
HAL Id: hal-02652755
https://hal.inrae.fr/hal-02652755

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stable estimation of two coefficients in a nonlinear
Fisher-KPP equation

Michel Cristofol, Lionel Roques

To cite this version:
Michel Cristofol, Lionel Roques. Stable estimation of two coefficients in a nonlinear Fisher-KPP
equation. Inverse Problems, 2013, 22 p. �hal-02652755�

https://hal.inrae.fr/hal-02652755
https://hal.archives-ouvertes.fr


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Cristofol, M., Roques, L. (2013). Stable estimation of two coefficients in a nonlinear

Fisher-KPP equation. Inverse Problems, 22 p.

M
an

u
sc

ri
t 

d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p

t 
M

an
u

sc
ri

t 
d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p

t 
M

an
u

sc
ri

t 
d
’a

u
te

u
r 

/ 
A

u
th

o
r 

m
an

u
sc

ri
p

t 
 

Version définitive du manuscrit publiée dans / Final version of the manuscript published in :  
Inverse problems (2013), 22 p., DOI: no data.  

Stable estimation of two coefficients in a nonlinear

Fisher-KPP equation

Michel Cristofol1 and Lionel Roques2
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Abstract. We consider the inverse problem of determining two non-constant

coefficients in a nonlinear parabolic equation of the Fisher-Kolmogorov-Petrovsky-

Piskunov type. For the equation ut = D∆u + µ(x)u − γ(x)u2 in (0, T ) × Ω,

which corresponds to a classical model of population dynamics in a bounded

heterogeneous environment, our results give a stability inequality between the couple

of coefficients (µ, γ) and some observations of the solution u. These observations consist

in measurements of u: in the whole domain Ω at two fixed times; in a subset ω ⊂⊂ Ω

during a finite time interval; and on the boundary of Ω at all times t ∈ (0, T ). The proof

relies on parabolic estimates together with parabolic maximum principle and Hopf’s

lemma which enable us to use a Carleman inequality. This work extends previous

studies on stable determination of non-constant coefficients in parabolic equations, as

it deals with two coefficients and with a nonlinear term. A consequence of our results

is the uniqueness of the couple of coefficients (µ, γ), given the observation of u. This

uniqueness result was obtained in a previous article but in the one-dimensional case

only.

Keywords : Inverse Problem · Nonlinear parabolic equation · Two coefficients · Stability

· Uniqueness · Carleman estimate
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1. Introduction

Reaction-diffusion models of the form:

ut = D∆u+ f(u), t > 0, x ∈ Ω ⊂ Rn, (1.1)

arise in several fields of application. These applications range from population dynamics

[1, 2, 3, 4] and population genetics [5, 6, 7, 8, 9] to chemistry [10, 11], and combustion [12].

Spatial heterogeneities can easily be incorporated in these models by modifying the

diffusion and reaction terms. For instance, in population dynamics, several authors have

considered the case of spatially heterogeneous reaction terms of the Fisher-KPP type:

f(x, u) = µ(x)u− γ(x)u2. In this case, the model (1.1) becomes:

ut = D∆u+ µ(x)u− γ(x)u2, t > 0, x ∈ Ω ⊂ Rn. (Sµ,γ)

The model (Sµ,γ) has been introduced by Skellam [13] in the context of population

dynamics, and then studied in bounded domains [14, 15] and periodic environments [3,

16, 17, 18, 19, 20, 21]. In these references, the quantity u(t, x) generally stands for a

population density and the coefficientsD > 0, µ(x) and γ(x) > 0 respectively correspond

to the diffusion coefficient, the intrinsic growth rate coefficient (i.e., the birth rate minus

the death rate in the absence of competition) and a coefficient measuring the effects of

competition on the birth and death rates.

With the increasing frequency of biological invasions [22], ecologists and modelers

are often faced with species invading a new environment. In such cases, the reproduction

and dispersal features of the species in its new environment are often not known and

have to be estimated [23]. For the reaction-diffusion model (Sµ,γ), the precise estimation

of the coefficients of the model is of critical importance, as the behavior of the model

strongly depends on the value of the coefficients [14]. In particular, the success of an

invasion [15] and the rate of spread of a successful invasion [19, 24] depend on the

coefficients D and µ(x), while the stationary state towards which the solution converges

depends on D, µ(x) and γ(x).

