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Abstract

Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must
maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify
effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum
infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic
transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission
electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-
pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host
invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic
effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in
Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or
cell death.
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Introduction

To penetrate the cuticle and cell wall of their hosts, most plant

pathogenic fungi differentiate specialized infection structures

called appressoria. Appressoria have been long-recognized as

providing tight adhesion to host surfaces (Latin appressus, pressed

closely against) [1]. The appressoria of Colletotrichum and

Magnaporthe species display a complex physiology and morphology,

adapted for efficient host cell entry. Key features are (a) a

melanized cell wall acting as a semipermeable barrier to osmolytes,

(b) glycerol accumulation for generating turgor and (c) an

extracellular matrix to anchor the cell and counter-balance

downward mechanical forces applied during penetration [2].

The appressoria of Colletotrichum and Magnaporthe are highly

polarized cells with an upper domed region and a basal region

containing the penetration pore, from which a needle-like

penetration hypha emerges to puncture the epidermal cell wall

[3,4]. Differentiation of the pore involves deposition of a new wall

layer, termed the ‘pore wall overlay’, which is continuous with the

penetration hypha cell wall [5]. Hydrolytic enzymes secreted by

penetration hyphae may act synergistically with mechanical

pressure during host penetration [2]. However, whether appres-

soria actively manipulate the attacked cell in preparation for

invasion is currently unknown.

Host manipulation and re-programming are hallmarks of

biotrophic plant pathogens, which depend on living host cells. In

addition to overcoming preformed barriers, these pathogens must

defeat immune responses elicited by recognition of conserved

microbe-associated molecular patterns (MAMPS, e.g. chitin),

including local deposition of chemical and physical barriers at

pathogen entry sites [6–8]. Since MAMPs fulfill important

functions in pathogens and cannot be modified or jettisoned

without fitness cost, biotrophic pathogens secrete effector proteins

as molecular weapons to evade or suppress plant immunity. The

evolution of secreted effector proteins by pathogens led plants in

turn to evolve resistance proteins that recognize these effectors,

thereby providing effector-triggered immunity, often leading to
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host cell death and pathogen arrest. In turn, pathogens deploy

effectors to interfere with these processes, resulting in a molecular

arms-race between plant and pathogen in which both opponents

try to overcome each others innovations, leaving only temporary

winners [9]. Pathogen effectors often carry the marks of this rapid

co-evolution, showing extreme sequence diversification. Effectors

typically have no similarity to known proteins and have a restricted

phylogenetic distribution [10].

Colletotrichum species are notorious plant pathogens, most of

which have a ‘hemibiotrophic’ lifestyle that combines an initial,

symptomless biotrophic phase with a later necrotrophic phase

associated with severe symptoms. In contrast to biotrophs,

Colletotrichum species can be cultured axenically and are accessible

to genetic manipulation [11]. C. higginsianum has a wide host range,

including many cruciferous crops and the model plant Arabidopsis

thaliana. Phylogenetically, C. higginsianum belongs to the C.

destructivum species group, which is characterized by ‘localized

biotrophy’, where intracellular biotrophic hyphae are restricted to

the first-infected epidermal cell [12]. Filamentous necrotrophic

hyphae later develop from the bulbous biotrophic hyphae and

spread into the surrounding tissue, producing macerated, water-

soaked lesions [13]. Little is known about Colletotrichum effectors:

Stephenson and co-workers [14] reported CgDN3, a putative

secreted protein of C. gloeosporioides which was implicated in

suppressing host resistance responses. Furthermore, C. lindemuthia-

num and C. higginsianum possess CIH1 [15,16], an effector

containing tandem chitin-binding lysin motifs which may function

in chitin sequestration and camouflage [10].

We assume that the appressoria, penetration hyphae and

biotrophic hyphae of C. higginsianum secrete effector proteins

before, during and after penetration to evade host defenses and

maintain host viability during the biotrophic phase, and to induce

cell death at the switch to necrotrophy. In the present study, we

aimed to investigate the role of secreted effector proteins in

mediating hemibiotrophy and their delivery at fungal-plant

interfaces. Based on deep transcriptome sequencing and compu-

tational mining of ESTs from precise infection stages, we derived a

large inventory of in planta-expressed effector candidates for this

pathogen. Tagged effectors were found to localize to previously

undescribed interfacial compartments. In particular, we demon-

strate that effectors are focally secreted from appressorial

penetration pores before host invasion. Furthermore, we present

evidence that the coordinated expression and secretion of

antagonistic biotrophy effectors and toxin effectors contribute to

fungal virulence and the regulation of hemibiotrophy in C.

higginsianum.

Results

Deep transcriptome sequencing uncovers a large
repertoire of in planta-expressed effectors

As a first step towards the discovery of secreted C. higginsianum

effector proteins, we generated ESTs by sequencing the fungal

transcriptome associated with different cell types and infection

stages. These included plant-penetrating appressoria, mature

biotrophic hyphae isolated from Arabidopsis leaves by fluores-

cence-activated cell sorting and the late necrotrophic phase.

Sequencing techniques, strategies used to maximize gene discovery

as well as EST assembly statistics are summarized in Text S1.

Biocomputational screening yielded 327 EST contigs predicted to

encode solubly secreted, extracellular proteins. We defined C.

higginsianum effector candidates (ChECs) as secreted proteins

lacking homologs outside the genus Colletotrichum or resembling

(presumed) effectors from other plant pathogenic fungi. Applying

these criteria, 198 contigs encoding ChECs were identified, of

which 102 were depleted in ESTs derived from the late

necrotrophic phase (Table S1). Thus, these genes appear to be

preferentially expressed during infection stages relevant to the

establishment and maintenance of biotrophy, namely appressoria

and biotrophic hyphae, and we refer to them as biotrophy-

associated ChECs hereafter. Most of these were small in size

(average 67, median 56 amino acids) and lacked recognizable

protein domains. A motif search revealed no motifs were shared by

non-paralogous ChECs.

Only 30% of the biotrophy-associated ChECs had a detectable

homolog in the closely-related species C. graminicola, suggesting

most ChECs are higginsianum-specific ‘orphan’ genes. In contrast,

among an equal number of similar-sized genes randomly selected

from the genome, 59% had C. graminicola homologs, indicating that

biotrophy-associated ChEC genes are subject to greater diversi-

fication than other genes. Consistent with this, a survey of 21

different Colletotrichum species and isolates by Southern analysis

showed that ChEC1 and ChEC2 were strongly conserved within the

C. destructivum species group, and ChEC3 was only detectable in C.

higginsianum isolates (Figure S1A). ChEC3 and its paralog ChEC3a

are similar to the C. gloeosporioides effector CgDN3 [14], and lack

homologs in C. graminicola. ChEC3, ChEC3a and CgDN3 are

small proteins (47 to 56 amino acids after signal peptide cleavage),

and have only 17 residues in common. Despite that, their exon-

intron structure and predicted secondary structure are conserved

(Figure S1B). Sequencing ChEC3 and ChEC3a loci from 20

different C. higginsianum isolates revealed that ChEC3 is monoallelic

and ChEC3a has an additional allele with only one (nonsynon-

ymous) nucleotide polymorphism. Thus, both genes show

interspecies diversification (or absence) but intraspecies conserva-

tion.

Five other ChECs displayed sequence similarity to effectors

previously identified from other fungi. ChEC5 harbours a cerato-

platanin domain and shares 79% identical amino acids with M.

oryzae MSP1 [17]. Both, ChEC90 and ChEC90a contain LysM

Author Summary

Many fungal plant pathogens undergo a series of
developmental and morphological transitions required
for successful host invasion. For example, Colletotrichum
higginsianum, a pathogen of cruciferous plants, employs a
two-stage infection strategy called ‘hemibiotrophy’: after
specialized penetration organs (appressoria) breach the
host cuticle and cell wall, the fungus initially produces
bulbous primary hyphae inside living epidermal cells
(‘biotrophy’), before entering a destructive phase in which
host tissues are killed and macerated by filamentous
secondary hyphae (‘necrotrophy’). Here we investigated
the role of secreted effector proteins in mediating
hemibiotrophy and their delivery at fungal-plant interfac-
es. We found expression of many effector genes is plant-
induced and distinct sets of effectors are deployed in
successive waves by particular fungal cell-types. Early-
expressed effector proteins are focally secreted from
appressorial penetration pores and may function to
suppress early plant defense responses, which we found
to be activated before fungal entry. We also show that
later-expressed effectors accumulate in structures formed
at the interface between primary hyphae and living host
cells, implicating these hyphae in effector delivery. Our
findings indicate new functions for fungal infection
structures and suggest a model for how this fungus
switches from biotrophy to necrotrophy.

