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ABSTRACT
Motivation: Identification of conserved motifs in biological sequences
is crucial to unveil common shared functions. Many tools exist for
motif identification, including some that allow degenerate positions
with multiple possible nucleotides or amino acids. Most efficient
methods available today search conserved motifs in a set of
sequences, but do not check for their specificity regarding to a set
of negative sequences.
Results: We present a tool to identify degenerate motifs, based
on a given classification of amino acids according to their physico-
chemical properties. It returns the top K motifs that are most frequent
in a positive set of sequences involved in a biological process of
interest, and absent from a negative set. Thus, our method discovers
discriminative motifs in biological sequences that may be used to
identify new sequences involved in the same process. We used this
tool to identify candidate effector proteins secreted into plant tissues
by the root knot nematode Meloidogyne incognita. Our tool identified
a series of motifs specifically present in a positive set of known
effectors while totally absent from a negative set of evolutionarily
conserved housekeeping proteins. Scanning the proteome of M.
incognita, we detected 2,579 proteins that contain these specific
motifs and can be considered as new putative effectors.
Availability and Implementation: The motif discovery tool
and the proteins used in the experiments are available at
http://dtai.cs.kuleuven.be/ml/systems/merci.
Contact: celine.vens@cs.kuleuven.be

1 INTRODUCTION
Conserved motifs in biological sequences reflect functionally
important shared features. In genome sequences, conserved motifs
can point to promoters or regulatory elements, regions of splice
junctions between protein-coding exons or regions affecting the
shape of the chromatin. In protein sequences, such conserved motifs
can highlight signals that are important for controlling the cellular
localization (e.g. nucleus, cytoplasm, extracellular compartment),
regions shared between proteins that interact with a same partner or
regions important for the biochemical function itself.

∗to whom correspondence should be addressed

Physico-chemical properties and three-dimensional structures
of proteins are more conserved than the suite of amino-acids
itself. Thus, at a given position in a protein sequence, different
amino-acids may have similar structural or physico-chemical roles.
Degenerate motifs allowing multiple possible amino-acids at one
position are necessary to comply with this variability. Several
methods allow for discovery of degenerate motifs (Bailey and Elkan,
1994; Ji and Bailey, 2007), but few of them take into account
similarity in terms of physico-chemical properties of amino acids
at a given position (Jonassen, 1997; Rigoutsos and Floratos, 1998).

When the purpose of the obtained motifs is to scan large
datasets (e.g. genomes, proteomes) in order to find new sequences
potentially involved in the same biological process, another relevant
point in the motif discovery is the specificity of the identified
motifs regarding the biological process. Some systems make use
of statistics to attach a measure of significance to each of the
discovered patterns, as deduced from a model based on the input
sequences or a public sequence database (Bailey and Elkan, 1994;
Jonassen, 1997; Rigoutsos and Floratos, 1998). For many biological
applications, however, a negative set of sequences not involved in
the process of interest can be compiled, and this set can be used
as a more direct way to evaluate the relevance of the motifs. While
several motif discovery processes take into consideration a negative
sequence set (Redhead and Bailey, 2007; Baileyet al., 2010), this
set is often used to guide the search towards motifs over-represented
in the positive sequences, rather than discriminating motifs.

In this article, we propose a method that identifies motifs
consisting of specific amino acids and physico-chemical properties,
that can be used as discriminators to identify new sequences
involved in a biological process of interest. To our knowledge, no
motif discovery method exists that combines these two features. Our
method outputs the topK motifs that are most frequent in a positive
set of proteins and are absent from a negative set of proteins.

We applied this method to find motifs in root-knot nematode
effectors. Root-knot nematodes are the most damaging plant-
parasitic animals to the agriculture worldwide, causing billions of
euro losses every year (Agrios, 1997). They have sophisticated
interactions with plants that include penetration of root tissue and
establishment of a feeding site. A set of effector proteins that are
secreted by the nematode into plant tissue is believed to be crucial
for these processes. Most known effectors to date are expressed in

c© Oxford University Press 2010. 1
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 Vens et al

Table 1. Koolman and Rohm (1996) amino acid classification.

