DEME were installed and run locally, thus we can also comparefrequency in the negative sequences. Only half of the patterns are
their running times (run on an Intel Q9400 2.66GHz processor).  apsent from the negative sequences, they are shown in Table 7, and

are very similar to the patterns found by MERCI. The reason why
3.3.1 MERCI. Using MERCI with the above settings, we found there are more patterns and they have a larger frequency is that Pratt
3 motifs, see Table 6. These are the only motifs (with a single gapalso introduces fixed length gaps, exg2), and their number can
that occur in at least 10 positive sequences, and do not occur in anyot be restricted by the user. The running time required by Pratt was
negatives, and hence can be used as a reference. The running tira&66 seconds, which is more than 20 times slower than MERCI.
of MERCI was 119 seconds.

3.3.4 MEME. The web version of the MEME software does
3.3.2 Teiresias. As Teiresias can not take a negative set as inputallow to give a negative sequence set as input. However, in contrast
we only used the positive sequences. The maximum gap length of @ the previous systems, MEME does not allow the use of a specific
was simulated by setting parametdrs= 2 andIW = 4. We used  classification scheme, nor does it use gaps. We usezbtiies(zero
the seqversion, and applied equivalence based pattern discovergr one per sequence) motif distribution, set the motif width between
with the equivalence sets based on the Koolman and Rohm (199&) and 50, and let MEME search for 10 motifs. In the result, 3
classification. Even though Teiresias only reports closed patternsnotifs have are-value less than 1. The top scoring motif is very
the result set contains 328,135 motifs. Many of the reported motifsimilar to our LLI1S-type motifs. The corresponding motif logo
are overly general, e.g<aliphatic x(1) x(1) aliphatic- (where is shown in Figure 3. This motif was input to the corresponding
z(1) denotes a fixed gap of one position), which occurs in allmotif occurrence locator program FIMO to search for occurrences
positive sequences, but also in all negative sequences. Calculatimg both positive and negative sequence sets. Using the default
a significance score could not be performed within the executiorsignificance threshold, the motif was found in 32 positive sequences,
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method is currently available to identify discriminative motifs that
are degenerated according to a classification scheme.
¢ Our tool was used to discover motifs specific to root-knot
T nematode proteins that are secreted into plant tissues. We showed
!K that by allowing properties in the motifs, we are able to find motifs

i s . . . - : NSRS
N A eoe. s with a higher frequency in a positive set of proteins, while still being
T T e absent from a negative set. Using a set of 4 identified motifs as
discriminators, we detected a total of 2,579 proteins in the proteome
Fig. 3. Top motif found by MEME. of M. incognitathat can be considered as new putative effectors.

We have compared the motifs discovered by our tool to the result
of four other tools that find degenerate motifs. We conclude that our
tool is the only one that finds a set of motifs using predefined amino
acid classes, that is completely absent from the negative set.

Table 8. Motifs found using DEME.

Motif (consensus) freq(Motif,P)  freq(Motif,N) While we have focused on finding protein motifs, the tool can
be used on any kind of sequence dataset, with any kind of research
<KGEGDA> 38 3 question for which a positive and negative set can be defined.
<LFIISLIG> 54 2
<LLHISLIAPN> 59 2
ACKNOWLEDGEMENT

The authors would like to thank Hendrik Blockeel and Siegfried
Nijssen for making valuable suggestions w.r.t. the algorithm.
but also in 36 negative sequences. We conclude that, while FIEM
allows negative sequences, it should not be used to search féinding This work was supported by the Research Foundation,
discriminating motifs. In fact, MEME and MERCI have different Flanders (FWO-Vlaanderen) through a postdoctoral grant to C.V.
target applications. While MERCI searches for motifs that can be
used directly as a discriminator when classifying new sequences,
MEME searches for motifs that describe a set of sequences. F
instance, if the application is to find motifs shared by orthologous%EFERENCES
proteins, then it can help to include a negative set to guide the seardpad: P., Gouzy, J., Aury, J., and et al. (2008). Genome sequence of the metazoan

L : o . plant-parasitic nematode Meloidogyne incogniteat Biotechnal26(8), 909-915.
towards SImelcam motifs, while it is allowed that some negatlveAgrawad, R. and Srikant, R. (1995). Mining sequential pattern®?rbteedings of the

sequences also contain the motif. Eleventh International Conference on Data Engineeripages 3—14, Washington,
DC, USA. IEEE Computer Society.