Sequential Effector Delivery by a Phytopathogen
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domains and are homologous to C. lindemuthianum CIH1 [15] 39%

and 50% amino acid identity, respectively). ChEC36 shares 40%

identical amino acids with Fusarium oxysporum f.sp. lycopersici

SECRETED IN XYLEM 6 (SIX6) [18] while ChEC88 resembles

the biotrophy-associated secreted protein BAS3 of M. oryzae [19]

(49% amino acid identity). Remarkably, a survey of the top 30

contigs containing the highest numbers of ESTs from plant-

penetrating appressoria, revealed that no fewer than 18 (60%)

encode secreted proteins, of which 12 were biotrophy-associated

ChECs (Table S2). In addition to ChEC3 and its paralog

ChEC3a, these included ChEC4 and ChEC9, both predicted to

contain nuclear localization signals. The functionality of these

signals was experimentally verified by transient expression in planta

(Figure S2), raising the possiblity that ChEC4 and ChEC9 are

translocated into the host nucleus for transcriptional reprogram-

ming. Interestingly, ChEC7 and ChEC10 had transcripts

containing remnants of retrotransposons within their UTRs,

which resembled CgT1, a non-LTR LINE-like element previously

identified in C. gloeosporioides [20] and Ccret2 from C. cereale [21],

respectively ([22]; Table S2). Taken together, secreted proteins,

including ChECs, predominate among the most highly expressed

genes in appressoria during early host invasion.

In addition to ChECs that may support the biotrophic lifestyle,

we identified putative secreted toxin effectors, including ChToxB,

a homolog of the host-selective toxin ToxB from Pyrenophora tritici-

repentis [23] and homologs of Necrosis- and Ethylene-inducing

Peptide1-Like Proteins (referred to as NLPs hereafter) [24]. The

six NLP homologs identified in the C. higginsianum genome show

sequence variation in the NLP consensus motif and have

contrasting expression profiles and necrosis-inducing activities.

For example, ChNLP1 is expressed specifically at the switch to

necrotrophy and is a potent cell death inducer when expressed

transiently in Nicotiana benthamiana, whereas ChNLP3 is expressed

in appressoria before penetration and lacks necrosis-inducing

activity (Figure 1).

Successive waves of effector gene expression accompany
pathogenic transitions

The sampling of biological materials used for EST generation

was designed to maximize the discovery of genes expressed at

several biotrophy-relevant stages (from unpenetrated appressoria

through to very mature biotrophic hyphae) and did not allow

dissection of gene expression dynamics associated with develop-

mental transitions (e.g. pre-/post-invasive growth and the switch

from biotrophy to necrotrophy). To profile the expression of

selected ChECs and putative toxins during infection in more

detail, we used qRT-PCR. We sampled RNA from the following

developmental stages: unpenetrated appressoria in planta, pene-

trated appressoria with nascent biotrophic hyphae, the switch from

biotrophy to necrotrophy (Figure S3) as well as late necrotrophy.

To represent in vitro cell types, dormant spores, saprotrophic

Figure 1. The C. higginsianum genome contains six members of
the Necrosis- and ethylene inducing peptide 1-like protein
(NLP) gene family with contrasting expression profiles and
necrosis-inducing activities. (A) The genome of C. higginisianum
harbours six members of the NLP family: ChNLP1 is the most similar
(5e244) and ChNLP6 the least similar homolog (3e29, possibly truncated)
of PsojNIP from Phytophathora sojae [25]. Shown is an alignment
encompassing the conserved NLP consensus motif ‘‘GHRHDWE’’ of
ChNLP1-6 and PsojNIP. Conserved amino acid residues are shaded
green. Asterisks indicate residues crucial for NLP activity: a, amino acid
residues investigated by Ottmann and co-workers [37] by alanine
replacements resulting in abolished (b) or reduced (c) activity. ChNLP3
and ChNLP5 lacked three of these crucial residues, while ChNLP6 lacked
one. In contrast, ChNLP1, ChNLP2 and ChNLP4 contained all crucial
residues. (B) Detection of ChNLP transcripts in different fungal cell types

in vitro and during plant infection. ChNLP1 and ChNLP2 were exclusively
expressed during the switch from biotrophy to necrotrophy. Neither
ChNLP4 nor ChNLP6 were expressed in the sampled material. ChNLP3
and ChNLP5 were strongly upregulated in appressoria penetrating host
cells, with transcripts still detectable during biotrophy. ChNLP5, but not
ChNLP3, appeared plant-induced as indicated by absence of transcripts
in in vitro appressoria. a-tubulin was used as reference to allow for
variation of fungal biomass. (C) Transient expression of full-length
ChNLP1 or ChNLP3 in Nicotiana benthamiana leaves. Pictures were
taken 6 days after agroinfiltration. ChNLP1 causes severe necrosis,
whereas ChNLP3 does not, as expected from the sequence alignment
and expression pattern.
doi:10.1371/journal.ppat.1002643.g001
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mycelium and mature appressoria formed on an artificial, non-

penetratable substratum were included. For expression profiling,

we prioritized ChECs that resembled previously identified

effectors (see above) and/or displayed high expression levels in

biotrophy-relevant stages as determined by their EST read counts.

Expression analysis of 17 selected genes revealed that four

successive waves of effector gene expression occur during

pathogenesis (Figure 2): The first wave of ChEC genes is induced

Figure 2. Expression profiling of selected biotrophy-associated ChEC and putative toxin genes by qRT-PCR. Expression levels are
shown relative to the mean expression of actin and a-tubulin. Genes with highest expression in planta are highlighted with colours, indicating
distinct waves of effector gene expression. In vitro cell types are: dormant spores (SP), saprotrophic mycelium (MY) and mature appressoria (VA). In
planta stages are: unpenetrated appressoria (UA), penetrated appressoria with nascent biotrophic hyphae beneath (PA), biotrophy to necrotrophy
switch (SW) and late necrotrophy (LN).
doi:10.1371/journal.ppat.1002643.g002
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in unpenetrated appressoria in planta, exemplified by ChEC7 and

ChEC9. Similarly, ChEC3, ChEC3a, ChEC4, ChEC6 and ChEC36

are also induced in unpenetrated appressoria in planta, but their

expression continues into the early biotrophic phase (wave two).

Of these, ChEC6 had the highest relative expression level of all

ChECs tested, suggesting an important role in early pathogenesis.

In contrast, ChEC13, ChEC34, ChEC51, ChEC56, ChEC88 and

ChEC89 are specifically induced during penetration and establish-

ment of biotrophic hyphae (wave three). The last wave of effector

genes, exemplified by ChNLP1 and ChToxB, is induced only during

the switch to necrotrophy, suggesting that their toxic products

contribute to terminating the biotrophic phase for subsequent

necrotrophic growth. In contrast to the previous examples, ChEC5

and ChEC91 were preferentially induced in saprotrophic myceli-

um. Thus, nearly all ChECs tested were confirmed to be

biotrophy-associated. Moreover, for seven ChEC genes showing

induction in unpenetrated appressoria in planta (ChEC7, 9, 3, 3a, 4,

6, 36), pre-formed transcripts were not detectable in dormant

spores and only ChEC7 was induced in mature appressoria in vitro,

indicating all other genes are truly plant-induced.

Appressorial penetration pores as a nanoscale interface
for focal ChEC delivery

To localize ChECs during pathogenesis, proteins were ex-

pressed in C. higginsianum as C-terminal fusions with fluorescent

proteins under control of their native upstream regulatory

sequences. At least three independent transformants were

analyzed per gene and verified to show the same localization

pattern. Live-cell confocal laser scanning microscopy detected

fluorescence for all of the seven ChECs tested (see below),

confirming the computational ORF predictions. For high-

resolution localization of selected protein fusions we also used

transmission electron microscopy-immunocytochemistry with an

mRFP-specific antibody to label ultrathin sections.

When fungal transformants expressing ChEC36:mRFP (a wave

2 effector) were inoculated onto Arabidopsis seedlings, we detected a

strongly fluorescent spot at the basal penetration pore in 72% of

the inspected appressoria (n = 101) (Figure 3A–D). In some cases,

the pore was in addition encircled by a weakly fluorescent ring

(Figure 3E, F). Among pore-labelled appressoria, 11% showed in

addition labelling of discrete intracellular structures in the fungal

cytoplasm (Figure 3E, G). Transmission electron microscopy

immunogold labelling revealed that these structures resembled

vacuolar inclusion bodies (Figure S4A). Biotrophic hyphae showed

no labelling (Figure 3H, I; Figure S4B), suggesting ChEC36:mRFP

is exclusively secreted before and during penetration. Transmis-

sion electron microscopy of in planta appressoria revealed that

penetration pores (,200 nm diameter) are surrounded by an

additional wall layer continuous with the penetration hypha wall

(Figure 3J), referred to as the ‘pore wall overlay’ hereafter, which

contains b-1,3-glucan (Figure S5). Based on serial sectioning of 24

appressoria, immunogold labelling confirmed that

ChEC36:mRFP specifically localized to the penetration pore in

13 appressoria (54%) and decorated the pore wall overlay in seven

appressoria (29%) (Figure 3K, Figure S4C, D). No labelling was

observed on the inner or outer surface of the appressorial wall,

suggesting that appressoria secrete ChECs in a highly polarized

manner towards the pore.