Property Amino acids Property Amino acids

aliphatic A,G,I,L,V neutral S,T,N,Q
sulfur containing C,M acidic D,E
aromatic F,Y,W basic R,H,K
cyclic P

nematode secretory glands and delivered to plant tissue through a
syringe-like stylet. With the availability of two annotated genome
sequences for root knot nematodes (Abadet al., 2008; Opperman
et al., 2008), identifying the whole set of candidate secreted
effectors can now be envisioned. Although many effectors possess
a signal peptide for secretion, others clearly present in secretory
glands and/or nematode secretions have no predicted signal peptide
(Bellafioreet al., 2008; Jaubertet al., 2002). Similarly, many root-
knot nematode proteins bearing a signal peptide are not delivered to
the plant but have conserved functions in different species. Hence,
the presence of a signal peptide can not be used as a discriminator to
identify new effectors, and no reliable motif to predict secretion of a
nematode protein in plants is currently available. We constructed a
positive set of proteins known to be secreted by root-knot nematodes
into plant tissue and a negative set of evolutionarily conserved
proteins, in order to identify specific motifs in positive proteins.
Using these datasets, our method identified a set of effector-specific
motifs at the N-terminal region of the positive proteins.

2 METHODS

2.1 Classification schemes
Several amino acid classifications group amino acids according to their
physico-chemical properties. In this work, we consider two classification
schemes. The first one was proposed by Koolman and Rohm (1996). It
contains 7 non-overlapping properties, see Table 1. The second one is
RasMol’s classification (Sayle and Milner-White, 1995), which is much
larger, see Table 2. It contains 15 classes1, with a lot of overlap.

We can view the classification schemes as directed acyclic graphs (DAGs)
representing the superclass relationship. In its simplest way, the DAG
contains two levels: the classes and the amino acids. However, a closer look
at the latter classification scheme can introduce more structure and levels.
For instance, allbasicamino acids arechargedand large, and allcharged
amino acids arepolar andsurface.

2.2 Formal Task Description
We define the task of identifying the topK discriminative protein motifs
with amino acid properties as follows:

Given: (1) a set of positive proteinsP and a set of negative proteinsN , (2) a
parameterK, and (3) a set of amino acid propertiesC and a partial order�
(structured as a DAG) defined on the union ofC and the amino acid alphabet
A. For all c1, c2 ∈ C ∪ A: c1 � c2 if and only if there is a directed path
from c1 to c2 in the DAG.

1 We have discarded the classespositive and negative, since they are
equivalent toacidic andbasic. We also changed the classification ofH: we
only classify it asbasic, instead of both asbasicandneutral.

Table 2. RasMol’s classification of amino acids
(Sayle and Milner-White, 1995).

Property Amino acids

acidic D,E
acyclic A,R,N,D,C,E,Q,G,I,L,K,M,S,T,V
aliphatic A,G,I,L,V
aromatic H,F,W,Y
basic R,H,K
buried A,C,I,L,M,F,W,V
charged D,E,R,H,K
cyclic H,F,P,W,Y
hydrophobic A,G,I,L,M,F,P,W,Y,V
large R,E,Q,H,I,L,K,M,F,W,Y
medium N,D,C,P,T,V
neutral A,N,C,Q,G,I,L,M,F,P,S,T,W,Y,V
polar R,N,D,C,E,Q,H,K,S,T
small A,G,S
surface R,N,D,E,Q,G,H,K,P,S,T,Y

Find: the set ofK motifs, using symbols inC ∪ A, that are maximally
frequent inP and are absent from (or infrequent in, see Section 2.3.2)N .

2.3 Algorithm
The algorithm we propose is based on the well-known candidate generation
principle, introduced in sequential pattern mining by the AprioriAll
algorithm (Agrawal and Srikant, 1995). At each iteration, a set of candidate
patterns is generated, whose frequency is tested. In order to search
for discriminative patterns, we change the basic algorithm, such that
it essentially looks for those patterns that are frequent in the positive
sequences, and meanwhile tests if they are absent from the negative
sequences. In order to include physico-chemical properties of the amino acid
residues, we extend the candidate generation step. In the next sections, we
describe the different steps of the algorithm.

2.3.1 Candidate generation.In order to perform a complete and
efficient search, it is important that each relevant candidate is generated,
and that no candidate is generated more than once. To achieve this, most
candidate generation algorithms structure the search space as a lattice
representing a general-to-specific structure. Generating candidates then
comes down to traversing the lattice, thereby pruning as much as possible.