3 DEME. DEME r r inale motif. with a width aiven Agrios, G. (1997) Plant pathology Academic Press, San Diego USA.
3.3.5 eports a single motif, with a width give Bailey, T. and Elkan, C. (1994). Fitting a mixture model by expectation maximization

by the user. Again, g.a.lps are not supported, and no CI§SS|f|cat|on to discover motifs in biopolymers. IRroceedings of the Second International
scheme can be specified. We have searched for a motif of length conference on Intelligent Systems for Molecular Biolqmges 28-36. AAAI Press.
6, 8, and 10, respectively. The consensus sequences, together witiley, T., Bodn, M., Whitington, T., and Machanick, P. (2010). The value of position-

their frequencies (as calculated by applying a threshold of 0.5 on the specic priors in motif discovery using MEMBMC Bioinformatics11(1), 179.
resultin robabilities. see Redhead and Baile (2007)) are given iﬁellaﬁore, S., Shen, Z., Rosso, M., Abad, P., Shih, P., and Briggs, S. (2008). Direct
gp ! Yy g identification of the Meloidogyne incognita secretome reveals proteins with host cell

Table 8. The running times required to obtain these motifs were 972, reprogramming potentiaPLoS Pathogd(10), e1000192.
1,032, and 1,069 seconds, respectively, resulting in a total runningéra-Maillet, C., Arthaud, L., Abad, P, and Rosso, M. (2000). Biochemical
time that is 25 times as high as MERCI'’s running time. DEME finds characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot

motifs th re hiahlv fr ntin th itiv nd infr ntin nematode Meloidogyne incognit&ur J Biochem267(11), 3255-3263.
otifs that are highly frequent in the positive set, and equent ing, X., Shields, J., Allen, R., and Hussey, R. (2000). Molecular cloning and

the negative set, and therefore gives more useful results for our tas characterisation of a venom allergen AG5-like cDNA from Meloidogyne incognita.
than MEME. However, the motifs are still present in the negative intJ Parasitol 30(1), 77-81.
sequences, and we believe the fixed motif width is an importanPubreuil, G., Magliano, M., Deleury, E., Abad, P., and Rosso, M. (2007).
drawback. Transcriptome analysis of root-knot nematode functions induced in the early stages
of parasitism.New Phytol176(2), 426-436.
Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating proteins
in the cell using TargetP, SignalP and related toblature Protocols2, 953-971.
Fischer, J., Heun, V., and Kramer, S. (2006). Optimal string mining under frequency
4 CONCLUSION constraints. InProceedings of the 10th European Conference on Principles and

We pr n alaorithm for -novoidentifi ion of or in Practice of Knowledge Discovery in Databaspages 542-578. Springer Verlag.
€ propose an aigo L or thge-novoidentification o P ote Huang, G., Gao, B., Maier, T., Allen, R., Davis, E., Baum, T., and Hussey, R. (2003).

motifs specific to a set of proteins. The motifs are not restricted to a A profile of putative parasitism genes expressed in the esophageal gland cells of the
sequence of specific amino acids, but can involve physico-chemical root-knot nematode M. incognitaol Plant Microbe Interact16(5), 376-381.
amino acid properties. The algorithm combines a variety of existingHuang, G., Dong, R., Allen, R., Davis, E., Baum, T., and Hussey, R. (2005).
and new algorithmic contributions into a practical tool, that is freely Developmental expression ar_1d molecular analysis of two Meloidogyne incognita
available, and is able to include user defined amino acid propertie pectate lyase genefit J Parasitol 35(6), 685-692.

! . %aubert, S., Laffaire, J., Abad, P., and Rosso, M. (2002). A polygalacturonase of animal
We provide additional software to scan sequence databases for origin isolated from the root-knot nematode Meloidogyne incognF&BS Lett

the occurrence of the identified motifs. To our knowledge, no 5221-3), 109-112.