Membrane contrast was low in these samples because they were

not fixed with osmium tetroxide and were embedded in acrylic

resin in order to provide optimal antigen preservation. Neverthe-

less, in favourably-orientated sections, the immunogold labelling of

pores and pore wall overlays appeared external to the fungal

plasma membrane, consistent with ChEC36 being an extracellular

protein (Figure S4E). No immunogold labelling was observed in or

beneath wild-type appressoria (n = 11), indicating specific epitope

recognition (Figure S4F). All appressoria with labelled pores had

not produced a visible penetration hypha, as verified by serial

sectioning. Despite that, small pads of host cell wall material were

already deposited beneath 77% of inspected unpenetrated

appressoria (n = 35), suggesting host cells respond to the pathogen

prior to any visible ingression or structural damage (Figure 3K;

Figure S4C, F; Figure S5H). The inner, first-formed layer of these

host cell wall deposits did not contain detectable callose but

subsequently became encrusted with a callose layer (Figure S5H).

Appressoria in situ can be acetone-fixed and completely

detached from the plant surface by cellulose acetate stripping, as

determined by scanning electron microscopy (Figure 3L–N). This

allowed us to dissect whether fluorescent protein-tagged ChECs

are released from appressoria into the plant epidermis. When the

cellulose acetate-stripped leaf surface was inspected with confocal

microscopy, sites of successful penetration were characterized by

brightly fluorescent spots from which the fluorescence signal

appeared to diffuse laterally a short distance (,2 mm), resulting in

a small halo of mRFP fluorescence (Figure 3O). Similar to

ChEC36:mRFP, 72% (n = 101) of intact appressoria expressing

ChEC6:mRFP (another wave 2 effector) also showed pore-

localized fluorescence, with haloes visible at lower focal planes,

Figure 3. Appressorial pores as an interface for focal ChEC delivery. Transformant appressoria expressing the wave 2 effectors ChEC36:mRFP
(A–O) and ChEC6:mRFP (P, Q). Appressoria or penetration sites after removal of appressoria were examined by confocal laser scanning microscopy
viewed from above (A, B, E–I, O–Q) or from the side (C, D), and with transmission electron microscopy (J, K) and scanning electron microscopy (L–N).
(A–D) Bright field and maximum fluorescence intensity overlay images of appressoria. Black arrows indicate the anticlinal plant cell wall and white
arrows the penetration pore. (E) Fluorescence overlay image of an appressorium showing weak peripheral labelling of intracellular structures. (F, G)
Fluorescence recorded with identical settings at the base (F) and the center (G) of the appressorium shown in (E). Arrow indicates a fluorescent ring
surrounding the brightly fluorescing pore. (H, I) Fluorescence overlays recorded with identical settings focused on appressorial pores (H) or biotrophic
hyphae (BH) formed beneath a penetrated appressorium (arrow). (J) Median section through an appressorium viewed with transmission electron
microscopy (fixed with glutaraldehyde-osmium tetroxide and embedded in epoxy resin). A penetration hypha evaginates from the pore (P). An
additional layer of the appressorial wall (asterisk) forms a thickened ring (arrowheads) around the pore, continuous with the penetration hypha wall.
PW, plant cell wall. (K) Immunogold labelling of an appressorial pore (arrow) using antibodies recognizing mRFP (cells fixed in formaldehyde-
glutaraldehyde and embedded in acrylic resin). PW, plant cell wall. WD, host cell wall deposits. (L) Scanning electron microscope image showing
attached turgid appressorium (A) and collapsed conidium (C) on a leaf surface. (M) Plant-exposed underside of detached appressoria with
penetration pores (black arrows) and remnants of extracellular matrix and/or plant cuticle (white arrow). (N, O) Penetration sites from which
appressoria were detached completely. (N) The lobed outline of a former appressorium is still visible (arrowheads) with a mark representing the
penetration point (arrow). (O) Micrograph series representing different focal planes as fluorescence overlay (top panels) and corresponding black on
white conversion of the fluorescence channel (bottom panels), focusing from the penetration point (left) downwards into the plant cell wall (right).
Arrow: inserted penetration hypha. (P, Q) Fluorescence overlays focused on the appressorial pore (P) and the underlying plant cell wall (Q). Arrow,
anticlinal plant cell wall. Images were recorded at 24 hours post inoculation (hpi) (A–G, K, P, Q), 32 hpi (J, L–O), 40 hpi (H, I). Scale bars: 5 mm (A, H, L,
N, O, P) and 2 mm (C, E, M), 1 mm (J), 500 nm (K). See also Figure S4.
doi:10.1371/journal.ppat.1002643.g003
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consistent with local delivery of ChEC6 into the plant apoplast

(Figure 3P, Q). Taken together, it appears that ChECs expressed

pre-penetration are focally secreted to, and from, an extremely

localized zone of direct contact between host and pathogen,

delimited by the appressorial penetration pore.

ChEC delivery to the intimate biotrophic interface
between host and pathogen

Inoculation of transformants expressing CHEC89:GFP or

CHEC89:mRFP (a wave 3 effector) onto Arabidopsis seedlings

showed fluorescent labelling on the surface of 91% (n = 89)

biotrophic hyphae. In an independent quantification of labelled

hyphae, 61% (n = 239) showed punctate accumulation of fluores-

cence in discrete foci randomly scattered over the hyphal surface

(Figure 4A, B; Figure S6A–C). Fully-expanded, mature biotrophic

hyphae also showed strong surface labelling, which accumulated in

hyphal concavities (Figure 4C, D). After retraction of the plant

protoplast by plasmolysis, a fluorescent signal was detectable in the

enlarged apoplastic space, suggesting that the CHEC89:mRFP

fusion protein is freely diffusible and not linked to the fungal cell

wall (Figure 4E, Figure S7). In support of this, we could detect

fluorescence in anticlinal plant cell walls near infection sites,

especially where two or more neighboring appressoria had

invaded the same epidermal cell (Figure 4B; Figure S6C). This

suggests the interface between the host plasma membrane and

biotrophic hyphae is continuous with the bulk apoplast, allowing

limited diffusion away from the penetration site. Spectral scanning

confirmed an mRFP-specific fluorescence emission, ruling out

local autofluorescence of the plant cell wall. Secondary hyphae

emerging from the apices of biotrophic hyphae lacked detectable

labelling, indicating CHEC89:mRFP secretion is specific to

biotrophic hyphae (Figure 4F).

Similar to CHEC89:mRFP, localization to the surface of

biotrophic hyphae was also observed for the wave 2 effector

ChEC3:mRFP (92%, n = 98) and the wave 3 effectors

CHEC13:mRFP (86%, n = 114) and CHEC34:mRFP (89%,

n = 102) (Figure 5A, B; Figure S6D–I). However, the localization

patterns of these ChECs were not identical: Thus, in independent

quantification experiments, many hyphae expressing

ChEC34:mRFP (75%, n = 140) showed an accumulation of

fluorescence in discrete foci. In contrast, the proportion of hyphae

showing punctate labelling was lower for transformants expressing

ChEC3:mRFP (13%, n = 117) and ChEC13:mRFP (13%, n = 109)

which both displayed a more uniform labelling on the surface of

most hyphae. Epidermal cells infected by biotrophic hyphae

expressing ChEC3:mRFP also showed weak fluorescence in the

apoplastic space enlarged by plasmolysis (Figure S6I). Only

CHEC13:mRFP was detectable in ‘pseudo biotrophic hyphae’

formed after penetration of an artificial, penetratable substratum,

suggesting the expression of all other CHEC genes tested is plant-

induced and not linked to appressorial penetration per se (Figure

S8). In contrast to ChEC3:mRFP and CHEC13:mRFP,

CHEC34:mRFP also localized to the plant cell wall. This signal

was confined to cell walls adjoining penetration sites but spread

longer distances (.25 mm) than CHEC89:mRFP (Figure 5C, D).

Using transmission electron microscopy to view the biotrophic

interface at higher resolution, we found that the host plasma

membrane made direct contact with the cell walls of biotrophic

hyphae, except in small regions where discrete pads of electron-

opaque material protruded from the hyphal surface (Figure 5E, F).