Parameter estimation for models based on differential equations often relies on

mechanistic-statistical approaches [23, 25, 26], which use a statistical model for the

observation process, and allow one to compute the likelihood of the parameters, or

coefficients. However, depending on the model and on the set of observations, the

coefficients may not always be identifiable. This means that different set of coefficients

can lead to the same observations and therefore have the same likelihood. It is therefore

important to derive conditions on the observations which guarantee that there is a unique

set of coefficients leading to the observations. Since real observations are generally noisy,

it is also important to check whether close observations lead to close estimations of the

coefficients. The results of this paper give such conditions on the observations for the

estimation of the parameters µ(x) and γ(x) of (Sµ,γ). In particular, we obtain a stability

inequality of the form

‖(µ, γ)− (µ̃, γ̃)‖ ≤ C ‖Observation(Sµ,γ)−Observation(Sµ̃,γ̃)‖,
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which links the distance between two sets of coefficients with the distance between two

sets of observations. Such stability inequalities lead to the uniqueness of the coefficients

(µ, γ) given the observation “Observation(Sµ,γ)”. They are also useful for the numerical

reconstruction of the coefficients using noise-free observations [27].

Similar stability results had already been obtained for a unique unknown coefficient

µ(x) in the linear case ut = D∆u + µ(x)u. For such reaction-diffusion equations, the

derivation of stability inequalities often relies on Carleman estimates [28, 29, 30, 31].

The idea of using Carleman estimates for solving such coefficient inverse problems has

been introduced in the foundational paper [32]; this technique is therefore often called

the “Bukhgeim-Klibanov method”. The idea of obtaining Lipschitz stability estimates

for coefficient inverse problems in parabolic equations was then proposed in [30] for the

first time; see also the survey paper [33].

The solution of the linear equation ut = D∆u + µ(x)u can blow up when t→∞,
depending on the coefficients D, µ(x) and on the boundary conditions. The nonlinear

reaction term f(x, u) = µ(x)u−γ(x)u2 that we consider in this paper is generally more

realistic, at least in the context of population dynamics, since it always lead to bounded

solutions (uniformly in time). With such a reaction term, uniqueness results for the

coefficients µ(x), γ(x) have been proven recently in the one-dimensional case [34, 35]

under the assumption that the density u(t, x0) and its spatial derivative
∂u

∂x
(t, x0) are

known at a point x0 and during a time interval t ∈ (0, ε). Comparable results have

also been obtained for systems of nonlinear parabolic equations [36]. However, the

methods developed in [34, 35, 36], which do not rely on Carleman estimates, cannot be

applied as such to higher dimensions n ≥ 2, and do not lead to stability inequalities,

even when n = 1. Uniqueness and stability results for nonlinear but homogeneous (i.e.,

independent of x) reactions terms f(u) can also be derived from boundary measurements

[37, 38, 39, 40, 41, 42].

Here, our aim is to obtain a global stability inequality which enables to

simultaneously estimate both coefficients µ(x) and γ(x) of (Sµ,γ), and to prove their

uniqueness, given the following information: (i) µ(x) and γ(x) are regular (C5(Ω)) and

are known near the boundary ∂Ω; (ii) the density ui(x) = u(0, x) is known in Ω at t = 0;

(iii) u is known on ∂Ω and satisfies Neumann boundary conditions in [0,∞)× ∂Ω; (iv)

the density u(t, x) is known in a finite time interval and in a subset ω ⊂⊂ Ω; (v) the

densities u(t0, x) and u(t1, x) are known at two fixed times t0, t1 and for all x ∈ Ω.

The main tools used to establish these new results are Carleman estimates with special

weights and parabolic estimates together with parabolic maximum principle and Hopf’s

lemma.

2. Hypotheses and main results

In this study, we assume that Ω is a smooth and bounded domain. As mentioned in

the Introduction Section, we assume that the unknown coefficients µ(x) and γ(x) are
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Figure 1. Schematic example of a function µ in M .

known near the boundary of Ω, and bounded by known functions. In other terms,

µ(x) ∈M := {µ̃ ∈ C5(Ω) s.t. µ− ≤ µ̃ ≤ µ+ on Ω and ‖µ̃‖C5(Ω) ≤ m},

and

γ(x) ∈ Γ := {γ̃ ∈ C5(Ω) s.t. γ− ≤ γ̃ ≤ γ+ on Ω and ‖γ̃‖C5(Ω) ≤ m},

for m > 0 and four functions µ−, µ+, γ−, γ+ in C5(Ω) such that 0 < µ− ≤ µ+ and

0 < γ− ≤ γ+ on Ω and

µ−(x) = µ+(x) and γ−(x) = γ+(x) if d(x, ∂Ω) < ε, (2.2)

for some positive constant ε > 0. Here, d(x, ∂Ω) corresponds to the usual euclidian

distance between any point x ∈ Ω and the boundary of Ω.