We follow the same approach and consider a pattern<p1, p2, p3, ..., pn>

more general than another pattern<q1, q2, q3, ..., qm>, if and only if
n ≤ m and for each pair(pi, qi) it holds thatpi � qi. Our candidate
generation method traverses the lattice from general to specific, which is
done by starting with an artificial root element that denotes the empty pattern,
and at each step performing two basic operations to generate minimally
specialized new candidates given a pattern: (1) add a top-level element of
the DAG (extension), and (2) minimally specialize an element of the pattern
(specialization).

In order to ensure that no pattern is considered more than once, we only
add elements to the end of the pattern, and only specialize the last element in
the pattern. We transform the DAG into a tree in a preprocessing step, such
that only one path leads to each amino acid. This is trivially fulfilled for the
Koolman and Rohm classification. A possible spanning tree for the hierarchy
by Sayle and Milner-White is shown in Fig. 1. The specialization operator is
performed by replacing the last element in the pattern by each of its children
in this tree. The candidate generation process is illustrated in Figure 2.

2
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 Identifying Discriminative Classification Based Motifs
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Fig. 1. Spanning tree for the classification of Sayle and Milner-White
(1995).

[]

... [polar]

[polar neutral] ... [polar medium] [charged]

[charged neutral] ... [charged medium] [basic] [acidic]

[Q] [S]

[medium]

Fig. 2. Candidate generation using the amino acid classification of Sayle
and Milner-White (1995) and the spanning tree of Fig. 1.

2.3.2 Finding the topK motifs. We introduce two parameters,FP

and FN , which denote the minimal frequency threshold for the positive
sequences, and the maximal frequency threshold for the negative sequences,
respectively. By default,FN is set to zero, and motifs are searched that
are absent from the negative set. However, since for some applications,
constructing a pure negative set can be difficult, settingFN to a higher value
can be useful. The parameterFP defines the threshold above which motifs
are retained. Initially it is set to one or to a user defined value, and it increases
throughout the execution of the algorithm:

• Initially, after findingK motifs, FP is updated to the minimum of the
frequencies of thoseK motifs in the positive sequences.

• In later stages, if a valid motif is found, it is inserted into the current list
of motifs, which is sorted according to their frequency in the positive
sequences. If the firstK motifs have a frequency higher thanFP , then
FP is updated to the minimum of theseK frequencies.

It is possible that more thanK motifs have a frequency aboveFP at the end.
In this case, one can either randomly pick motifs with frequencyFP until
K motifs are obtained, or one can output all of them. We opted for the latter
approach, so that the user has maximal control over the output.

2.3.3 Candidate pruning and testing.In order to conduct the search
efficiently, the algorithm exploits the anti-monotonicity properties of the
frequency constraints. This results in the following rules (freq(X, Y )
returns the number of proteins in setY that contain the motifX):

• If a patternM hasfreq(M, P ) ≤ FP , then we should not consider
new candidatesC that are more specific thanM , since they will have
freq(C, P ) ≤ FP , and thus can be discarded.

• If a patternM hasfreq(M, N) ≤ FN , then all new candidatesC that
are more specific thanM will have freq(C, N) ≤ FN , hence we do
not need to count their frequency in the negative set.

When checking a candidate’s frequency in the positive set, we make the
following two observations. First, we only have to check the frequency of
a candidate in case all the candidate’s parents in the lattice have passed
the minimal frequency thresholdFP . Second, it is not necessary to check
the complete set of positive sequences, it suffices to check the sequences in

which the parents are present. Therefore, we adopt a vertical id-list dataset
format (Zaki, 1998), where we associate to each pattern a list of (positive)
sequence IDs in which it occurs. Before testing the frequency of a candidate,
we check whether its parents are frequent, and if yes, intersect their sequence
ID lists. Only the sequences in the intersection are checked for presence of
the pattern. If the pattern passes the minimal frequency constraint, we store
it together with the sequences in which it occurs.

When a candidate has been found frequent in the positive set, we test its
frequency in the negative set. As mentioned above, if a candidate’s parent
was infrequent in the negative set, we can output this candidate as a valid
motif without any testing. In the other case, we iterate over the negatives,
counting hits, and stop searching if the maximal frequencyFN is reached.
Note that, if the maximal frequency condition is not met, we still have to
keep the candidate for further processing, because the maximal frequency
condition can become true for any of the new candidates generated from it.

2.3.4 Organization of the search.The search space lattice can be
traversed using several search strategies, a.o. depth-first and breadth-first
search. We opt for the former, since it requires less main memory: it
only needs to keep sequence id lists for candidates along a single path2.
This implies that pruning (checking whether the parents are frequent and
intersecting their sequence id lists) can not be performed using all parents
of a candidate. Therefore, we perform pruning only using the minimal
generalizations of the last element of the pattern as parents (removing the
last element if it corresponds to the highest level in the DAG).