Figure 4. ChEC delivery to the biotrophic interface and host apoplast. Transformant biotrophic hyphae expressing CHEC89:mRFP (wave 3
effector) viewed with confocal laser scanning microscopy. (A) Maximum fluorescence intensity overlay projection of appressoria (arrows) and
underlying biotrophic hyphae showing fluorescent foci (arrowheads) on the hyphal surface. (B) Single optical section from (A) showing labelling of
the plant cell wall (arrows). (C, D) Mature biotrophic hypha, viewed as in (A and B), showing fluorescence accumulation in hyphal concavities
(arrowheads). Arrow: appressorium. (E) Epidermal cell infected by a biotrophic hypha (arrows) showing fluorescence in the apoplastic space (*)
enlarged by plasmolysis. Arrowheads demarcate the host plasma membrane. V, vacuole of the host protoplast. See Figure S7 for the corresponding
bright field image. (F) Unlabelled necrotrophic hypha (arrow) emerging from a biotrophic hypha. Images were recorded at 43 hpi (A–E) and 55 hpi
(F). Scale bars: 10 mm (E) and 5 mm (A, C, F). BH, biotrophic hypha. See also Figure S6.
doi:10.1371/journal.ppat.1002643.g004
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To investigate whether these interfacial bodies correspond to the

punctate fluorescence observed by confocal microscopy, we used

immunogold labelling to detect CHEC34:mRFP. All interfacial

bodies we examined were intensely labelled in transformant

(n = 11), but not wild-type biotrophic hyphae (n = 8) (Figure S9),

suggesting they are foci of effector accumulation (Figure 5G). In

other hyphae where interfacial bodies were not visible, gold

labelling more uniformly decorated the plant-fungal interface

(Figure 5H). Neither the fungal cell wall nor plant cytoplasm were

labelled in these samples. Taken together, our findings are

consistent with Colletotrichum biotrophic hyphae having a role in

effector delivery.

Effectors antagonizing plant cell death and supporting
multiplication of plant pathogenic bacteria

Targeted mutagenesis of a gene provides unambiguous genetic

evidence for its contribution to fungal virulence. However,

targeted replacement of pathogen effector genes frequently does

not result in reproducible infection phenotypes, possibly due to

functional redundancy between effectors [19,22]. Thus, assigning

virulence-related functions to ChECs remains a challenging task.

However, direct expression of ChECs in plant cells allows their

biological activity to be investigated in isolation from other fungal

effectors. To test whether ChECs can suppress plant cell death, we

Figure 5. ChECs accumulate in interfacial bodies and diffuse into the host cell wall. Transformant biotrophic hyphae expressing
ChEC34:mRFP (wave 3 effector). (A, B) Bright field micrograph and corresponding maximum fluorescence intensity projection. Arrows: fluorescent
foci. (C, D) Biotrophic hypha expressing CHEC34:mRFP viewed with confocal laser scanning microscopy settings optimized to show fluorescence in
the penetrated epidermal cell wall (arrows). Arrowheads: unpenetrated wall of the same cell. (E, F) Transmission electron microscopy of a wild-type
appressorium that produced a biotrophic hypha underneath with interfacial bodies (arrowheads). Arrows indicate the penetration site of the host cell
wall. Cells were fixed with glutaraldehyde-osmium tetroxide and embedded in epoxy resin. (F) Close-up of an interfacial body (white asterisk) located
between the plant plasma membrane (black arrowheads) and the fungal cell wall (black asterisk). (G, H) Immunogold cytochemistry using an
antibody recognizing mRFP labels (G) interfacial bodies (arrows) or (H) the plant-fungal interface. Cells were fixed in formaldehyde-glutaraldehyde
and embedded in acrylic resin. A, appressorium. FC, fungal cytoplasm. PC, plant cytoplasm. V, plant vacuole. BH, biotrophic hypha. (*) Fungal cell wall.
Images were recorded at 40 hpi (A, B) and 43 hpi (C–H). Scale bars: 5 mm (A, C), 2.5 mm (E), 500 nm (F, G) and 250 nm (H).
doi:10.1371/journal.ppat.1002643.g005
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Figure 6. ChECs antagonizing plant cell death and supporting multiplication of plant pathogenic bacteria. (A) Infiltration scheme for
the transient co-expression assay. Agrobacteria containing constructs for ChEC or YFP expression were mixed with those for cell death-inducer (CDI)
expression. Mixtures were infiltrated into opposite sides of N. benthamiana leaves to allow pair-wise comparisons and to take account of leaf-to-leaf
variation in necrosis manifestation. Thus, an infiltrated site expressing YFP/ChNLP1 was included as an internal control in every infiltrated leaf, to
which the site expressing ChEC/ChNLP1 was compared. (B, C) Examples of infiltration site pairs 8 dpi. ChEC3 abolishes ChNLP1-induced necrosis (B,
dotted circle), but a fungal secreted chitinase does not (C). (D) Quantification of cell death-suppressing activity of four wave 2 effectors (ChEC3, 3a, 6,
36), three wave 3 effectors (ChEC89, 34, 13) and an in vitro-expressed effector (ChEC5). Histograms show the proportion of sites expressing ChEC/CDI
that displayed reduced necrosis compared to control sites expressing YFP/CDI. *, ** and *** indicate significant difference from the respective
chitinase control with and without signal peptide at P,0,02, ,0.005 and ,0.0002, respectively (Student’s t-test). P. infestans effector Avr3aKI was
used as positive control for suppression of INF1-induced cell death. Data represent means of at least three independent experiments, with at least 15
leaves/experiment/co-expression combination (6 standard error). (E) Bacterial titers in Arabidopsis Col-0 leaves infected with Pseudomonas syringae
pv tomato expressing ChECs as fusions with a bacterial effector mediating delivery into plant cells via type III secretion. Hyaloperonospora
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transiently co-expressed them in N. benthamiana leaves together

with cell death-inducing proteins. In brief, agrobacteria containing

a vector for ChEC expression were mixed with those for cell death

inducer expression and infiltrated into one half of a leaf. A control

mixture, in which ChEC-carrying agrobacteria were replaced by

those enabling YFP expression, was infiltrated into the other half,

allowing pair-wise comparisons in the same leaf (Figure 6A).

Infiltration sites co-expressing YFP and ChNLP1 showed severe

confluent necrosis six to eight days after infiltration. To quantify

cell death suppression activity, we determined the proportion of

ChEC-expressing sites showing reduced necrosis (Figure 6B) or no

reduction in necrosis (Figure 6C). We tested four wave 2 effectors

and three wave 3 effectors, including ChEC3, ChEC3a and

ChEC5 due to their similarity to effectors required for pathoge-

nicity in other fungi. Co-expression of ChEC3, ChEC3a, ChEC5,

ChEC6 and CHEC34 without their signal peptides reduced

necrosis in 70 to 90% of the inspected infiltration site pairs

(Figure 6D). In contrast, co-expression of a C. higginsianum chitinase

without its signal peptide as negative control protein [16] resulted

in significantly fewer sites showing reduced necrosis (P,0.02,

Student’s t-test). Western blot analysis using epitope-tagged

ChNLP1 confirmed that co-expression of ChECs has no impact

on ChNLP protein level per se (Figure S10). Thus, the observed

necrosis reduction reflects ChEC activity rather than failure of

ChNLP1 expression. ChEC13, ChEC36 and ChEC89 lacked

statistically significant cell death-suppressing activity.

To evaluate whether the presence of the fungal signal peptide

affects activity, we re-tested three of the most active suppressors of

ChNLP1-induced necrosis including their signal peptides. Co-

expression of ChEC3, ChEC3a or ChEC5 with their signal

peptides resulted in significantly fewer sites showing reduced

necrosis relative to the chitinase control with signal peptide

(P,0.01). Thus, data obtained from ChEC constructs with and

without signal peptide were not significantly different (P.0.3,

Figure 6D). To evaluate the specificity of the cell death suppressing

activity, we re-tested the same three ChECs for their ability to

interfere with necrosis induced by Phytophthora infestans INF1, an

elicitor requiring different plant signalling components [25].

ChEC3, ChEC3a or ChEC5 failed to suppress INF1-induced

necrosis, whereas co-expression of Avr3aKI, a well-described

suppressor of INF1-induced cell death [26], resulted in significant

necrosis reduction in our assay (Figure 6D). Thus, ChEC3,

ChEC3a and ChEC5 specifically interfere with ChNLP1-induced

necrosis, but not INF1-induced necrosis.

Preliminary experiments showed that challenge of ChEC-

expressing sites with the adapted tobacco pathogens C. orbiculare

and C. destructivum did not result in enhanced fungal growth,

possibly as a result of immune responses triggered by the

agroinfiltration procedure. To further investigate the virulence

function of ChECs, we tested the ability of two suppressors and

two non-suppressors of ChNLP1-induced cell death to promote

the multiplication of plant pathogenic bacteria. For this we used

Pseudomonas syringae pv. tomato carrying the ‘effector detector vector’

to deliver ChECs via the bacterial type III secretion system into the

cytoplasm of Arabidopsis cells [27]. Out of the four proteins tested,

ChEC3 and CHEC89, but not ChEC6 and ChEC36, significantly

enhanced bacterial virulence compared to a YFP control,

presumably by suppressing host defense responses (Figure 6E).

