
HAL Id: hal-02652695
https://hal.inrae.fr/hal-02652695v1

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Inside dynamics of delayed traveling waves
Olivier Bonnefon, Jimmy Garnier, François Hamel, Lionel Roques

To cite this version:
Olivier Bonnefon, Jimmy Garnier, François Hamel, Lionel Roques. Inside dynamics of de-
layed traveling waves. Mathematical Modelling of Natural Phenomena, 2013, 8 (3), pp.42-59.
�10.1051/mmnp/20138305�. �hal-02652695�

https://hal.inrae.fr/hal-02652695v1
https://hal.archives-ouvertes.fr


“bghr˙format˙mmnp” — 2013/4/9 — 15:58 — page 32 — #1i
i

i
i

i
i

i
i

Math. Model. Nat. Phenom.
Vol. 7, No. 2, 2013, pp. 32–49

DOI: 10.1051/mmnp/20127102

Inside dynamics of delayed traveling waves

O. Bonnefon1, J. Garnier1,2, F. Hamel2,3, L. Roques1 ∗

1 UR 546 Biostatistique et Processus Spatiaux, INRA, 84000 Avignon, France
2 Aix-Marseille Université, LATP (UMR 7353)
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Abstract. The notion of inside dynamics of traveling waves has been introduced in the recent
paper [14]. Assuming that a traveling wave u(t, x) = U(x− c t) is made of several components
υi ≥ 0 (i ∈ I ⊂ N), the inside dynamics of the wave is then given by the spatio-temporal
evolution of the densities of the components υi. For reaction-diffusion equations of the form
∂tu(t, x) = ∂xxu(t, x) + f(u(t, x)), where f is of monostable or bistable type, the results in [14]
show that traveling waves can be classified into two main classes: pulled waves and pushed
waves. Using the same framework, we study the pulled/pushed nature of the traveling wave
solutions of delay equations

∂tu(t, x) = ∂xxu(t, x) + F (u(t− τ, x), u(t, x)).

We begin with a review of the latest results on the existence of traveling wave solutions of such
equations, for several classical reaction terms. Then, we give analytical and numerical results
which describe the inside dynamics of these waves. From a point of view of population ecology,
our study shows that the existence of a non-reproductive and motionless juvenile stage can
slightly enhance the genetic diversity of a species colonizing an empty environment.

Keywords and phrases: traveling waves, delayed equation, pulled and pushed solutions,
Kobayashi’s equation, Hutchinson’s equation

Mathematics Subject Classification: 35C07, 35K57, 35Q92

1. Introduction and main results

This papers deals with the traveling wave solutions of delayed nonlinear parabolic equations of the form:

∂tu(t, x) = ∂xxu(t, x) + F (u(t− τ, x), u(t, x)), t > 0, x ∈ R, (1.1)

where τ is a positive constant. These equations are generalizations of the classical reaction-diffusion
equations:

∂tu(t, x) = ∂xxu(t, x) + f(u(t, x)), t > 0, x ∈ R. (1.2)

The equation (1.2) arises in various scientific domains, from population dynamics [9, 17, 32, 35, 39] to
chemistry [7,12]. Throughout the paper, we assume that f(0) = f(1) = 0. In the framework of population
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dynamics, for instance, the quantity u stands for the population density and the nonlinear term f(u(t, x))
in (1.2) corresponds to the growth term.

In the delayed equation (1.1), the growth term F (u(t − τ, x), u(t, x)) also depends on the quantity
u(t− τ, x) at time t− τ . This type of growth term has been introduced in ecological models of ordinary
differential equations in [22] and can arise in many situations. A typical example is the existence of a
non-reproductive and motionless juvenile stage. During the life cycle of many insects, for instance, the
juvenile – or immature – stage consists of the egg, larva and pupa which cannot reproduce and do not
move or move slowly compared to adults. In such cases, if the duration of the juvenile stage is τ, the value
of the growth term at time t and position x depends on the number of eggs which were laid at time t− τ
at the position x. This number is a function of the density of adult individuals u(t − τ, x). The growth
term can also depend on the current density of adult individuals, u(t, x), because of crowding effects.

1.1. The inside structure of the traveling waves for problem (1.2)

Under some suitable assumptions on the function f, the problem (1.2) admits traveling wave solutions of
the form u(t, x) = Uc(x − ct), where c > 0 is the speed of the wave and Uc is a positive function which
describes the profile of the wave. It satisfies the equation:{

U ′′c (y) + cU ′c(y) + f(Uc(y)) = 0, y ∈ R,
Uc(−∞) = 1, Uc(+∞) = 0 and 0 < Uc < 1 on R.

The existence of such solutions, describing the invasion of the stationary state 0 by the state 1, with a
constant speed c and a constant profile Uc, was one of the main reasons for the success of the reaction-
diffusion theory in applied sciences. There is a huge literature on the properties of these traveling
waves. In particular, existence results have been derived in [3, 4, 12, 23, 25], uniqueness results (up to
shift) are detailed in [4, 13], and the stability properties of the waves have been extensively analyzed in
e.g. [8, 10, 13, 25, 27, 36, 37, 43]. Some particular existence results will be recalled and used later for some
specific nonlinearities f .

More recently, the notion of inside dynamics of traveling waves has been introduced in [14]. Assume
that a traveling wave solution u(t, x) = Uc(x− ct) of (1.2) is made of several neutral components υi ≥ 0
(i ∈ I ⊂ N) which satisfy the equation ∂tυ

i = ∂xxυ
i +

υi

u
f(u), t > 0, x ∈ R,

υi(0, x) = υi0(x), x ∈ R,
(1.3)

where the components υi are such that

u(0, x) =
∑
i∈I

υi0(x), x ∈ R.