Let us fix a couple of coefficients (µ, γ) in M × Γ. Our aim is to state a

stability inequality which enables us to reconstruct these two coefficients based on some

observations of the solution u of:
∂tu = D∆u+ u(µ− γu) in (0, T )× Ω,

∂νu = 0 on [0, T )× ∂Ω,

u(0, ·) = ui in Ω,

(2.3)

for some constants D > 0, T > 0 and some function ui in C7(Ω).

As already mentioned in the Introduction Section, we assume that u is known on

∂Ω. Thus, the stability inequality has to link the distance between (µ, γ) and any set

of coefficients (µ̃, γ̃) in M × Γ with the distance between the observation of u and the

observation of the solution ũ of
∂tũ = D∆ũ+ ũ(µ̃− γ̃ũ) in (0, T )× Ω,

ũ = u on [0, T )× ∂Ω,

ũ(0, ·) = ui in Ω.

(2.4)

Existence, uniqueness and regularity of the solution u are classical (see e.g. [43]).

In particular, the function u belongs to C2
1([0, T ) × Ω)‡. Similarly, the problem (2.4)

admits a unique solution ũ, which belongs to C2
1([0, T )× Ω) (see Lemma 3.1).

‡ The spaces Cij([0, T )× Ω) are spaces of functions on [0, T )× Ω whose derivatives up to order i in x

and order j in t are continuous.
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In order to state our stability inequality, we need other assumptions on ui :

ui > 0 on Ω, ∂νui = 0 on ∂Ω and 6 max
Ω

ui < min
Ω
µ−/max

Ω
γ+, (2.5)

and ui is a subsolution of the problem (2.3), in the sense:

−D∆ui − ui(µ− − γ+ui) < 0 on Ω. (2.6)

Note that the set of initial conditions ui satisfying both assumptions (2.5)-(2.6) is not

empty. For instance, we can take any constant lower than min
Ω
µ−/(6 max

Ω
γ+). Another

type of non-constant initial conditions satisfying these assumptions are presented in

Appendix A.

Before stating our main theorem, let us state a preliminary lemma which gives a

Harnack-type inequality:

Lemma 2.1. It exists a bounded interval T in (0,∞) such that, for any couple (t0, t1)

with 0 < t0 ≤ inf T < sup T ≤ t1, and for all (µ, γ) and (µ̃, γ̃) ∈M × Γ,

6 max
x∈Ω

ũ(t0, x) < min
x∈Ω

ũ(t1, x).

The interval T can be computed explicitly, see Appendix B for the proof of

Lemma 2.1.

Our main result is:

Theorem 2.2. For any ω ⊂⊂ Ω, any time interval (t0, t1) containing T and any couple

(µ, γ) in M ×Γ, there exist δ ∈ (0, t0) and a constant C such that for all µ̃ ∈M , γ̃ ∈ Γ,

‖µ− µ̃‖2
L2(Ω) + ‖γ − γ̃‖2

L2(Ω) ≤ C G(u, ũ), with

G(u, ũ) = ‖u− ũ‖2
H2((t0−δ,t1+δ),L2(ω)) + ‖(u− ũ)(t0, ·)‖2

H2(Ω) + ‖(u− ũ)(t1, ·)‖2
H2(Ω).

A straightforward corollary is a uniqueness result (µ, γ) ≡ (µ̃, γ̃), given u(t0, x),

u(t1, x) for x ∈ Ω and u(t, x) for t ∈ (t0 − δ, t1 + δ) and x ∈ ω. Another practical

consequence of Theorem 2.2 is to allow a numerical reconstruction of the unknown

coefficients µ and γ, given the partial measurements (i), (ii), (iii), (iv), (v) detailed at

the end of the Introduction Section (see [27, 29]).