Discussion

The role of secreted effector proteins during infection by

hemibiotrophic plant pathogens is poorly understood. The present

study provides a comprehensive inventory of in planta-expressed

effector candidates for the hemibiotrophic fungus Colletotrichum

higginsianum. We found most biotrophy-associated ChEC genes

were dramatically upregulated exclusively in planta, which suggests

these proteins play an important role during host infection.

Consecutive waves of effector gene expression were associated

with key developmental transitions, indicating that distinct suites of

effectors are deployed at each infection stage.

For ChECs upregulated pre-invasion (waves 1 and 2), we

demonstrated focal secretion to and from appressorial penetration

pores. Appressoria have been long-recognized as structures

enabling turgor-driven penetration of host surface barriers [2].

We now add another level of functional complexity to this highly

elaborated infection structure that has not been reported

previously, namely the local release of effector proteins at a

nanoscale interface formed between host and pathogen, defined by

the basal penetration pore. In contrast to secreted proteins that are

targeted to the inner appressorial wall where they may play

structural roles [28], ChECs were specifically secreted to the

penetration pore, reflecting the strong basipetal polarity associated

with switch from radial (isometric) expansion to focused tip growth

of the emerging penetration hypha [4]. ChEC6:mRFP and

ChEC36:mRFP fusions were expressed and targeted to this pore

before any ingression into the host cell had occurred. Given that in

vitro and in planta appressoria are morphologically indistinguishable

[29] and that these effectors were not expressed by in vitro

appressoria, this suggests that host-derived signals, rather than

developmental cues, induce ChEC expression. Moreover, these

signals must be sensed before penetration hyphae emerge,

presumably via the wall-less pore region. Unlike all other ChECs

expressed as mRFP fusions, only CHEC13:mRFP was detectable

during penetration of cellophane, suggesting CHEC13 expression

is developmentally linked to penetration hypha formation.

Similarly, expression of the M. oryzae avirulence gene ACE1,

involved in the synthesis of a secondary metabolite effector, is

linked to the emergence of penetration hyphae [30].

Why are ChECs expressed and secreted at such an early stage of

pathogenesis? Our ultrastructural analyses revealed host-derived

cell wall material is deposited beneath appressoria before any

visible penetration or structural damage to the cuticle/cell wall,

indicating Arabidopsis perceives and responds to C. higginsianum

appressoria before fungal entry. We propose that the fungus

deploys early-expressed effectors to counteract pre-invasion host

defenses and to prepare the host cell for colonization. In support of

this idea, it was previously demonstrated for C. lindemuthianum that

appressorium maturation, but not penetration, was sufficient to

induce bean defense responses [31]. Similarly, C. lindemuthianum

mutants lacking the transcription factor Ste12 required for

appressorial penetration induced a hypersensitive response and

defense gene expression in non-host plants, again indicating that

pathogen perception is independent of penetration [32]. Arabidopsis

resistance to C. higginsianum conferred by the resistance genes RRS1

and RPS4 acts very early, before formation of biotrophic hyphae

[33]. This suggests wave one or two effectors (or their activities)

may be recognized by these resistance proteins. Shimada and co-

arabidopsidis ATR13Emco5 [27] and YFP were included as positive and negative controls, respectively. Colony forming units were determined 0 and 3
days after spray inoculation. * and ** indicate significant difference from the YFP control at P,0.03 and P,0.0005, respectively. Data represent means
of 4 replicates (6 standard error).
doi:10.1371/journal.ppat.1002643.g006
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workers [34] proposed that C. higginsianum is able to suppress

callose wall depositions in attacked Arabidopsis cells. Consistent with

this, we barely detected callose within the first-formed host cell

wall deposits. However, these initial deposits were subsequently

encrusted with a layer of b-1,3 glucan. Intriguingly, we also

observed specific labelling of the host cuticle-cell wall interface

directly beneath appressoria (Figure S5 G, H). Further work is

required to determine whether this b-1,3 glucan is of plant or

fungal origin.

The observed accumulation of wave three effectors in interfacial

bodies on the surface of biotrophic hyphae is reminiscent of the M.

oryzae biotrophic interfacial complex (BIC), in which fluorescent

protein-tagged effectors also accumulate [19]. However, when

biotrophic hyphae of M. oryzae occupy the first invaded epidermal

cell, only a single BIC of approx. 1–2 mm diameter is present,

whereas C. higginsinum hyphae are decorated with numerous

interfacial bodies of ,500 nm diameter. Khang and co-workers

[35] reported that BIC-localization was correlated with effector

translocation into the rice cytoplasm. However, we could not

detect uptake of any ChEC:mRFP fusion protein into the host

cytoplasm. Nevertheless, the ability of ChECs to enhance bacterial

growth upon delivery into the plant cytoplasm and/or to suppress

ChNLP1-induced cell death upon direct expression in the plant

cytoplasm (i.e. without their signal peptide) raises the possibility

that these effectors are translocated into host cells. It is possible

that the amount of translocated ChEC:mRFP fusion protein is

below the detection limits of confocal microscopy and immuno-

gold labelling. Alternatively, the mRFP tag (28 kDa) could

interfere with effector translocation, although tags as large as

50 kDa were successfully used to trace M. oryzae effector

translocation into invaded rice cells and their neighbors [35].

The use of antibodies raised against native ChEC proteins or

peptides for immunolabelling may circumvent this potential

problem.

Colletotrichum homologs of NLPs have not been reported

previously. ChNLP1 was an effective cell death inducer and was

strongly and specifically upregulated at the switch from biotrophy

to necrotrophy, consistent with a role in terminating the biotrophic

phase of pathogenesis. The strong upregulation of ChNLP3 and

ChNLP5 early during host penetration and biotrophy is intriguing

and shows that expression of NLP-homologs is not detrimental to

biotrophy per se. Consistent with this, the genome of the biotrophic

oomycete Hyaloperonospora arabidopsidis contains several NLP-like

genes without necrosis-inducing activity [36]. ChNLP3 and

ChNLP5 lack three out of four highly conserved amino acid

residues required for full NLP activity [37], and as expected,

ChNLP3 did not provoke cell death in N. benthamiana in our assay,

suggesting these proteins have adopted new functions.

We hypothesize that during initial host penetration and the

intracellular biotrophic phase, Colletotrichum likely induces host cell

damage and the release of damage-associated molecular patterns

(DAMPs) and needs to secrete effectors that maintain host cell

viability. In support of this, we found ChECs that suppressed cell

death induced by ChNLP1, which is likely to cause disintegration

of the plant plasma membrane. This suppression activity was

specific for NLP1-induced cell death, since these effectors did not

suppress INF1-induced necrosis. It was previously demonstrated

that distinct signalling pathways mediate NLP- and INF1-induced

cell death in N. benthamiana [25]. It is conceivable that in our co-

expression assay in planta, C. higginsianum effectors interfere with

ChNLP1-specific signalling components and thereby prevent

amplification of a cell death signal or its spreading from cell to

cell. Plant responses evoked by NLPs share some characteristics

with MAMP-triggered immunity [38,39]. The broad taxonomic

distribution of NLPs in fungi, oomycetes and bacteria, and the

relatively high sequence conservation of NLPs is also consistent

with the classical concept of MAMPs [24]. It was suggested

previously that plant cells recognize NLP action but not the

protein itself and that NLP-mediated membrane disruption may

release endogenous damage-associated molecular patterns

(DAMPs) [37]. In view of their reciprocal expression pattern

during infection, cell death-suppressing ChECs may not interfere

with ChNLP1 itself or its cytolytic activity but rather with

responses to DAMPs, or to other factors inducing cell death

through similar pathways, that are released or triggered during

biotrophic invasion. Consistent with a role in the suppression of

MAMP/DAMP-triggered immunity, ChEC3 also supported the

multiplication of plant pathogenic bacteria. ChEC3 and its paralog

ChEC3a resemble CgDN3 from C. gloeosporioides, which is phyloge-

netically distant from C. higginsianum [12]. Similar to ChEC3 and

ChEC3a, CgDN3 was found to be expressed during the early

biotrophic phase of C. gloeosporioides [14]. These authors found that

a fungal mutant lacking CgDN3 was non-pathogenic and elicited a

cell death response in attacked cells, and they proposed a role for

CgDN3 in interfering with plant defense. Here we provide

experimental evidence that this effector family functions in host

cell death suppression.