In order to perform pruning correctly, we have to make sure that all
considered parents have been tested before a pattern is tested, i.e. the
spanning tree of the amino acids and their properties has to be constructed
in a way that, in depth-first traversal, all DAG parents of a node are visited
before the node itself. The tree shown in Figure 1 fulfills this constraint.

2.3.5 Implementation.We provide a Perl implementation of the
proposed algorithm, called MERCI (Motif - EmeRging and with Classes -
Identification), at http://dtai.cs.kuleuven.be/ml/systems/merci. Pseudo code
is given in Supplementary Table S1. Counting frequencies is done by Perl’s
pattern matching operator, using regular expressions to represent classes.
The implementation provides the following additional features:

• The user is not restricted to use one of the classifications discussed here,
but can define his own classification scheme of amino acid properties.

• There is an option to find gapped motifs. The algorithm is easily
extended to include gaps by splitting the extension operator into two
basic operations: (1) add a top-level candidate to the end of the pattern,
and (2) add a gap followed by a top-level candidate to the end of the
pattern. The program supports gaps of variable length, i.e., the user
provides a maximal gap lengthL, and a gap symbol then denotes any
number of amino acids between0 andL. The maximal number of gap
symbols is also set by the user.

• The program includes a searching tool, which can be used to locate the
discovered motifs’ occurrences in any set of sequences.

2.4 M. incognita dataset
We first describe how the positive and negative protein sets were constructed.
Statistics about the resulting sets are given in Table 3. Then we explain how
the resulting motifs are evaluated.

2.4.1 Positive set. We constructed a positive set with proteins that are
known to be secreted or likely to be secreted by the nematode into plant root
tissue (Bellafioreet al., 2008; Dinget al., 2000; Dubreuilet al., 2007; Huang
et al., 2003; Wanget al., 2007). The data consists of 59 proteins whose

2 The number of motifs that are frequent in the positive set can be very
large, especially when using amino acid properties. Therefore, memory
requirements can be an issue in breadth-first search.

3
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Table 3. M. incognitaprotein set statistics.

Positive set Negative set

Number of sequences 100 459
Shortest/longest sequence length (residues) 43/902 57/2106
Average sequence length (residues) 270.3 438.8
Sequences with signal peptide 57 43

expression in subventral and/or dorsal secretory glands hasbeen shown, 38
proteins that have been identified in the secretome of root-knot nematodes,
and 3 translated EST contigs identified by mass-spectrometry in nematode
secretions. The resulting 100 sequences were scanned with SignalP 3.0
(Emanuelssonet al., 2007) for presence of a potential signal peptide. The
criterion used was detection of a signal peptide with either one of the two
methods (artificial neural networks or hidden Markov models) integrated in
SignalP. In total, 57 sequences have a predicted signal peptide.

2.4.2 Negative set.As negative set, we used a series of proteins
encoded by single-copy genes widely conserved throughout evolution. Such
proteins are very unlikely to be secreted by plant-parasitic nematodes
in plants as they are highly conserved in non-parasitic species. To
identify these proteins we ran an all versus all comparison of 7
proteomes (Meloidogyne incognita, Meloidogyne hapla, Brugia malayi,
Pristionchus pacificus, Caenorhabditis elegans, Caenorhabditis briggsae,
and Drosophila melanogaster) using OrthoMCL (Li et al., 2003). We
identified 459 groups of conserved proteins present as a single copy in all
of the seven different proteomes. We retrieved the corresponding proteins in
M. incognitaand checked for the presence of a signal peptide using SignalP.
We found that 43 out of these 459 proteins bear a predicted signal peptide.
Presence of proteins with a signal peptide in the negative set avoids biasing
for motifs indicating the presence of a signal peptide.

2.4.3 Evaluating motifs. The identified motifs were scanned against
the proteome ofM. incognita (Abad et al., 2008), consisting of 20,359
proteins. Moreover, the genome ofM. incognita is known to encode a
repertoire of plant cell wall-degrading proteins. Among these proteins,
Cellulases (Béra-Mailletet al., 2000; Ledgeret al., 2006; Rossoet al., 1999),
Xylanases (Mitreva-Dautovaet al., 2006), Polygalacturonases (Jaubertet al.,
2002), and Pectate lyases (Huanget al., 2005) have been shown to be
expressed inM. incognitasecretory glands. A total of 16 full length proteins
bearing a signal peptide and corresponding to these cell wall-degrading
enzymes were identified from the genome annotation and from the literature.
Half of them were initially included in the positive set, the rest can be used
as a positive control.