The paper is organized as follows. In Section 3 we prove regularity results and uniform

estimates for the solution of (2.4). Then, in Section 4, we prove the stability inequality

stated in Theorem 2.2.

3. Preliminary lemmas

In this section, we derive estimates of the solution ũ of (2.4), which are independent of

the choice of the coefficients µ̃ in M and γ̃ in Γ. These estimates will be used in the

proof of the stability inequality developed in Section 4.

We begin with the existence, uniqueness and regularity of the solution ũ of (2.4).
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Lemma 3.1. The problem (2.4) admits a solution ũ in C2
1([0, T )×Ω), and this solution

is unique.

Proof. Let us check that the boundary condition ũ = u on ∂Ω and the initial

condition ũ(0, ·) = ui in Ω satisfy the compatibility condition

∂tũ(0, x) = ∂tu(0, x) = D∆ui(x) + ui(x)(µ̃(x)− γ̃(x)ui(x)) on ∂Ω. (3.7)

Since u ∈ C2
1([0, T )×Ω) the equation ∂tu(t, x) = D∆u(t, x)+u(t, x)(µ(x)−γ(x)u(t, x))

in (2.3) remains valid at t = 0 and for all x ∈ ∂Ω. Thus, we have:

∂tu(0, x) = D∆ui(x) + ui(x)(µ(x)− γ(x)ui(x)) on ∂Ω.

Since the couples (µ, γ) and (µ̃, γ̃) belong to M×Γ, we have µ(x) = µ̃(x) and γ(x) = γ̃(x)

for all x ∈ ∂Ω. Thus, the compatibility condition (3.7) is fulfilled. It follows from

Theorems 8 and 9 in [44], Chap. 7, Sec. 4 that (2.4) admits a unique solution ũ, which

belongs to C2
1([0, T )× Ω). �

We then obtain lower bounds for ũ and ũt, which are independent of the choice of

(µ, γ) and (µ̃, γ̃) :

Lemma 3.2. For any T > 0,

(i) it exists r1 > 0 such that,

for all (µ, γ) and (µ̃, γ̃) ∈M × Γ, ũ ≥ r1 on [0, T ]× Ω;

(ii) it exists r2 > 0 such that,

for all (µ, γ) and (µ̃, γ̃) ∈M × Γ, ũt ≥ r2 on [0, T ]× Ω.

Proof of (i) Let us set

µ− = min
Ω
{µ−}, γ+ = max

Ω
{γ+}, and ui = min

Ω
{ui}.

Let us then define u− as the solution of the ODE:

du−

dt
= u−(µ− − γ+u−), u−(0) = ui. (3.8)

The function (t, x) 7→ u−(t) is a subsolution of the equation satisfied by u, with Neumann

boundary conditions and with u−(0) ≤ u(0, x) on Ω. We therefore have

u−(t) ≤ u(t, x) for all t ∈ [0, T ], x ∈ Ω.

Since the function (t, x) 7→ u−(t) is also a subsolution of the equation satisfied by ũ,

with u−(t) ≤ u(t, x) = ũ(t, x) on [0, T ]× ∂Ω, and since ũ(0, x) ≥ ui > 0 on Ω, we get:

0 < r1 := min
t∈[0,T ]

u−(t) ≤ ũ(t, x) on [0, T ]× Ω.
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Proof of (ii) First, we show that ∂tu and ∂tũ are classical (i.e. strong) solutions of some

parabolic problem. Let v be the classical solution of
∂tv = D∆v + v(µ− 2γu) in (0, T )× Ω,

∂νv = 0 on [0, T )× ∂Ω,

v(0, ·) = D∆ui + ui(µ− γui) in Ω.

(3.9)

Differentiating the equation satisfied by u with respect to t, and using Theorems 4 and 5

in [45] Chap. 7, we obtain that ∂tu is the unique weak solution of (3.9). By uniqueness,

it follows that ∂tu = v and therefore ∂tu is a classical solution of (3.9). Similarly, ṽ = ∂tũ

is a classical solution of
∂tṽ = D∆ṽ + ṽ(µ̃− 2γ̃ũ) in (0, T )× Ω,

ṽ = v on [0, T )× ∂Ω,

ṽ(0, ·) = D∆ui + ui(µ̃− γ̃ui) in Ω.

(3.10)

Let us set

µ+ = max
Ω
{µ+} and ui = max

Ω
{ui}.