ChEC5 contains a cerato-platanin domain (CPD). CPD

proteins have varied and sometimes contrasting activities,

depending on the fungal pathogen and host species. This

diversified protein family is prevalent in the genomes of

ascomycete plant pathogens, including necrotrophs and obligate

biotrophs as well as ectomycorrhizal fungi [40–42], suggesting an

important role during plant colonization. Depending on the

pathogen’s lifestyle, certain members may have co-opted functions

to suppress or elicit host cell death, and thus can be regarded as

‘core’ effectors deployed by many plant-associated fungi. Jeong

and co-workers [17] reported the failure of appressorial penetra-

tion and early abortion of pathogenesis in M. oryzae mutants

lacking MSP1, a homolog of ChEC5, suggesting this CPD protein is

involved in establishing a biotrophic interaction with host cells.

Similar to ChEC5, MSP1 expression was not differentially

regulated in planta [43]. Our study provides the first evidence that

a CPD protein acts as a cell death suppressor, further expanding

the range of biological activities of this protein family.

Although many effectors of filamentous pathogens interfere with

INF1-induced cell death and cell death resulting from effector-

triggered immunity [26,44,45], only one effector suppressing NLP-

induced cell death has been reported previously, namely P. infestans

SNE1 [46]. Remarkably, SNE1 showed this effect when directly

expressed in the plant cytosol, without its signal peptide. SNE1

carries the motif RXLX at its N-terminus, which resembles a

variant of the oomycete host translocation motif RXLR, and was

shown to mediate effector uptake [47,48]. Similarly, ChEC3,

ChEC3a, ChEC5, ChEC6 and CHEC34 also exert cell death-

suppressing activity without their signal peptides. Despite the lack

of any RXLR-like or other shared amino acid motif in these

proteins, this finding suggests they act intracellularly after

translocation into host cells. Thus, the necrosis-suppressing effect

of full-length ChECs could result from their re-entry after being

secreted by the plant cell.

In conclusion, the extreme stage-specificity and reciprocal

expression patterns of cell death inducers and suppressors raise

the possibility that Colletotrichum utilizes the same type of

programmed cell death at the onset of necrotrophic growth that

it must previously suppress during biotrophy. This would imply

that effector-targeted components of the signalling cascade

required for NLP-induced cell death become compatibility factors
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for the later necrotrophic stage of infection. In addition, the focal

release of effectors is revealed as a new function for the appressoria

of plant pathogenic fungi. The small contact zone delimited by the

appressorial penetration pore can be regarded as a highly localized

battleground to which both opponents target their weapons, even

before the outer host barriers are breached. An intriguing finding

was the tight regulation and plant-responsiveness of most effector

genes. Future goals will be to decipher the nature of the plant

signal(s) inducing effector gene expression and how they are sensed

by the pathogen. A better understanding of host perception by

phytopathogenic fungi is likely to provide novel strategies for the

control of many economically important crop diseases through

chemical intervention or plant breeding.

Materials and Methods

Fungal and plant material
C. higginsianum isolate IMI349063A was used for EST generation

and as background strain for fungal transformations. The abaxial

surface of detached Arabidopsis leaves was inoculated and incubated

as described previously [16]. Epidermal peels were prepared by

adhering the adaxial surface with double-sided tape and quickly

removing the epidermis using tweezers. Pieces of remaining

mesophyll were excised quickly and the peels (,15 mm2 per leaf)

were flash-frozen in liquid nitrogen. The following infection stages

were sampled using this technique: 5 hpi (germlings; RT-PCR),

22 hpi (unpenetrated appressoria in planta; RT-PCR, qRT-PCR

and EST generation), 40 hpi (penetrated appressoria in planta with

nascent biotrophic hyphae; RT-PCR, qRT-PCR and EST

generation) and mock-inoculated leaves (RT-PCR and EST

generation). Microscopic spot-checks of infected material ensured

the absence of biotrophic hyphae in samples representing

unpenetrated appressoria in planta and the absence of necrotrophic

hyphae in samples representing penetrated appressoria with

nascent biotrophic hyphae. Sectors including the first appearing

pin-point water-soaked lesions (,60 hpi) were sampled for the

switch between biotrophy and necrotrophy (Figure S3). Macerated

leaves at 72 hpi represented late necrotrophy. Saprotrophic

mycelium and conidia were produced as described previously

[13]. In vitro appressoria and germlings formed on an unpene-

tratable surface were obtained by incubating spores on polystyrene

[29]. Formation of ‘pseudo biotrophic hyphae’ within cellophane

membranes was achieved using autoclaved dialysis tubing

(Visking, Roth).

Bioinformatic screening for ChECs
Details about library preparation, sequencing techniques,

strategies to maximize gene discovery as well as EST assembly

statistics can be found in Text S1. ORFs were predicted from EST

contigs with the Fusarium matrix of BESTORF (Molquest package,

Softberry). Solubly secreted proteins were identified following

published guidelines [49]. Secreted proteins (and their corre-

sponding contigs) for which no significant (,1e-5) BLASTX,

BLASTN or TBLASTX [50] match could be obtained in

GenBank’s protein, nucleotide and EST databases, respectively,

were defined as ChECs, supplemented with proteins resembling

previously described fungal effectors. TBLASTN identified

orthologs in the C. graminicola genome (http://www.

broadinstitute.org/annotation/fungi/). ChEC-encoding contigs

depleted in ESTs from the late necrotrophic phase (,15%) were

defined as ‘biotrophy-associated’. The inventory of biotrophy-

associated ChECs was manually curated to remove (i) incomplete

ORFs with missing C-termini present in the genome showing

homology to known proteins (ii) ORFs ,20 residues and (iii)

artifactual ORFs with monotonous sequences. For further analysis,

we prioritized ChECs that resembled previously identified

effectors and/or displayed high expression levels in biotrophy-

relevant stages as determined by their EST read counts in our

non-normalized libraries (see Text S1 for details on library

preparation)

Quantitative real-time PCR
Three biological replicates were obtained for each sampled

fungal stage. cDNA was synthesized from 1 mg total RNA using

the iScript cDNA synthesis kit (Bio-Rad) in a volume of 20 mL.

Two mL of cDNA (5 ng/mL) were amplified in 1X iQ SYBR

Green Supermix (Bio-Rad) with 1.6 mM primers using the iQ5

Real-time PCR detection system (Bio-Rad). Specific primers (see

Text S1) amplified fragments ranging from 106 to 329 bp with

efficiencies ranging from 97 and 123%. GeNorm (http://medgen.

ugent.be/wjvdesomp/genorm/) was used to assess expression

stability of five commonly used reference genes of which a-tubulin

and actin were most stable (stability value 0.047 and 0.051,

respectively) and used to normalize gene expression [51].

Localization of ChECs, fungal transformation and
functional assays

To localize ChECs by fluorescent protein-tagging, genes

including at least 1.5 kb or the entire upstream intergenic region

were amplified from DNA, followed by TOPO cloning (Invitro-

gen), sequence verification and shuttling into pFPL-R, a binary

destination vector providing C-terminal translational fusions to

mRFP. This vector was created and kindly provided by Dr. M.

Farman (Univ. of Kentucky, Lexington, KY). Fungal transforma-

tion was carried out as described by Huser and co-workers [52]. A

detailed description of the cloning and the agroinfiltration

procedure used for transient expression in N. benthamiana is

described in Text S1. The ‘effector detector vector’-based bacterial

multiplication assay was performed according to Sohn et al. [27].

Light microscopy
For cellulose acetate-stripping, 5% (w/v) cellulose acetate

(Sigma-Aldrich) in acetone was brushed on the inoculated leaf.

After complete acetone evaporation, the cellulose acetate coating

was stripped off. Confocal images were obtained with Leica TCS

SP2 or Zeiss LSM 700 confocal scanning microscopes. Excitation

for imaging GFP fluorescence used the 488 nm laser line and

emission was detected at 492–550 nm. For imaging mRFP,

excitation was at 563 (Leica) or 555 nm (Zeiss) and emission was

detected at 566–620 (Leica) or 557–600 nm (Zeiss). To discrim-

inate mRFP emission from autofluorescence, we used spectral

imaging in the lambda mode of a Zeiss LSM 510 microscope.

Using the Meta detector and 545 nm excitation line, image stacks

with 558–648 nm emission were recorded. To separate mixed

fluorescent signals and resolve the spatial distribution of mRFP

fluorescence, linear unmixing was employed using the mRFP

emission spectrum and several autofluorescence spectra as

references.