3 DISCUSSION

3.1 Finding proteins secreted into plant tissues byM.
incognita

Using the datasets described in Section 2.4, we have identified
motifs that are specific to the positive proteins, i.e., we searched for
motifs that are absent from the negative set by settingFN to zero3.

In a first set of experiments, we searched for the top 5 motifs,
without considering physico-chemical properties. Disabling the use
of gaps resulted in the motifs shown in Table 4 (top). We can
make two observations from this result. First, the result contains

3 In this discussion, we focus on the motifs found by MERCI. For more
information about running times, refer to Supplementary Section S2.

more than 5 motifs, since there are multiple motifs with the cut-
off frequency of 5 (see Section 2.3.2). Second, we notice several
motifs that are very similar. More precisely, motif<TLLIIS> is
present together with its two parent motifs<TLLII > and<LLIIS>,
the latter being the most frequent motif in the result. Many pattern
discovery algorithms restrict their output to a set of closed patterns,
i.e, patterns that do not have any specializations with the same
frequency, and would thus discard<TLLII >. Instead, in this
work we output the complete set of topK motifs. The reason is
that our motifs can be used as discriminators to identify unknown
positive sequences. Depending on the application, one might be
more interested in maximizing precision (the proportion of positive
predictions that are correct), in which case one would prefer to
use the most specific motifs, or in maximizing recall (also called
sensitivity, the proportion of positive sequences that are correctly
predicted), in which case one would use the most general motifs.

When enabling the use of a gap position (see Table 4, middle),
with a maximal gap length of 5, we see that the<LLIIS> motif,
which was the most frequent pattern in the previous experiment,
can be extended to the left and to the right without decreasing the
frequency. Note that theFP threshold has changed from 5 to 7.

In a second set of experiments, we allowed physico-chemical
properties in the motifs, starting with the simple Koolman and Rohm
(1996) classification. Table 4 (lower part) shows the results, only the
results without gaps are shown. Again, we see the<LLIIS> motif,
this time together with a number of degenerate variants.

Closer inspection of the<LLIIS> motif and its variants showed
that they always occur near the start of the protein sequences. This
is consistent with most reported cases in the literature, which state
that the signals that control compartment of destination of proteins
are often positioned at their N-terminal region. Therefore, in the
next experiment, we searched for motifs specifically in this region.
We only considered the 30 first positions in this analysis, both
for positive and negative sequences. As motifs controlling protein
localization are usually short, we set a maximal motif length of
15, and disabled gaps. Without classification, the motif with the
maximal frequency is<LIIS> (note the slight difference with the
previous<LLIIS>), which occurs in 10 positive sequences. When
using the more complex RasMol (Sayle and Milner-White, 1995)
classification, the maximal motif frequency obtained is 38 (see
Table 5 for an example). When reporting the top 100 motifs, 97
motifs have a frequency of at least 35, with a total coverage of 68
positive proteins. Taking a closer look at the coverage, we observed
several things. First, some sequences are covered by almost all
motifs, meaning that there is a lot of overlap between the motifs.
Second, we see that the identified motifs are preferentially found
in positive proteins bearing a signal-peptide (SP). Since SPs are
present in the negative set, and none of the negatives is covered,
these motifs do not indicate the SP itself, but a pattern within the SP
that is probably related to secretion in plants. We therefore focused
our analysis on the subset of motifs that cover as many as possible of
the 57 SP-bearing positive proteins, and none of the non-SP-bearing
positives. This subset still contains 66 motifs, covering all but one
of the SP-bearing positives. To reduce this number, we applied a
heuristic set covering algorithm4 to find a small subset of motifs

4 Initially none of the sequences is covered, and we iteratively add a motif
with maximal score, until the maximal coverage is obtained. The score of
a motif is defined as the sum of the sequence scores of the not-yet-covered

4
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Table 4. Motifs found in the secreted proteins. The symbolx(M, N) denotes
a gap of minimal lengthM and maximal lengthN . The last column denotes
the frequency of the motifs in the positive proteins.