Let us then define u+ as the solution of the ODE:
du+

dt
= u+ µ+, u+(0) = ui. (3.11)

The function (t, x) 7→ u+(t) is a supersolution of the equation satisfied by u, with

Neumann boundary conditions and with u(0, x) ≤ u+(0) on Ω. We therefore have

u(t, x) ≤ u+(t) ≤ ui e
µ+ T for all t ≥ 0, x ∈ Ω.

Let us consider the solution v− of the ODE:
dv−

dt
= v−(µ− − 2 γ+ eµ

+ T ), for t ∈ (0, T ),

v−(0) = min
Ω

{
D∆ui + ui(µ

− − γ+ui)
}
.

(3.12)

From the assumption (2.6), we know that v−(0) > 0. It easily follows from Cauchy-

Lipschitz theorem that v−(t) > 0 for all t ∈ [0, T ]. We define

0 < r2 := min
t∈[0,T ]

v−(t).

The function (t, x) 7→ v−(t) is clearly a subsolution of the equation (3.9) satisfied by v,

with Neumann boundary conditions and with the initial condition v−(0) ≤ v(0, x) on

Ω. Thus, from the parabolic maximum principle, we have v−(t) ≤ v(t, x) on [0, T ]× Ω.

Similarly, since v−(t) ≤ v(t, x) = ṽ(t, x) on [0, T ]× ∂Ω, the maximum principle implies

that:

0 < r2 ≤ v−(t) ≤ ṽ(t, x) on [0, T ]× Ω.

�

The next lemma shows the boundedness of ũ, ũt and ũtt in well-suited spaces,

independently of the choice of (µ̃, γ̃) ∈M × Γ :
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 8

Lemma 3.3. For any T > 0 it exists a constant C > 0, independent of the choice of

(µ̃, γ̃) ∈M × Γ, such that:

‖ũ‖C2
1 ([0,T ]×Ω), ‖ũt‖C2

1 ([0,T ]×Ω), ‖ũtt‖C2
1 ([0,T ]×Ω) ≤ C.

Proof: First, from a classical comparison principle, we get

0 ≤ u, ũ ≤ eT maxµ+ max
Ω

ui, on [0, T ]× Ω. (3.13)

Next, we recall an a priori estimate for solutions of linear parabolic equations (see

[44]):

Theorem 3.4. Assume that f(t, x) is continuous on [0, T ] × Ω, with f(0, ·) = 0 on

∂Ω. Then, for any α ∈ (0, 1), it exists a constant C0, independent of f , such that any

solution of 
∂ty −D∆y = f(t, x) in Q,

y = 0 in (0, T )× ∂Ω,

y(0, x) = 0 on Ω,

(3.14)

satisfies§

‖y‖C1,α
0,α/2

([0,T ]×Ω) ≤ C0 sup
[0,T ]×Ω

|f |. (3.15)

We can apply Theorem 3.4 to ỹ = ũ− u, in (0, T ]× Ω, with f(t, x) = µy − γ(u −
ũ)(u+ ũ) + (µ− µ̃)ũ+ (γ − γ̃)ũ2. Indeed, f(0, x) = 0 on ∂Ω since µ = µ̃ and γ = γ̃ on

∂Ω. Using (3.13) and the regularity of u we thus obtain

‖ũ‖C1,α
0,α/2

([0,T ]×Ω) ≤ C1, (3.16)

for some constant C1 independent of the choice of µ̃ ∈M and of γ̃ ∈ Γ.

Then, let us recall another result from parabolic regularity theory [44]:

Theorem 3.5. Assume that g(t, x) ∈ C0,α
0,α/2([0, T ] × Ω) and h ∈ C2,α

1,α/2([0, T ] × Ω) for

some α ∈ (0, 1), with the compatibility condition

∂th(0, x)−D∆h(0, x) = g(0, x) for x ∈ ∂Ω. (3.17)

Then, it exists a constant C ′0, independent of g and h, such that the problem{
∂tz −D∆z = g(t, x) in Q,

z(t, x) = h(t, x) on [0, T )× ∂Ω ∪ ({0} × Ω) ,
(3.18)

has a unique solution z ∈ C2,α
1,α/2([0, T ]× Ω) which satisfies

‖z‖C2,α
1,α/2

([0,T ]×Ω) ≤ C ′0

(
‖g‖C0,α

0,α/2
([0,T ]×Ω) + ‖h‖C2,α

1,α/2
([0,T ]×Ω)