The inside dynamics of the wave

u(t, x) = Uc(x− ct) =
∑
i∈I

υi(t, x)

is then given by the spatio-temporal evolution of the densities of the components υi. Notice that the
equality Uc(x− ct) =

∑
i∈I υ

i(t, x) is a consequence of the fact that u satisfies the same equation

∂tu = ∂xxu+
u

u
f(u),

where υi has been replaced by u in (1.3), as do all the components υi. In this model, derived from [18,44],
all components υi are neutral in the sense that they share the same characteristics as the front u: they all
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have the same diffusion coefficient and the same per capita growth rate. The motivation of this model will
be detailed later. Based on the formulation (1.3), it was shown in [14] that for the standard nonlinearities
f (monostable and bistable nonlinearities), the traveling wave solutions of (1.2) can then be classified
into the following two types:

Definition 1.1 (Pulled wave). A traveling wave u(t, x) = Uc(x − ct) is said to be a pulled wave if, for
any component υi satisfying (1.3), 0 ≤ υi0 ≤ Uc and υi0(x) = 0 for large x, there holds

υi(t, x+ ct)→ 0 as t→ +∞, uniformly on compact sets.

Assume that Uc is a pulled wave and consider the (right) component υr, which satisfies at t = 0,
υr0 = Uc · 1[α,+∞), where 1[α,+∞) denotes the indicator function of the interval [α,+∞), for some α ∈ R.
The component υl corresponding to the remaining part of the wave satisfies υl0 = Uc · 1(−∞,α) and
therefore converges to 0 in the moving frame with speed c. Since

u(t, x+ ct) = Uc(x) = υl(t, x+ ct) + υr(t, x+ ct),

it follows that υr(t, x+ ct) converges to Uc(x) as t→∞ in the moving frame. Thus, the wave Uc tends to
be made of the rightmost component only: in other words, it is pulled by the component at the leading
edge of the front.

Definition 1.2 (Pushed wave). A traveling wave u(t, x) = Uc(x− ct) is said to be a pushed wave if, for
any component υi satisfying (1.3), 0 ≤ υi0 ≤ Uc and υi0 6≡ 0, there exists M > 0 such that

lim sup
t→+∞

sup
x∈[−M,M ]

υi(t, x+ ct) > 0.

This definition means that any component of a pushed wave propagates with the same speed c as the
total wave Uc(x− ct). In other words, the wave is pushed by all its components.

In the KPP (for Kolmogorov, Petrovski and Piskunov) case, that is f is positive in (0, 1) and such that
f(s) ≤ f ′(0) s in (0, 1), there exists a minimal speed c∗ = 2

√
f ′(0) > 0 such that (1.2) admits traveling

wave solutions with speed c if and only if c ≥ c∗ [25]. The results in [14] show that in this case all the
traveling wave solutions are pulled. In the general monostable case, that is when f > 0 in (0, 1), there
still exists a positive minimal speed c∗ ≥ 2

√
f ′(0) such that (1.2) admits traveling wave solutions with

speed c if and only if c ≥ c∗. Note that the KPP assumption may not be satisfied. The results in [14]
show that the critical traveling wave with speed c∗ is pushed if c∗ > 2

√
f ′(0) and is pulled otherwise.

Furthermore, the supercritical waves with speeds c > c∗ are always pulled. On the other hand, in the
bistable case, that is f ′(0) < 0, f ′(1) < 0,

∫ 1

0
f(s) ds > 0 and there exists ρ ∈ (0, 1) such that f < 0 in

(0, ρ) and f > 0 in (ρ, 1), the unique traveling wave (see [3,4,13] for the existence and uniqueness of this

wave) is pushed [14] (notice that the speed c is positive since
∫ 1

0
f(s)ds > 0).

The above definitions of pulled and pushed waves agree with the pulled/pushed terminology introduced
by Stokes [40] in the monostable case. The definition of [40] was indeed based on the comparison between
c∗ and 2

√
f ′(0). If c∗ = 2

√
f ′(0), the minimal speed only depends on the linearization of the equation

around the limiting state 0 and the critical wave with speed c∗ = 2
√
f ′(0) is then pulled by the leading

edge of its tail. Otherwise, the critical wave with speed c∗ > 2
√
f ′(0) is pushed by its nonlinear part.

The reason why the supercritical waves with speeds c > c∗ are pulled is not so obvious, apart from the
known fact that they all have fat exponential tails as they converge to the unstable state 0 [4].

1.2. Motivation and main assumptions for problem (1.1)

For the equation (1.2) without delay, the new formulation of pushed and pulled solutions given in Def-
initions 1.1 and 1.2 had the advantage of being intuitive and to work in both the monostable and the
bistable cases. Furthermore, it can easily be extended to more general models, as shown here for equation
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(1.1) with delay. In our setting, the pulled/pushed nature of the waves also gives a precise understanding
of their inside dynamics. The comprehension of the dependence of the inside structure of the waves on
the nonlinearity f has profound implications in population genetics [34]. From this perspective, u is
interpreted as a density of genes, and the components υi correspond to neutral genetic fractions. Pulled
waves indicate a strong erosion of the genetic diversity, while pushed waves indicate that the full ge-
netic diversity of a population is conserved in the colonization front. As emphasized in [34], bistable
nonlinearities correspond to a negative fertility at low densities, a phenomenon known as the Allee effect
in ecological sciences [6]. The pushed nature of the wave in this case shows that the Allee effect has
advantageous consequences on genetic diversity compared to the KPP case. This result is in contrast
with previous studies on the Allee effect, which generally shows adverse consequences of the Allee effect.
This perspective is inherited from demographic studies, which demonstrate that the Allee effect can lead
to the failure of biological invasions [15,28,29].

In the ecological literature, the existence of a juvenile stage has been suspected to lead to a better
conservation of the genetic diversity [5]. The existence of a delay in (1.1) is also well known to reduce
the minimal speed of traveling waves for KPP-type nonlinearities [38]. Thus, as for the Allee effect, we
can expect that the introduction of a delay term in (1.1) will modify the inside structure of the waves.
The main goal of this paper is to analyze the evolution of the inside structure of the solutions of the
delayed equation (1.1). We focus on two main types of functions F which have been considered in the
literature: the Kobayashi and Hutchinson’s types.