Classific. Motif freq(Motif,P)

None <L L I I S> 8
(no gaps) <E G A G> 6

<A S K Y> 5
<A E G D> 5
<T L L I I > 5
<T L L I I S> 5

None <F x(0,5) L I I S> 8
(1 gap) <F x(0,5) L L I I S> 8

<L L I I S> 8
<L L I I S x(0,5) I> 8
+ 5 motifs 7

Koolman <L L aliphatic I S aliphatic aliphatic> 9
and Rohm <L L aliphatic I neutral aliphatic aliphatic> 9
(no gaps) <L I I S aliphatic aliphatic> 8

<L L I I S> 8
<L aliphatic I I S> 8

with the same coverage as the 66 motifs. This procedure resulted in
a subset of 4 motifs, shown in Table 5.

Scanning the complete proteome ofM. incognita, we found that
the 4 motifs cover 2,579 proteins (12% of the genome). A total of
2,073 of these proteins (80.3%) are predicted to have an SP, while
only 17% (3,487 out of 20,359) of theM. incognitaproteins have a
predicted SP. Interestingly, if we only consider the proteins that are
covered by at least 2 motifs, then 1106 out of 1162 (95%) have an
SP. The 4 motifs cover 7 out of the 8 cell wall degrading proteins
from the evaluation set. Additionally, using the OrthoMCL analysis
performed to construct the set of negatives (see Section 2.4.2),
we noticed that 1,817 of the 2,579 proteins are parasite specific,
i.e., they do not have orthologs inC. elegans, C. briggsae, D.
melanogaster, andP. pacificus. Given that the complete proteome
contains 12,234 such proteins, the identification of this subset forms
an important contribution to the pipeline of experiments necessary
to identify the whole set of candidate effectors. It also introduces
the open question of how these motifs in the signal peptide regulate
secretion in plants.

3.2 Related Work
A large body of literature in the area of motif discovery exists. Here,
we focus on systems that learn discriminative and/or degenerate
motifs among biological or other sequences.

A lot of research has been carried out in frequent or discriminative
substring mining. Most string mining approaches make use of

sequences it covers, where each sequence is scored by the inverse of the
number of motifs present in the sequence. This ensures that sequences that
are covered by few motifs have a high score. In case of multiple motifs with
the highest score, the one with the shortest length is taken.

efficient data structures to represent the string data set (Fischer
et al., 2006; Weese and Schulz, 2008), and avoid the candidate
generation approach. However, these techniques are limited to
finding motifs defined over the same alphabet as the sequences.
Some form of degenerate motifs can be obtained by searching for
so-called approximate frequent motifs (Ji and Bailey, 2007; Zhu
et al., 2007), meaning that some mismatches are allowed when
counting the frequency of a motif.

In the area of mining frequent sequential patterns, often used
in marketing applications where patterns are searched in ordered
lists of transactions, an algorithm is proposed that can integrate
user-defined taxonomies in the patterns. GSP (Srikant and Agrawal,
1996) is a candidate generation algorithm, where candidates are
generated by joining frequent sequences of the previous level,
pruning away sequences that have a non-frequent subsequence. In
order to incorporate taxonomies, each data sequence is replaced
by an extended sequence, by adding all ancestor items to each
transaction. It does not exploit the generalization structure inherent
to the search space and does not find discriminative patterns.

Two other pattern discovery approaches allow the user to provide
sets of amino acids, which are considered equivalent. However, they
do not search for discriminative motifs. Teiresias (Rigoutsos and
Floratos, 1998) uses a convolution technique to generate new motifs
from two smaller motifs. It returns the set of closed patterns that
are frequent in a (positive) set of sequences. The amino acid sets
are introduced without any modification to the algorithm, i.e. no
generalization relation is exploited. The Pratt algorithm (Jonassen,
1997) uses the concept of a pattern graph to guide the search, and
uses a mix of specialization and generalization operators to generate
candidates. In a first stage, it searches motifs consisting of specific
amino acids, and in an optional refinement stage, these motifs are
made more general by replacing amino acids by the amino acid sets.
However, it can operate in an exhaustive manner as well.