Postprint
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Bioinformatics, 2011, vol.27, no.9,
DOI: 10.1093/bioinformatics/btr110

Vens et al

Ji, X. and Bailey, J. (2007). An efficient technique for minygproximately frequent  Rigoutsos, I. and Floratos, A. (1998). Combinatorial pattern discovery in biological
substring patterns. IRroceedings of the Seventh IEEE International Conference on  sequences: the TEIRESIAS algorithBioinformatics 14(1), 55-67.

Data Mining Workshopspages 325-330. IEEE Computer Society. Rosso, M., Favery, B., Piotte, C., Arthaud, L., De Boer, J., Hussey, R., Bakker,
Jonassen, |. (1997). Efficient discovery of conserved patterns using a pattern graph. J., Baum, T., and Abad, P. (1999). Isolation of a cDNA encoding a beta-1,4-

CABIOS 13(5), 509-522. endoglucanase in the root-knot nematode Meloidogyne incognita and expression
King, R. D., Srinivasan, A., and Dehaspe, L. (2001). Warmr: a data mining tool for  analysis during plant parasitisriviol Plant Microbe Interact12(7), 585-591.

chemical dataJournal of Computer-Aided Molecular Desigtf(2), 173—-181. Sayle, R. and Milner-White, E. (1995). RasMol: Biomolecular graphics forTaéinds
Koolman, J. and Rohm, K. (1996Lolour Atlas of BiochemistryThieme, Stuttgart. in Biochemical Science20(9), 374.

Ledger, T., Jaubert, S., Bosselut, N., Abad, P., and Rosso, M. (2006). Characterizatid®rikant, R. and Agrawal, R. (1996). Mining sequential patterns: Generalizations and
of a new beta-1,4-endoglucanase gene from the root-knot nematode Meloidogyne performance improvements. Rroceedings of the 5th International Conference on
incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases. Extending Database Technologyages 3—17. Springer-Verlag.

Gene 382 121-128. Wang, X., Li, H., Hu, Y., Fu, P., and Xu, J. (2007). Molecular cloning and analysis of
Lee, S. and De Raedt, L. (2004). Constraint based mining of first order sequences a new venom allergen-like protein gene from the root-knot nematode Meloidogyne

in SeqlLog. InDatabase Support for Data Mining Applicatignsages 155-176. incognita. Exp Parasito) 117(2), 133-140.

Springer-Verlag. Weese, D. and Schulz, M. (2008). Efficient string mining under constraints via the
Li, L., Stoeckert, C., and Roos, D. (2003). OrthoMCL: identification of ortholog groups  deferred frequency index. IRroceedings of the 8th industrial conference on

for eukaryotic genomeszenome Red43, 2178-2189. Advances in Data Mining: Medical Applications, E-Commerce, Marketing, and

Mitreva-Dautova, M., Roze, E., Overmars, H., de Graaff, L., Schots, A., Helder, J., Theoretical Aspecipages 374-388. Springer.
Goverse, A., Bakker, J., and Smant, G. (2006). A symbiont-independent endo-1,4Zaki, M. J. (1998). Efficient enumeration of frequent sequences. 7ttn ACM

beta-xylanase from the plant-parasitic nematode Meloidogyne incoghitaPlant International Conference on Information and Knowledge Management

Microbe Interact 19(5), 521-529. Zhu, F, Yan, X., Han, J., and Yu, P. S. (2007). Efficient discovery of frequent
Opperman, C., Bird, D., Williamson, V., and et al. (2008). Sequence and genetic map approximate sequential patterns. Rroceedings of the 2007 Seventh IEEE

of Meloidogyne hapla: A compact nematode genome for plant parasfiss.Natl International Conference on Data Miningages 751-756. IEEE Computer Society.

Acad Sci U S A105(39), 14802-14807.
Redhead, E. and Bailey, T. (2007). Discriminative motif discovery in DNA and protein
sequences using the DEME algorithBMC Bioinformatics8, 385.