Kobayashi’s equation. In this case, we assume that the function F is of class C1([0, 1] × [0, 1]) and that
it satisfies

F (r, s) = f1(r) f2(s), for all 0 ≤ r, s ≤ 1. (1.4)

The function f1 corresponds to the intrinsic growth rate of the population, i.e., the growth rate in the
absence of saturation effects. The function f2 describes the saturation of the environment. The term
F (u(t− τ, x), u(t, x)) in (1.1) therefore reflects the birth of new individuals from individuals which were
present at time t − τ, compensated by saturation effects depending on the present population density
u(t, x). More precisely, the functions f1 and f2 are assumed to satisfy

(i) f1, f2 ∈ C1([0, 1]),

(ii) f1(0) = f2(1) = 0, f2(0) = 1,

(iii) f1, f2 > 0 in (0, 1),

(iv) β := f ′1(0) > 0 and 0 ≤ f ′1(r) ≤ f ′1(0) for r ∈ [0, 1],

(v) f ′2(s) ≤ 0 for s ∈ [0, 1].

(1.5)

Under these assumptions, the function f(r) = F (r, r) is of the KPP type: f is positive in (0, 1) and
satisfies f(0) = f(1) = 0 and 0 < f(r) ≤ f ′(0) r for all r ∈ (0, 1). Thus, in the absence of delay
(τ = 0), the equation (1.1) is equivalent to the equation (1.2) with a KPP nonlinearity and traveling
wave solutions u(t, x) = Uc(x − ct) with Uc(+∞) = 0 < Uc < Uc(−∞) = 1 exist if and only if
c ≥ c∗(0) := 2

√
β. A typical example of a function F satisfying the assumptions (1.4) and (1.5) is

F (r, s) = r (1−s). The equation (1.1) with the nonlinearity F (u(t−τ, x), u(t, x)) = u(t−τ, x) (1−u(t, x))
is known as Kobayashi’s equation, and was derived in [24] from a branching process. Since then, several
papers have been devoted to the analysis of the mathematical properties of this equation, with a special
focus on its traveling wave solutions [33,38].

Hutchinson’s equation. Another typical example of function F in (1.1) is:

F (r, s) = s (1− r). (1.6)

This nonlinear term was first considered in the work of Hutchinson [22], and the equation (1.1) is thereby
called the Hutchinson’s equation. This is the most classical example of reaction-diffusion equation with
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temporal delay. Here, the assumption (1.5) is not satisfied. Moreover, since the nonlinear term u(t, x)(1−
u(t − τ, x)) is nonmonotone with respect to the delay argument, the proof of the existence of traveling
waves is more involved in this case than for Kobayashi’s equation.

From an ecological viewpoint, the equation (1.1) with the nonlinear term (1.6) means that the intrinsic
growth rate depends on the present population density u(t, ·), whereas the saturations effects depend on
the past population density u(t− τ, ·).

1.3. Traveling waves for the delayed equation (1.1)

As in the no-delay case, a traveling wave solution of (1.1) propagating with the speed c > 0 can be
defined as an entire solution of (1.1) of the form u(t, x) = Uc(x− ct), where Uc > 0 satisfies the delayed
ordinary differential equation:{

U ′′c (y) + cU ′c(y) + F (Uc(y + c τ), Uc(y)) = 0, y ∈ R,
Uc(−∞) = 1, Uc(+∞) = 0.

(1.7)

For Kobayashi’s equation, that is when F satisfies (1.4)-(1.5), Schaaf [38]1 has proved the existence of
a minimal speed c∗(τ) > 0, depending only on β := f ′1(0) and τ , such that the equation (1.1) has no
traveling wave solution if c < c∗(τ), whereas it admits a unique (up to shifts in y) traveling wave solution
with speed c for any c > c∗(τ) (see also Theorem 5.1 of [30]). Besides, the traveling wave solutions are
decreasing. The case c = c∗(τ) can be treated as in Theorem 4.6 of [33]: traveling wave solutions with
the speed c∗(τ) exist, they are decreasing and they are unique up to shifts. Some explicit bounds on
c∗(τ) with respect to the delay τ can be found in [49].

In the Hutchinson case, that is when F satisfies (1.6), the equation (1.1) still admits traveling wave
solutions when the delay τ is small and when c is larger than the minimal speed c∗H = 2. More precisely,
it is proved in [16] that monotone traveling waves (c, Uc) satisfying (1.7) exist if and only if0 ≤ τ ≤ e−1 ' 0.37 and c ∈ [2,∞),

or
e−1 < τ ≤ h1 ' 0.56 and c ∈ [2, c](τ)].

(1.8)

The precise definitions of c](τ) < ∞ and h1 are given in [16] (see also [26]). For any delay τ and any
speed c, these monotone fronts are unique up to translation [20].

When the conditions (1.8) are not satisfied, the recent study [20] also proves the existence of non-
monotone waves satisfying the equation (1.7), for any c ≥ 2, when e−1 < τ ≤ 1. For further existence
and qualitative results for small τ or large speeds with other types of nonlinearities, including the case
of spatially nonlocal delays, we refer to [1, 2, 11,26,31,41,42,45,46,48].

1.4. Decomposition of the delayed traveling waves into neutral components

As explained in Section 1.1 in the no-delay case, in order to study the dynamics of the inside structure
of the waves, we assume that u is initially (i.e., here, for t ∈ [−τ, 0]) composed of different groups (υi0)i∈I
such that, for every i ∈ I,

υi0 ∈ L∞(R)\{0} and 0 ≤ υi0(x) ≤ Uc(x) for all x ∈ R,

where I is a subset of N and

u(0, x) = Uc(x) =
∑
i∈I

υi0(x) for all x ∈ R. (1.9)

As in (1.3), the components υi are assumed to be neutral in the sense that they diffuse and grow with
the same manner inside the front u(t, x). In the no-delay case, following [18,44], the growth term in the

1In [38], the assumption f ′1(r) ≤ f ′1(0) was not explicitly written, although it is used in the proof.
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equation (1.3) satisfied by the components was given by the proportion (υi/u) f(u) of the total growth
term f(u).