Electron microscopy
Cellulose acetate replicas and the stripped leaf surface were

imaged with a Zeiss Supra 40VP scanning electron microscope at

10 kV. Stripped leaf surfaces were fixed using a cryo-preparation

device (Emitech Technologies, Ringmer). Specimens were frozen

in liquid nitrogen slush and sputter-coated with palladium after

sublimation of surface ice (Polaron Sputter Coater SC 7600,

Quorum Technologies). Samples for ultrastructural observation
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were processed according to [13]. For immunogold labelling,

infected plant material was fixed in 4% (w/v) p-formaldehyde and

0.5% (v/v) glutaraldehyde in 0.05 M sodium cacodylate buffer,

pH 6.9, for 2 h. After progressive low-temperature dehydration in

a graded water-ethanol series [53], samples were embedded in LR

White resin (Plano GmbH, Wetzlar, Germany). For immunogold

labelling, we used procedures described previously [54]. Rabbit

polyclonal anti-mRFP antibody (R10367, Molecular Probes) and

mouse monoclonal anti-ß-1,3-glucan antibody (Biosupplies Aus-

tralia Pty., Parkville, Australia) were both applied at dilutions of 1

in 500. Goat anti-rabbit and goat anti-mouse IgG antibodies

conjugated with 5 or 10 nm colloidal gold particles (British Biocell

International, Cardiff, UK) were used as secondary antibodies.

Accession numbers
ChEC3 (HE651156), ChEC3a (HE651158), ChEC4

(HE651159), ChEC5 (HE651160), ChEC6 (HE651161), ChEC7

(HE651162), ChEC9 (HE651164), ChEC13 (HE651168),

ChEC34 (HE651193), ChEC36 (HE651195), ChEC51

(HE651213), ChEC56 (HE651219), ChEC88 (HE651251),

ChEC89 (HE651252), ChToxB (HE651256), ChNLP1

(HE651257), ChNLP3 (HE651259), ChNLP5 (HE651261). Ac-

cession numbers for the entirety of ChECs can be retrieved from

Table S1. ESTs were submitted to the EBI Sequence Read

Archive under the accession number ERP001241 (http://www.

ebi.ac.uk/ena/data/view/ERP001241).

Supporting Information

Figure S1 Sequence diversification of selected ChECs.
(A) Southern blot analysis using genomic DNA of 21 different

Colletotrichum species or isolates. Hybridization conditions allowed

25% nucleotide mismatches. Note the low sequence conservation

or absence of ChEC genes outside the C. destructivum species

aggregate. Only ChEC2 was detectable outside the C. destructivum

species aggregate (asterisk) and was confirmed by BLAST to have

76% identical base pairs with the C. graminicola homolog, consistent

with the hybridization conditions used. ChEC3 is only detectable in

C. higginsianum strains, isolated from Matthiola incana (a), Raphanus

sativus (b) and Brassica spp. (c). A control gene encoding a non-

secreted calpain protease, although absent from most sequenced

ascomycete genomes [29], is conserved in all species tested. The

ethidium bromide-stained agarose gel before blotting is shown

below as loading control. From left to right, the following species

and isolates were analyzed: C. higginsianum IMI349063A (reference

strain), C. capsici LARS 141, Glomerella magna LARS 688, C.

malvarum LARS 629, C. gloeosporioides LARS 074, C. trifolii LARS

972, C. lagenarium 104-T, C. gloeosporioides LARS 224, C. graminicola

M1.001, C. truncatum LARS 060, C. higginsianum Ch90-M3, CH93-

M1, AR 3-1, NBRC6182, Abo 1-1, Abp 3-1 and MAFF 305968,

C. destructivum N150, LARS 056 and LARS 709, C. linicola IMI

103844. (B) Alignment of ChEC3, ChEC3a and C. gloeosporioides

CgDN3 protein sequences (above) and corresponding secondary

structure predictions of the mature proteins (below). Amino acid

residues identical in all three proteins are indicated in red, those

identical in ChEC3 and ChEC3a are shaded in grey. The

predicted signal peptide cleavage site is marked with a triangle.

The green arrow indicates the conserved position of a phase 2-

intron, which splits the codon for the conserved histidine residue

between the second and third base. A black arrow indicates the

only single nucleotide polymorphism identified by sequencing

ChEC3 and ChEC3a genes from 17 different C. higginsianum isolates,

resulting in an exchange of the aspartate with asparagine in the

protein sequence of ChEC3a in C. higginsianum isolate CH93-M1

C, coil; E, strand; H, helix.

(TIF)

Figure S2 ChEC4 and ChEC9 carry functional nuclear
localization signals (NLS). (A, B) Amino acid sequences of

ChEC4 (A) and ChEC9 (B). The predicted signal peptides and

NLS are in bold face and underlined, respectively. The coloured

letters in the ChEC4 sequence indicate three nearly identical

tandem amino acid repeats which form modules encompassing the

predicted bipartite NLS. (C, D) Transient co-expression of

mCherry and C-terminally GFP-tagged ChEC4 or ChEC9 in N.

benthamiana. Expression of ChEC4-GFP (C) and ChEC9-GFP (D)

without their predicted signal peptides results in strong accumu-

lation in plant nuclei. In contrast, the similar-sized mCherry is

equally distributed in cyto- and nucleoplasm.

(TIF)

Figure S3 Illustration of infected leaf samples repre-
senting the transition between biotrophy and necrotro-
phy, and late necrotrophy. Leaves were densely inoculated

(see methods) and incubated until onset of symptom development

(top leaf, 60 hpi) or complete maceration (bottom leaf, 72 hpi).

Symptoms were photographed on a light box and samples for

microscopy were stained with Trypan blue as described by

Takahara et al. (2009). To isolate RNA from biotrophic hyphae

switching to necrotrophy, sectors (dotted line) surrounding the first

pin-point water-soaked lesions (arrow) were harvested. Within

these lesions, thin necrotrophic hyphae proliferate extensively (A),

similar to the fungal growth within completely macerated leaves at

the late necrotrophic stage (B). However, in the area surrounding

these pin-point lesions, most infections comprised biotrophic

hyphae undergoing the switch to necrotrophy (C), as indicated by

the emergence of nascent necrotrophic hyphae (arrowheads). Scale

bars: 5 mm (leaves) or 20 mm (microscope images). BH, previously

biotrophic hyphae. NH, necrotrophic hyphae.

(TIF)

Figure S4 Transmission electron microscopy immuno-
gold detection of ChEC36:mRFP using antibodies to
mRFP. (A) Labelled protein inclusion bodies within fungal

vacuoles (FV). (B) Unlabelled biotrophic hyphae (BH). PV, plant

vacuole. (C) Labelled appressorial pore (P) surrounded by an

unlabelled pore wall overlay (arrowheads). (D) Tangential section

through a pore wall overlay (black asterisks) labelled on the inner

surface. (E) Pore labelling external to the appressorial plasma

membrane. The location of the plasma membrane between the

appressorial cytoplasm (AC) and the pore wall overlay (black

asterisk) is indicated with arrows. (F) Wild-type appressorium

showing absence of any labelling. White asterisks, appressorial cell

wall. P, penetration pore. PW, plant cell wall. WD, plant cell wall

deposits. Scale bars, 500 nm.

(TIF)

Figure S5 Immunodetection of b-1,3-glucans in the
appressorial pore wall overlay and in host cells at
appressorial attack sites. Immunofluorescence (A–F) and

immunogold labelling (G, H) with antibodies recognizing b-1,3-

glucan (10 nm colloidal gold) on wild-type (A–G) and transfor-

mant appressoria expressing ChEC36:RFP. (A–F) Appressoria

detached from the leaf surface by cellulose acetate-stripping

(compare Figure 3M) and labelled by floating on antibody

solutions. Cells are viewed from the plant-exposed underside

using bright-field (A, D), confocal laser scanning microscopy (B, E)

and overlay of bright-field and fluorescence channels (C, F).

Antibodies have entered the cells through the basal appressorial
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penetration pore (white arrows) to label the pore wall overlay,

which forms a ring around the pore. (G, H) Cross-sections through

the base of appressoria, close to the penetration pore. b-1,3-glucan

is detected in the pore wall overlay (arrows) and at the interface

between the plant cuticle (arrowheads) and the plant cell wall

(PW). (H) b-1,3-glucan is not detected in a pad of host wall

deposits (WD) beneath an appressorium but is present in a layer

(asterisks) outside the pad. Section was double-labelled with

antibodies to mRFP (5 nm colloidal gold). AW, appressorial cell

wall. AC, appressorial cytoplasm. Scale bars, 500 nm (G, H), 5 mm

(A–C), 2 mm (D–F).

(TIF)

Figure S6 Confocal laser scanning microscopy reveals
ChEC delivery to the intimate biotrophic interface
between host and pathogen. (A, B) Transformant biotrophic

hypha expressing the wave 3 effector ChEC89:GFP. (C)

Maximum fluorescence intensity overlay of a transformant

biotrophic hypha expressing ChEC89:mRFP. Note the plant cell

wall is labelled (arrowhead). White arrows in B and C indicate

fluorescent foci. (D, E, F) Transformant biotrophic hypha

expressing ChEC13:mRFP (wave 3 effector). The asterisk in F

indicates the location of the appressorium. (G, H, I) Transformant

biotrophic hypha expressing ChEC3:mRFP (wave 2 effector).