Another set of related systems is based on probabilistic models.
These systems return the discovered motifs as position-specific
weight matrices, which specify a score for each residue/position
pair. This results in degenerate motifs byenumeratingpossible
alternative residues for each position, in contrast todescribing
possible alternatives, as in our approach. The enumeration does
not take into account any classification. Example systems that find
discriminative motifs are DEME (Redhead and Bailey, 2007), which
uses a combination of global and local search to find a single best
motif, and the widely used MEME software (Bailey and Elkan,
1994), which uses an Expectation Maximization algorithm, and
was recently extended to incorporate negative sequences as input
(Baileyet al., 2010). However, these algorithms find motifs that are
overrepresentedin the positive andunderrepresentedin the negative
set; it is not possible to require total absence from the negatives.

Finally, we mention two logic based methods. Warmr (Kinget al.,
2001) is an inductive logic programming system searching frequent
patterns. It can take background knowledge as input, that could
be used to represent the DAG. However, the system does not find
discriminative patterns and, since it was not specifically designed
for sequences, requires complex data formatting and language bias
descriptions from the user. MineSeqlog (Lee and De Raedt, 2004)
is a system for mining discriminative logical sequences. It finds
motifs by applying a frequent subsequence mining algorithm twice:
once to find the set of most specific patterns that are frequent in the
positive sequences, and once to find the most specific patterns that
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Table 5. Motifs at N-terminal using RasMol’s classification. The last column denotes the frequency of the motifs in the positive proteins.

Motif freq(Motif,P)

<neutral buried neutral large buried neutral neutral neutral hydrophobic hydrophobic neutral acyclic acyclic acyclic buried> 38
<large hydrophobic neutral buried neutral neutral buried buried neutral acyclic acyclic hydrophobic neutral acyclic acyclic> 35
<hydrophobic neutral buried acyclic neutral neutral neutral buried neutral large neutral acyclic neutral polar acyclic> 35
<neutral neutral L buried hydrophobic buried neutral hydrophobic neutral neutral acyclic neutral> 35

Table 6. Motifs found using MERCI.

Motif freq(Motif,P)

<L L aliph I S x(0,2) aliph aliph> 10
<L L aliph aliph neutral aliph x(0,2) A> 10
<L aliph aliph aliph neutral L x(0,2) aliph aliph> 10

are frequent in the negative sequences. The resulting patterns are
those that are more general than the former set and more specific
than the latter set. The double application of the frequent pattern
miner results in a less efficient approach.

3.3 Comparison
We have compared the output of MERCI to four methods from the
related work section, that also output degenerate motifs. We applied
each method to identify motifs corresponding as much as possible
to a common set-up: we used the amino acid properties based on
the Koolman and Rohm (1996) classification, allowed at most 1 gap
of maximal length 2, required a minimal occurrence in the positives
of 10% and absence from the negative set. We looked for the 10
best motifs with these constraints. Parameters that are not discussed
were left to their default value. The systems MERCI, Pratt, and
DEME were installed and run locally, thus we can also compare
their running times (run on an Intel Q9400 2.66GHz processor).

3.3.1 MERCI. Using MERCI with the above settings, we found
3 motifs, see Table 6. These are the only motifs (with a single gap)
that occur in at least 10 positive sequences, and do not occur in any
negatives, and hence can be used as a reference. The running time
of MERCI was 119 seconds.

3.3.2 Teiresias. As Teiresias can not take a negative set as input,
we only used the positive sequences. The maximum gap length of 2
was simulated by setting parametersL = 2 andW = 4. We used
the seqversion, and applied equivalence based pattern discovery,
with the equivalence sets based on the Koolman and Rohm (1996)
classification. Even though Teiresias only reports closed patterns,
the result set contains 328,135 motifs. Many of the reported motifs
are overly general, e.g.<aliphatic x(1) x(1) aliphatic> (where
x(1) denotes a fixed gap of one position), which occurs in all
positive sequences, but also in all negative sequences. Calculating
a significance score could not be performed within the execution

Table 7. Motifs found using Pratt.

Motif freq(Motif,P)

<L L aliph aliph neutr aliph aliph x(0,2) aliph x(2) E> 12
<L L aliph aliph neutr aliph x(0,2) aliph aliph x(2) E> 12
<L L x(1) I S x(1) aliph x(0,2) aliph x(2) E> 10
<L L aliph x(1) neutr aliph aliph x(0,2) aliph x(1) neutr E> 10
<L aliph aliph aliph x(1) aliph I x(0,2) aliph x(1) neutr E> 10

time limit that comes with the web version of Teiresias. Surprisingly,
the three motifs found by MERCI are not in Teiresias’s output list.
The reason is that MERCI uses variable length gaps, while Teiresias
does not. For instance, the second MERCI motif occurs 3 times with
a gap length of 0, 5 times with a gap length of 1, and 2 times with
a gap length of 2. Thus, Teiresias would need 3 motifs to represent
this motif, and these motifs would have a frequency of 3, 5, and 2.