Kobayashi case. Here, because of the delay τ, and under our assumptions (1.4) and (1.5), each component

grows proportionally to the delayed proportion υi(t− τ, ·)/u(t− τ, ·) of the global growth term F (u(t−
τ, x), u(t, x)). The component densities therefore satisfy the equation∂tυ

i(t, x)=∂xxυ
i(t, x) +

υi(t− τ, x)

u(t− τ, x)
F (u(t− τ, x), u(t, x)), t > 0, x ∈ R,

υi(t, x)=υi0(x− ct), t ∈ [−τ, 0], x ∈ R.
(1.10)

In other words, the growth rate of each component is proportional to its density at time t− τ but the per
capita growth term F (u(t− τ, x), u(t, x))/u(t− τ, x) is the same for all components. The initial condition
means that the inside structure of the wave remains unchanged when t ∈ [−τ, 0].

Hutchinson case. In this case, as in the no-delay case, each component grows in a proportion υi(t, ·)/u(t, ·)
of the global growth term:{

∂tυ
i(t, x)=∂xxυ

i(t, x) + υi(t, x)(1− u(t− τ, x)), t > 0, x ∈ R,
υi(0, x)=υi0(x), x ∈ R.

(1.11)

In both the Kobayashi and Hutchinson cases, it follows from the uniqueness of the solution that u is
the sum of all its components at positive times, that is

u(t, x) =
∑
i∈I

υi(t, x) for all t > 0 and x ∈ R. (1.12)

The maximum principle also leads to the inequalities

0 < υi(t, x) ≤ u(t, x) for all t > 0, x ∈ R and i ∈ I.

The first inequality 0 < υi(t, x) is a consequence of Proposition 2.2 in [38] in the Kobayashi case and of the
classical strong parabolic maximum principle in Hutchinson case. The second inequality υi(t, x) ≤ u(t, x)
follows from the first one and (1.12).

1.5. Main result: dynamics of the neutral components

The initial decomposition (1.9) of the front into a sum of different labels is actually arbitrary and of
course not unique. But what turns out to be uniquely determined by the front is the way these inside
components behave at large time.

Theorem 1.3. 1 (Kobayashi case). Assume that F satisfies (1.4)-(1.5). Let τ > 0 and let (c, Uc) be a
traveling wave solving (1.7), with c > c∗(τ). If the support of υ0 is in (−∞,M ] for some M ∈ R, then
the solution υ of (1.10) satisfies:

max
x≥(c∗(τ)+δ) t

υ(t, x)→ 0 as t→ +∞ for all δ > 0,

and, in particular, υ(t, x+ ct)→ 0 as t→ +∞ locally uniformly with respect to x ∈ R.
2 (Hutchinson case). Assume that F satisfies (1.6). Let τ > 0 and let (c, Uc) be a traveling wave

solving (1.7), with c ≥ 2. If the support of υ0 is in (−∞,M ] for some M ∈ R, then the solution υ of
(1.11) satisfies:

max
x≥A+2 t

υ(t, x)→ 0 as t→ +∞ for all A ∈ R.

Theorem 1.3, which is proved in Section 3.1, means that the waves (c, Uc), with c > c∗(τ) in the
Kobayashi case and c ≥ 2 in the Hutchinson case, are pulled by their rightmost components in the same
sense as Definition 1.1. Note that, in the Kobayashi case, Theorem 1.3 does not show that the wave with
minimal speed c = c∗(τ) is pulled. However, our numerical computations of Section 2 suggest that the
wave (c∗(τ), Uc∗(τ)) is also a pulled wave.
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1.6. Transient transport phenomenon in the Kobayashi case

Assume that F satisfies (1.4)-(1.5). Let τ ≥ 0 and let (c, Uc) be a traveling wave solving (1.7), with
c > c∗(τ). In order to understand the dynamics of a component υ solving (1.10), inside the traveling
wave solution, it is natural to make the following change of variables:

υ̃(t, x) = υ(t, x+ ct) for all t ≥ 0 and x ∈ R.

The function υ̃ corresponds to the solution υ in the moving frame at speed c. It obeys the following
equation:∂tυ̃(t, x)=∂2xυ̃(t, x) + c∂xυ̃(t, x) +

F (Uc(x+ cτ), Uc(x))

Uc(x+ cτ)
υ̃(t− τ, x+ cτ), t > 0, x ∈ R,

υ̃(t, x)=υ0(x), t ∈ [−τ, 0], x ∈ R.

Let us now look at the proportion p of the total wave Uc(x) corresponding to the component υ̃. This
quantity is defined by the ratio p(t, x) := υ̃(t, x)/Uc(x). It satisfies for all t > 0 and x ∈ R:

∂tp(t, x) = ∂2xp(t, x) + V (x)∂xp(t, x) +
F (Uc(x+ cτ), Uc(x))

Uc(x)

(
p(t− τ, x+ cτ)− p(t, x)

)
, (1.13)

with the (non-conservative) advection term:

V (x) := c+ 2
U ′c(x)

Uc(x)
. (1.14)

When τ = 0, the reaction term in (1.13) vanishes. Moreover, under the KPP assumptions (1.4)-(1.5)
on F, it is known [4] that V (x) is positive for large x (since limx→+∞ V (x) =

√
c2 − 4β > 0 when

c > c∗(0) = 2
√
β). Therefore, the proportion p is transported to the left in the moving frame. In this

case, the wave (c, Uc) is pulled in the sense of Definition 1.1, as shown in [14]. On the other hand,
in absence of delay and if f(r) := F (r, r) is of bistable type, then V (x) is negative for large x (since
limx→+∞ V (x) = −

√
c2 − 4f ′(0) < 0). The advection term pushes the proportion p to the right and

leads to a pushed wave, as shown in [14]. Thus, when τ = 0, the pulled/pushed nature of the waves is
completely determined by the sign of V (x) when x→ +∞.