Note the fluorescence-depleted hyphal tips (arrowheads in H). (I)

Epidermal cell with intracellular biotrophic hypha and weak

fluorescence in the apoplastic space (*) enlarged by plasmolysis.

Arrowheads demarcate the host plasma membrane. (A, D, G)

Bright field images. (B, E, F) Maximum fluorescence intensity

projections. (C, H, I) Maximum fluorescence intensity overlays. A,

appressorium. BH, biotrophic hypha. V, vacuole of the host

protoplast. Scale bars: 5 mm (A, D), 10 mm (C, F, G), 20 mm (I).

(TIF)

Figure S7 Transformant biotrophic hyphae expressing
CHEC89:mRFP viewed with confocal laser scanning
microscopy. Epidermal cell infected by a biotrophic hypha

(arrows) showing fluorescence in the apoplastic space (*) enlarged

by plasmolysis. Arrowheads demarcate the host plasma mem-

brane. V, vacuole of the host protoplast. Scale bar: 10 mm. See

also Fig. 4E. (A) identical to Fig. 4E. (B) corresponding brightfield

image.

(TIF)

Figure S8 Most ChEC:mRFP fusion proteins are plant-
induced and not detectable during penetration of an
artificial substratum. Transformants expressing the wave 2

effectors ChEC36:mRFP (A, B) and ChEC6:mRFP (C, D; focus

on appressorial penetration pores (arrows) or the wave 3 effectors

ChEC89:mRFP (E, F), ChEC34:mRFP (G, H) or ChEC13:mRFP

(I, J) were inoculated onto cellophane membranes. (A, C, E, G, I)

Bright field images. (B, D, F, H, J) Maximum fluorescence

intensity projections. Scale bars: 10 mm (C, E) and 5 mm (A, G, I).

A, appressorium. C, conidia. H, pseudo biotrophic hyphae

growing inside cellophane.

(TIF)

Figure S9 Transmission electron microscopy immuno-
gold detection of ChEC34:mRFP (wave 3 effector). (A)

Interfacial bodies of transformant biotrophic hyphae expressing

ChEC34:mRFP are labelled. (B) Interfacial bodies of wild-type

biotrophic hyphae are unlabelled. Black arrows, interfacial bodies.

Scale bar: 500 nm.

(TIF)

Figure S10 ChNLP1 expression levels are not affected
by co-expression of ChECs. ChNLP1 was cloned into a plant

expression vector providing a C-terminal translational fusion with

a hemagglutinin (HA) tag (ChNLP1-HA). Similar to untagged

ChNLP1, ChNLP1-HA was able to induce necrosis, which was

found to be suppressable upon ChEC co-expression. Before onset

of visible necrotic symptoms (three days after infiltration), eight

leaf discs from different sites expressing ChEC/cell death inducer

were pooled, likewise their corresponding sites expressing YFP/

cell death inducer. ChNLP1-HA protein levels in ChEC3/

ChNLP1-HA or ChEC5/ChNLP1-HA pools were compared to

those of the corresponding YFP/ChNLP1-HA pools by Western

blot analysis. ChEC3 and ChEC5 were expressed either with

(+SP) or without (2SP) their signal peptides. Using an anti-HA

antibody, full-length ChNLP1-HA (30 kDa expected molecular

mass) could be detected, as well as three additional bands

between 25 and 30 kDa, indicating partial protein cleavage had

occurred. There was no major difference in band intensities

between ChEC- and YFP-expressing infiltration site pairs,

suggesting that co-expression of ChECs, with or without signal

peptide, has no impact on ChNLP protein level per se. PS,

Ponceau red stain.

(TIF)

Table S1 Inventory of biotrophy-associated Colletotri-
chum higginsianum effector candidates (ChECs). For any

ChEC identified, the table lists (a) ENA accession numbers, (b)

identifiers refering to the C. higginsianum genome annotated by the

Broad institute, (c) protein length, (d) number of cysteines, (e)

numbers of homolgues in C. graminicola and (f) predicted motifs or

homologies to known genes.

(DOC)

Table S2 Redundancy of ESTs from plant-penetrating
appressoria as a measure for gene expression level: a
survey of the top 30 contigs containing the highest
numbers of ESTs from plant-penetrating appressoria.
The table lists (a) number of ESTs per contig, (b) information on

the nearest informative homologue given by BLAST, (c) the

presence of a signal peptide, (d) ChEC IDs.

(DOC)

Text S1 Supporting materials and methods. Details about

(a) employed sequencing and normalization techniques, including

assembly statistics, (b) RNA isolation and library preparation, (c)

protein domain and motif searches, (d) Sequencing ChEC3 and

ChEC3a alleles, (e) RT-PCR, (f) transient expression in N.

benthamiana, (g) Western and Southern blot analyses and (h)

Cloning procedures and primers used.

(DOCX)
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al. (2010) Host and nonhost resistance in Medicago–Colletotrichum interactions. Mol

Plant Microbe Interact 23: 1107–1117.

33. Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, et al. (2009) A

locus conferring resistance to Colletotrichum higginsianum is shared by four

geographically distinct Arabidopsis accessions. Plant J 60: 602–613.

34. Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, et al. (2006)

Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell

periphery and requires actin filament function. Mol Plant Microbe Interact 19:

270–279.

35. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, et al. (2010)

Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent

cell-to-cell movement. Plant Cell 22: 1388–1403.

36. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, et al. (2010) Signatures of

adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.

Science 330: 1549–1551.

37. Ottmann C, Luberacki B, Kuefner I, Koch W, Brunner F, et al. (2009) A

common toxin fold mediates microbial attack and plant defense. Proc Natl Acad

Sci U S A 106: 10359–10364.

38. Qutob D, Kemmerling B, Brunner F, Kuefner I, Engelhardt S, et al. (2006)

Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant

Cell 18: 3721–3744.

39. Bae H, Kim MS, Sicher RC, Bae HJ, Bailey BA (2006) Necrosis- and ethylene-

inducing peptide from Fusarium oxysporum induces a complex cascade of

transcripts associated with signal transduction and cell death in Arabidopsis.

Plant Physiol 3: 1056–1067.

40. Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, et al. (2003) Analysis of

expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor

and Pisolithus microcarpus. New Phytol 159: 117–129.

41. Shah P, Atwood JA, Orlando R, Mubarek HE, Podila GH, et al. (2009)

Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8:

1123–1130.

42. Bindschedler LV, Burgis TA, Mills DJS, Ho JTC, Cramer R, et al. (2009) In

planta proteomics and proteogenomics of the biotrophic barley fungal pathogen

Blumeria graminis f. sp. hordei. Mol Cell Proteomics 8: 2368–2381.

43. Yang Y, Zhang H, Li G, Li W, Wang X, et al. (2009) Ectopic expression of

MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-

spectrum disease resistance in Arabidopsis. Plant Biotech J 7: 763–777.

44. Houterman PM, Cornelissen BJC, Rep M (2008) Suppression of plant resistance

gene-based immunity by a fungal effector. PLoS Pathog 4: e1000061.

45. Wang Q, Han C, Ferreira A, Yu X, Ye W, et al. (2011) Transcriptional

Programming and Functional Interactions within the Phytophthora sojae RXLR

Effector Repertoire. Plant Cell 23: 2064–2086.

46. Kelley BS, Lee SJ, Damasceno CMB, Chakravarthy S, Kim BD, et al. (2010) A

secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting

suppressor of programmed cell death. Plant J 62: 357–366.

47. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, et al. (2007) A

translocation signal for delivery of oomycete effector proteins into host plant

cells. Nature 450: 115–118.

48. Dou D, Kale SD, Wang X, Jiang RH, Y, Bruce NA, et al. (2008) RXLR-

Mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not

require pathogen-encoded machinery. Plant Cell 20: 1930–1947.

49. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in

the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–971.

50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

51. Hacquard S, Veneault-Fourrey C, Delaruelle C, Frey P, Martin F, et al. (2011)

Validation of Melampsora larici-populina reference genes for in planta RT-

quantitative PCR expression profiling during time-course infection. Physiol Mol

Plant Pathol 75: 106–112.

52. Huser A, Takahara H, Schmalenbach W, O’Connell R (2009) Discovery of

pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum

using random insertional mutagenesis. Mol Plant Microbe Interact 22: 143–156.

53. Hawes C, Satiat-Jeunemaitre B (2001) Electron microscopy. In: Hawes C,

Satiat-Jeunemaitre B, eds. Plant cell biology: a practical approach. Oxford:

Oxford University Press. pp 235–266.

54. Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011)

Biogenesis of a specialized plant–fungal interface during host cell internalization

of Golovinomyces orontii haustoria. Cell Microbiol 13: 210–226.

Sequential Effector Delivery by a Phytopathogen

PLoS Pathogens | www.plospathogens.org 15 April 2012 | Volume 8 | Issue 4 | e1002643