3.3.3 Pratt. Pratt also has a single input set of proteins. We set
the maximal gap length to 2 and allowed a single variable length
gap. We required Pratt to perform exhaustive search, in order to
maximize the output similarity to MERCI, which also performs
an exhaustive search. Pratt scores patterns based on information
content. We considered the 10 best patterns, and counted their
frequency in the negative sequences. Only half of the patterns are
absent from the negative sequences, they are shown in Table 7, and
are very similar to the patterns found by MERCI. The reason why
there are more patterns and they have a larger frequency is that Pratt
also introduces fixed length gaps, e.g.x(2), and their number can
not be restricted by the user. The running time required by Pratt was
2,566 seconds, which is more than 20 times slower than MERCI.

3.3.4 MEME. The web version of the MEME software does
allow to give a negative sequence set as input. However, in contrast
to the previous systems, MEME does not allow the use of a specific
classification scheme, nor does it use gaps. We used thezoops(zero
or one per sequence) motif distribution, set the motif width between
2 and 50, and let MEME search for 10 motifs. In the result, 3
motifs have ane-value less than 1. The top scoring motif is very
similar to ourLLIIS-type motifs. The corresponding motif logo
is shown in Figure 3. This motif was input to the corresponding
motif occurrence locator program FIMO to search for occurrences
in both positive and negative sequence sets. Using the default
significance threshold, the motif was found in 32 positive sequences,
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Fig. 3. Top motif found by MEME.

Table 8. Motifs found using DEME.

Motif (consensus) freq(Motif,P) freq(Motif,N)

<K G E G D A> 38 3
<L F I I S L I G> 54 2
<L L H I S L I A P N> 59 2

but also in 36 negative sequences. We conclude that, while MEME
allows negative sequences, it should not be used to search for
discriminating motifs. In fact, MEME and MERCI have different
target applications. While MERCI searches for motifs that can be
used directly as a discriminator when classifying new sequences,
MEME searches for motifs that describe a set of sequences. For
instance, if the application is to find motifs shared by orthologous
proteins, then it can help to include a negative set to guide the search
towards significant motifs, while it is allowed that some negative
sequences also contain the motif.

3.3.5 DEME. DEME reports a single motif, with a width given
by the user. Again, gaps are not supported, and no classification
scheme can be specified. We have searched for a motif of length
6, 8, and 10, respectively. The consensus sequences, together with
their frequencies (as calculated by applying a threshold of 0.5 on the
resulting probabilities, see Redhead and Bailey (2007)) are given in
Table 8. The running times required to obtain these motifs were 972,
1,032, and 1,069 seconds, respectively, resulting in a total running
time that is 25 times as high as MERCI’s running time. DEME finds
motifs that are highly frequent in the positive set, and infrequent in
the negative set, and therefore gives more useful results for our task
than MEME. However, the motifs are still present in the negative
sequences, and we believe the fixed motif width is an important
drawback.

4 CONCLUSION
We propose an algorithm for thede-novoidentification of protein
motifs specific to a set of proteins. The motifs are not restricted to a
sequence of specific amino acids, but can involve physico-chemical
amino acid properties. The algorithm combines a variety of existing
and new algorithmic contributions into a practical tool, that is freely
available, and is able to include user defined amino acid properties.
We provide additional software to scan sequence databases for
the occurrence of the identified motifs. To our knowledge, no

method is currently available to identify discriminative motifs that
are degenerated according to a classification scheme.

Our tool was used to discover motifs specific to root-knot
nematode proteins that are secreted into plant tissues. We showed
that by allowing properties in the motifs, we are able to find motifs
with a higher frequency in a positive set of proteins, while still being
absent from a negative set. Using a set of 4 identified motifs as
discriminators, we detected a total of 2,579 proteins in the proteome
of M. incognitathat can be considered as new putative effectors.

We have compared the motifs discovered by our tool to the result
of four other tools that find degenerate motifs. We conclude that our
tool is the only one that finds a set of motifs using predefined amino
acid classes, that is completely absent from the negative set.

While we have focused on finding protein motifs, the tool can
be used on any kind of sequence dataset, with any kind of research
question for which a positive and negative set can be defined.
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