When τ > 0, there is a competition between the advection, diffusion and reaction terms in (1.13). This
balance leads to pulled waves in all cases c > c∗(τ), as shown by part 1 of Theorem 1.3. However, when
c is below a certain threshold c(τ), the advection term V (x) is negative for large x:

Proposition 1.4. Let F satisfy (1.4)-(1.5) and let τ > 0. There exists c(τ) ∈ (c∗(τ),+∞) such that, for
any traveling wave (c, Uc) solving (1.7), there holds

lim
x→+∞

V (x) < 0 if c∗(τ) < c < c(τ),

lim
x→+∞

V (x) = 0 if c = c(τ),

lim
x→+∞

V (x) > 0 if c > c(τ).

When c∗(τ) < c < c(τ), the advection term V (x) is oriented in the same direction as that of the wave
for large x. This leads to a transient transport phenomenon to the positive x-direction in the moving
frame, as shown in the numerical computations of Section 2. However, the effect of the advection term
is dominated by that of the diffusion and reaction terms of (1.13) at large times in the moving frame,
since p(t, x) eventually converges to 0 as t→ +∞ locally uniformly in x ∈ R by Theorem 1.3. Lastly, we
conjecture that the inequality limx→+∞ V (x) < 0 also holds true when c = c∗(τ) (see Lemma 3.1).

The next lemma shows that the length of the interval (c∗(τ), c(τ)) is a nonmonotone function of τ.

Lemma 1.5. The length |c(τ)− c∗(τ)| of the interval (c∗(τ), c(τ)) converges to |c(0+)− c∗(0+)| = 0 as
τ → 0+, and to |c(+∞)− c∗(+∞)| = 0 as τ → +∞.

The proofs of Proposition 1.4 and Lemma 1.5 are given in Section 3.2.
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2. Numerical computations

In order to study the inside dynamics of the traveling wave solutions of delayed equations of the form (1.1),
we consider the case of a wave (c, Uc) made of a finite number of components υi where i = 1, . . . , N = 7.
We assume that these components are defined at t = 0 by υ10 = Uc · 1(−∞,x1], υ

k
0 = Uc · 1(xk−1,xk] for

k = 2, . . . , N −1 and υN0 = Uc ·1(xN−1,+∞), and for the sequence x1 < x2 < . . . < xN−1 of equally spaced
points (see Figs. 1-3). We numerically solved the equations satisfied by the components υi with four
types of reaction terms. In all cases, the point xN which corresponds to the beginning of the rightmost
component is such that Uc(xN−1) = 0.1.

2.1. Reaction terms

In order to investigate the effect of the delay τ on the inside dynamics of the waves, we begin with a
classical KPP nonlinearity without delay:

F1(u(t− τ, x), u(t, x)) = u(t, x) (1− u(t, x)).

The second type of nonlinearity that we consider is of Kobayashi type:

F2(u(t− τ, x), u(t, x)) = u(t− τ, x) (1− u(t, x)).

The third type of nonlinearity is of Hutchinson type:

F3(u(t− τ, x), u(t, x)) = u(t, x) (1− u(t− τ, x)).

Lastly, we consider a Huxley [21] nonlinearity with delay (see [38,47]):

F4(u(t− τ, x), u(t, x)) = u(t, x) (1− u(t, x))(u(t− τ, x)− ρ),

for some ρ ∈ (0, 1/2) (in our computations, we took ρ = 0.3). This last type of nonlinearity, which neither
satisfies Kobayashi’s assumptions (1.4)-(1.5) nor Hutchinson’s assumption (1.6), was not investigated in
the previous section of this manuscript. In the case τ = 0, it corresponds to a bistable nonlinearity
and, as mentioned in Section 1.1, the corresponding wave is unique and is a pushed wave. Numerical
computations have already been carried out in this case τ = 0 in [34]. In the case τ > 0, Theorem 3.13
in [38] implies that there exists a unique traveling wave (c4, U4) solving (1.7) in this case, and this wave
is monotone. From the point of view of population ecology the reaction term F4 corresponds to a sort
of Allee effect: when u ∈ (0, 1), the growth term is positive if and only if the population density at time
t− τ is larger than the threshold ρ. Although this assumption may appear unrealistic, our main goal here
is to exhibit a numerical example of pushed wave in the context of delayed equations, and to compare it
with the pulled waves corresponding to the reaction terms Fk, k = 1, 2, 3. For this last type of reaction
term (F = F4), the dynamics of the components υi are described by{

∂tυ
i(t, x)=∂xxυ

i(t, x) + υi(t, x)(1− u(t, x))(u(t− τ, x)− ρ), t > 0, x ∈ R,
υi(0, x)=υi0(x), x ∈ R,

so that each component grows in a proportion υi(t, ·)/u(t, ·) of the global reaction term.

2.2. Results

The Figs. 1-3 show the evolution of the spatial structure of some traveling wave solutions of Ê(1.1)
for the above-mentioned reaction terms. Each component is depicted with a different color and with a
thickness which corresponds, at each position x, to the density υi of the component. In the numerical
simulations, the speeds of the various traveling fronts are different. However, in order to be able to
compare quantitatively the inside dynamics of the various fronts, the simulations are all stopped when
the fronts reach approximately the same position (around x = 120).
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(a) KPP, t = 0
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(b) Huxley, t = 0
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(c) KPP, t = 30
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(d) Huxley, t = 300
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(e) KPP, t = 50
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(f) Huxley, t = 500

Figure 1: Inside dynamics of KPP (c = c∗(0) = 2, τ = 0) and Huxley (c = c4 ' 0.24, τ = 1) waves. Each
component is depicted with a different color and with a thickness which corresponds, at each position x,
to the density υi of the component.
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(a) Kobayashi, c = c∗(10), t = 0
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(b) Kobayashi, c > c(10), t = 0
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(c) Kobayashi, c = c∗(10), t = 100
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(d) Kobayashi, c > c(10), t = 50
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(e) Kobayashi, c = c∗(10), t = 200
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(f) Kobayashi, c > c(10), t = 100

Figure 2: Inside dynamics of Kobayashi waves. Left: c = c∗(10) ' 0.60, τ = 10; right: c ' 1.11 > c(10) '
0.66, τ = 10.
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(a) Hutchinson (τ = 0.3), t = 0
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(b) Hutchinson (τ = 1), t = 0
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(c) Hutchinson (τ = 0.3), t = 30
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(d) Hutchinson (τ = 1), t = 30
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(e) Hutchinson (τ = 0.3), t = 50
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(f) Hutchinson (τ = 1), t = 100

Figure 3: Inside dynamics of monotone and nonmonotone Hutchinson waves. Left: c = c∗H = 2, τ = 0.3;
right: c = c∗H = 2, τ = 1.
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In the KPP case F = F1, we considered the wave (c∗, Uc∗) with minimal speed c∗ = 2 (Fig. 1, left
column). In the Kobayashi case F = F2, we assumed that τ = 10, and we considered the case of the
wave with minimal speed c = c∗(10) ' 0.60 (Fig. 2, left column) and the case of a wave with speed
c ' 1.11 > c(10) ' 0.66, (Fig. 2, right column) where c(τ) is defined in Proposition 1.4 (see formulas
(3.1) and (3.2) below for the computation of c∗(10) and formula (3.7) for the computation of c(10)). We
observe that, in all cases, the waves have a pulled structure: at large times, it tends to be made only of
the rightmost initial component υ7. This indicates in particular that the wave with minimal speed is a
pulled wave in the Kobayashi case.

However, it seems important to note that the red component υ6 stays at a non-negligible proportion
during a large period of time in the Kobayashi case with c = c∗(10). This shows that the transient
transport phenomenon described by Proposition 1.4 leads to inside dynamics which are different from
the dynamics of the KPP wave, even if the wave is not a pushed wave. From the point of view of
populations genetics, this shows that the existence of a non-reproductive and motionless juvenile stage
can slightly enhance genetic diversity in a colonization front (see Section 1.2), at least at the beginning
of the colonization. Interestingly, when c ' 1.11 > c(10) ' 0.66, this phenomenon does not occur any
more, as predicted by Proposition 1.4.

In the Hutchinson case F = F3, we analyzed the waves with minimal speed c = c∗H = 2 with two
different delays. Firstly, when τ = 0.3 < e−1, the results of [16] presented in Section 1.3 show that the
wave is monotone (Fig. 3, left column). Second, when τ = 1, the results of [20] presented in Section 1.3
show that the wave is nonmonotone (Fig. 3, right column). In the case of the monotone wave τ = 0.3,
the inside structure is very close to the KPP case, and in both cases, as predicted by Theorem 1.3, the
waves have a pulled structure.

Lastly, in the Huxley case F = F4, we analyzed the structure of the unique wave (c4, U4) when τ = 1.
Fig. 1 (right column) indicates that this is a pushed wave. We can observe that, at large times, all the
initial components remain at constant positive proportions in the wave. Note that the proportion of the
rightmost initial component υ7 is very small at large times, compared with the other cases. This last
example emphasizes the pulled nature of the other waves (when F = Fk, k = 1, 2, 3).

2.3. Method for the numerical computation of the inside dynamics of the waves

The method which is used here is comparable to that of [34]. However, since it was not described in [34],
we give here all the technical details.

2.3.1. Profile of the global wave

In all cases F = Fk, k = 1, . . . , 4, we begin with the computation of the profile Uc of the wave. To do so,
we solved the Cauchy problem:{

∂tu(t, x) = ∂xxu(t, x) + F (u(t− τ, x), u(t, x)), t > 0, x ∈ R,
u(t, x) = u0(x), t ∈ [−τ, 0], x ∈ R, (2.1)

where u0 is either a step function:

u0(x) = 1 for x ≤ 0 and u0(x) = 0 for x > 0, (2.2)

or an exponentially decaying function:

u0(x) = 1 for x ≤ 0 and u0(x) = e−λ
−
c x for x > 0, (2.3)

where λ−c is the smallest root of the equation λ2 − c λ+ βe−λ c τ = 0 and corresponds to the exponent in
the asymptotic behavior of the wave with speed c > c∗(τ), in the Kobayasi case (see Section 3.2).

In the KPP case without delay (τ = 0, F = F1), it is known that the solution of the equation (2.1)
with the initial condition (2.2) converges to the traveling wave with speed c∗(0) = 2, in the following
sense:

u(t, x)→ Uc∗(0)(x− c∗(0)t+m(t)), uniformly in x as t→ +∞,
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where m(t) = (3/2) ln(t) +O(1) is sublinear [8, 19].

In the Kobayashi case (τ > 0, F = F2), when u0 satisfies (2.2), c∗(τ) is the asymptotic speed of
propagation of the solution u(t, x) of (2.1) (theorem 2.12 in [38]). The convergence of the solution of (2.1)
towards the traveling wave (c∗(τ), Uc∗(τ)) with speed c∗(τ) is not proved but can be observed numerically.
Similarly, when u0 satisfies (2.3), we observed numerically that u(t, x) converges to a traveling wave (c, Uc)
with the speed c > c∗(τ) associated with λ−c . In our computation, we took λ−c = 0.17, which leads to
c ' 1.11 > c(10) ' 0.66.

In the Hutchinson and Huxley cases (τ > 0, F = F3 and F = F4), the profiles of the waves (c∗H =
2, Uc∗H ) and (c4, U4) respectively, have been computed by solving (2.1) with the initial condition (2.2). In
both cases, we observed the convergence of the solution towards the sought traveling wave.

2.3.2. Dynamics of the inside components

Once the profile Uc of the wave has been computed, we solve, for each component υi (1 ≤ i ≤ N = 7)
the following system:


∂tu(t, x)=∂xxu(t, x) + Fk(u(t− τ, x), u(t, x)), t > 0, x ∈ R,
∂tυ

i(t, x)=∂xxυ
i(t, x) + h[υi, u, t, x]Fk(u(t− τ, x), u(t, x)), t > 0, x ∈ R,

u(t, x)=Uc(x− ct), t ∈ [−τ, 0], x ∈ R,
υi(t, x)=υi0(x− ct), t ∈ [−τ, 0], x ∈ R.

(2.4)

where h[υi, u, t, x] = υi(t, x)/u(t, x) in the cases F = F1, F3, F4 and h[υi, u, t, x] = υi(t− τ, x)/u(t− τ, x)
in the Kobayashi case F = F2. In all cases, we observed that the condition

u(t, x) =
∑
i∈I

υi(t, x) for all t > 0 and x ∈ R,

was perfectly fulfilled.

2.3.3. Technical aspects

The system (2.1) was solved on a bounded interval [a, b] (see Table 1) with the boundary conditions
u(t, a) = 1 and u(t, b) = 0. The profile Uc was computed from the solution u(t, x) at a sufficiently large
time TU (see Table 1).

The system (2.4) was also solved on [a, b] with the boundary conditions u(t, a) = 1, u(t, b) = 0,
υ1(t, a) = 1, υi(t, a) = 0 for i = 2, . . . , 7 and υi(t, b) = 0 for i = 1, . . . , 7. For the computation of
the initial conditions, we used the above-computed profile Uc, which was shifted to the left so that
Uc(0) = 1/2.

The simulations are based on the Finite Element Method with piecewise linear and continuous basis
functions. The discretization space is uniform with a step δx = 0.1. We used a backward Euler method
with a time step δt = 0.1. The nonlinearity has been treated with a Newton-Raphson algorithm applied
to the variational formulation of the problems (2.1) and (2.4) on the bounded interval [a, b]. The criterion
of convergence was equal to 10−5. We used the software Freefem++ to perform these simulations.

The numerical error can be assessed as follows. Let u be the solution of the system (2.4), and let uh
be the piecewise linear and continuous function computed by the Finite Element Method. It is classical
that the H1-error ||u − uh||H1([a,b]) is controlled by δx||u′′||L2([a,b]). Thanks to Freefem++, we are able
to compute an approximation of this error by using δx||u′′h||L2([a,b]), see Table 1.
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Simulation δx||u′′h||L2([a,b]) a b TU

F = F1 2.7 10−3 -500 1000 100

F = F2, u0 satisfies (2.2) 9.4 10−4 -500 1000 500

F = F2, u0 satisfies (2.3) 2.2 10−3 -500 1000 500

F = F3, τ = 0.3 1.9 10−2 -500 2500 500

F = F3, τ = 1 1.9 10−2 -500 2500 500

F = F4 5.5 10−3 -500 1000 1000

Table 1

3. Proofs

3.1. Proof of Theorem 1.3

3.1.1. Kobayashi case

Assume that F satisfies (1.4)-(1.5) and let τ > 0. Let (c, Uc) be a traveling wave solving (1.7), with speed
c > c∗(τ). From Lemma 2.5 in [38], the minimal speed c∗(τ) is characterized by

c∗(τ) = inf
{
c > 0, ∃λ > 0 with ∆c(λ) = 0

}
, (3.1)

where

∆c(λ) := λ2 − c λ+ βe−λ c τ , (3.2)

with β > 0 defined by (1.5) (iv).

Assume that υ0 is supported in (−∞,M ] for some M ∈ R, and consider the solution υ of (1.10). Let
us set:

w(t, x) = e−λ
∗(τ) (x− c∗(τ) (t+τ)−M), for t ≥ −τ, x ∈ R,

where λ∗(τ) is the unique (double) positive root of the equation ∆c∗(τ)(λ) = 0. In order to prove part 1
of Theorem 1.3, we are going to show that w is a super-solution of the equation (1.10) satisfied by υ. A
straightforward computation shows that, for all t ≥ 0 and x ∈ R,

∂tw(t, x)− wxx(t, x)− β w(t− τ, x) = −w(t, x)((λ∗(τ))2 − c∗(τ)λ∗(τ) + βe−λ
∗(τ) c∗(τ) τ ).

From the definition of λ∗(τ), we get that

∂tw(t, x)− wxx(t, x)− β w(t− τ, x) = 0 for all t ≥ 0 and x ∈ R. (3.3)

From the assumptions (ii) and (iv) in (1.5), we have f1(r) ≤ βr for all r ∈ [0, 1], and, from the assumptions
(ii) and (v) in (1.5), f2(s) ≤ 1 for all s ∈ [0, 1]. Thus, F (r, s) ≤ β r for all (r, s) ∈ [0, 1]2. In particular,
since u(t, x) = Uc(x− c t) ∈ [0, 1] and υ(t, x) ≥ 0 for all t ∈ [−τ,∞) and x ∈ R, we get:

∂tυ(t, x)− ∂xxυ(t, x) =
υ(t− τ, x)

u(t− τ, x)
F (u(t− τ, x), u(t, x)) ≤ β υ(t− τ, x), t > 0, x ∈ R.

Thus, (3.3) implies that w is a super-solution of the equation satisfied by υ. On the other hand, υ(t, x) =
υ0(x− c t) ≤ 1 ≤ w(t, x) for t ∈ [−τ, 0] and x ≤M , while υ(t, x) = υ0(x− c t) = 0 ≤ w(t, x) for t ∈ [−τ, 0]
and x ≥M . Therefore, the maximum principle (Proposition 2.2 in [38]) implies that

υ(t, x) ≤ w(t, x) for all t ≥ 0 and x ∈ R.

Since c > c∗(τ), this last inequality readily implies the result of part 1 of Theorem 1.3. �
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3.1.2. Hutchinson case

Assume that F satisfies (1.6). Let τ > 0, and let (c, Uc) be a (monotone or nonmonotone) traveling wave
solving (1.7), with c ≥ c∗H = 2. Assume that υ0 is supported in (−∞,M ] for some M ∈ R, and consider
the solution υ of (1.11). Since the wave u(t, x) = Uc(x − c t) and the component υ are positive for all
t > 0 and x ∈ R, we have:

∂tυ(t, x)− ∂xxυ(t, x)− υ(t, x) ≤ 0, t > 0, x ∈ R.

The classical parabolic maximum principle then implies that

υ(t, x) ≤
(

sup
R
υ0
) et√

4πt

∫ M

−∞
e

−(x−y)2
4t dy

for all t > 0 and x ∈ R. Let A ∈ R, we have:

υ(t, x+A+ 2 t) ≤ supR υ0√
4πt

e−(x+A)

∫ M

−∞
eye

−(x+A−y)2
4t dy,

which in turns implies that:

υ(t, x+A+ 2 t) ≤ supR υ0√
4πt

e−(x+A−M).

Finally, for all x ≥ 0, we have:

υ(t, x+A+ 2 t) ≤ supR υ0√
4πt

eM−A,

which implies the result of part 2 of Theorem 1.3. �

3.2. Proof of Proposition 1.4 and Lemma 1.5

Assume that F satisfies (1.4)-(1.5) and let τ > 0. Let (c, Uc) be a traveling wave solving (1.7), with
speed c > c∗(τ). The results in [47] (Theorem 2.5 in Chapter 11) show that the wave has the following
asymptotic behavior: Uc(x) = Ae−λ

−
c x +O

(
e−(λ

−
c +δ)x

)
U ′c(x) = −λ−c Ae−λ

−
c x +O

(
e−(λ

−
c +δ)x

) as x→ +∞, (3.4)

where δ > 0, A > 0 and λ−c is the smallest root of the equation ∆c(λ) = 0. We deduce from (1.14)
and (3.4) that

lim
x→+∞

V (x) := c+ 2 lim
x→+∞

U ′c(x)

Uc(x)
= c− 2λ−c . (3.5)

The next lemmas give precise estimates of the exponents λ∗(τ) and λ−c .

Lemma 3.1. There holds

λ∗(τ) >
c∗(τ)

2
.

Proof. Since λ∗(τ) is the unique root of ∆c∗(τ)(λ) = 0, we have ∆′c∗(τ)(λ
∗(τ)) = 0, that is

2λ∗(τ)− c∗(τ)− βc∗(τ)τe−λ
∗(τ)c∗(τ)τ = 0.

Finally,

λ∗(τ) =
c∗(τ)

2
(1 + βτe−λ

∗(τ)cτ ) >
c∗(τ)

2
,

from the assumption (1.5)-(iv). �
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Lemma 3.2. There exists a real number c(τ) ∈ (c∗(τ),+∞) such that

λ−c >
c

2
for all c ∈ (c∗(τ), c(τ)) and λ−c ≤

c

2
for all c ≥ c(τ).

Proof. For any c > c∗(τ), the equation ∆c(λ) = 0 admits two distinct roots, λ−c and λ+c , with 0 < λ−c <
λ+c , and 

∆c(λ) > 0 if λ ∈ [0, λ−c ),

∆c(λ) ≤ 0 if λ ∈ [λ−c , λ
+
c ],

∆c(λ) > 0 if λ ∈ (λ+c ,+∞).

If ∆c(c/2) ≤ 0 (this is the case for instance if c is large enough), then we necessarily have λ−c ≤ c/2.
Conversely, if ∆c(c/2) > 0, then either c/2 < λ−c or c/2 > λ+c . On the other hand, it follows from the
convexity of the function λ 7→ ∆c(λ) that

∆′c(λ
+
c ) = 2λ+c − c− βcτe−λ

+
c cτ > 0,

thus λ+c > c/2. Thus ∆c(c/2) > 0 implies c/2 < λ−c . Hence,

λ−c >
c

2
if and only if ∆c

( c
2

)
= βe−

c2τ
2 − c2

4
> 0. (3.6)

Furthermore, it is obvious to see that there exists a unique c(τ) > 0 such that

∆c(τ)

(
c(τ)

2

)
= βe−

c(τ)2τ
2 − c(τ)2

4
= 0. (3.7)

Additionally, we have ∆c(c/2) > 0 for c ∈ [0, c(τ)) and ∆c(c/2) ≤ 0 for c ≥ c(τ). From (3.6), we obtain
that

λ−c >
c

2
if and only if c < c(τ).

Lastly, since λ∗(τ) is the unique root of ∆c∗(τ)(λ) = 0, Lemma 3.1 implies that

∆c∗(τ)

(
c∗(τ)

2

)
> 0.

This in turn yields c(τ) > c∗(τ) and it guarantees the existence of a continuum of traveling wave solutions
of (1.7) with the asymptotic behavior (3.4) and λ−c > c/2, i.e., for all c ∈ (c∗(τ), c(τ)). The proof of
Lemma 3.2 is thereby complete. �

The conclusion of Proposition 1.4 follows from (3.5) and Lemma 3.2. �

Proof of Lemma 1.5. From the characterization of c∗(τ) and c(τ) given in (3.1) and in the previous
lemma, it is straightforward to observe that limτ→0+ c

∗(τ) = limτ→0+ c(τ) = 2
√
β and limτ→+∞ c∗(τ) =

limτ→+∞ c(τ) = 0. �
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