)
. (3.19)

§ The Hölder spaces Ci,δj,δ′([0, T ]×Ω) are spaces of functions on [0, T ]×Ω whose derivatives up to order

i in x and order j in t are Hölder continuous with orders δ and δ′, respectively.
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 9

Because of the regularity of u, we have ∂tu − D∆u = u(µ − γu) at t = 0 on

Ω. From the hypothesis on the coefficients and since ũ = u = ui at t = 0, we get

∂tu − D∆u = ũ(µ̃ − γ̃ũ) at t = 0 on ∂Ω. We can therefore apply Theorem 3.5, with

z = ũ, g = ũ(µ̃− γ̃ũ) and h = u, which gives:

‖ũ‖C2,α
1,α/2

([0,T ]×Ω) ≤ C2

(
‖ũ(µ̃− γ̃ũ)‖C0,α

0,α/2
([0,T ]×Ω) + ‖u‖C2,α

1,α/2
([0,T ]×Ω)

)
, (3.20)

and together with (3.16), this last inequality implies the existence of a constant C3,

independent of µ̃ and γ̃, and such that:

‖ũ‖C2,α
1,α/2

([0,T ]×Ω) ≤ C3. (3.21)

Let us now set v = ∂tu and ṽ = ∂tũ, as in the proof of Lemma 3.2. We have:
∂tv = D∆v + v(µ− 2γu) in (0, T )× Ω,

∂νv = 0 on [0, T )× ∂Ω,

v(0, ·) = D∆ui + ui(µ− γui) in Ω,

(3.22)

and 
∂tṽ = D∆ṽ + ṽ(µ̃− 2γ̃ũ) in (0, T )× Ω,

ṽ = v on [0, T )× ∂Ω,

ṽ(0, ·) = D∆ui + ui(µ̃− γ̃ui) in Ω.

(3.23)

Let us set

g := ṽ(µ̃− 2γ̃ũ) and h(t, x) := v(t, x) + ṽ(0, x)− v(0, x).

Since µ = µ̃ and γ = γ̃ on ∂Ω, we have

ṽ(0, x)− v(0, x) = 0 for x ∈ ∂Ω. (3.24)

Therefore, h = v = ṽ on [0, T ] × ∂Ω, and since h(0, x) = ṽ(0, x) for x ∈ Ω, we have

ṽ = h for all (t, x) ∈ [0, T ]× ∂Ω ∪ ({0} × Ω). Furthermore, at t = 0,

∂th(0, x)−D∆h(0, x) = g(0, x) on ∂Ω. (3.25)

Indeed, since µ(x) = µ̃(x) and γ(x) = γ̃(x) if d(x, ∂Ω) < ε, we have, in addition to

(3.24), ∆h(0, x) = ∆ṽ(0, x) = ∆v(0, x) on ∂Ω. As a consequence, (3.25) is equivalent

to

∂tv(0, x)−D∆v(0, x) = v(0, x)(µ(x)− 2γ(x)ui(x)) on ∂Ω.

This last equality is a consequence of (3.22) and of the regularity of v: v ∈ C2
1([0, T ]×Ω).

We can therefore apply Theorem 3.5, to get:

‖ṽ‖C2,α
1,α/2

([0,T ]×Ω) ≤ C4

(
‖g‖C0,α

0,α/2
([0,T ]×Ω) + ‖h‖C2,α

1,α/2
([0,T ]×Ω)

)
. (3.26)

From the hypothesis on the coefficients and (3.21), we then obtain

‖ṽ‖C2,α
1,α/2

([0,T ]×Ω) ≤ C5, (3.27)

where C5 is independent of µ̃ and of γ̃.
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 10

Setting w = ∂tv and w̃ = ∂tṽ, we can check that w and w̃ are classical solutions of
∂tw = D∆w + w(µ− 2γu)− 2γv2 in (0, T )× Ω,

∂νw = 0 on [0, T )× ∂Ω,

w(0, ·) = D∆(∆ui + ui(µ− γui)) + (∆ui + ui(µ− γui))(µ− 2γui) in Ω.

(3.28)

and
∂tw̃ = D∆w̃ + w̃(µ̃− 2γ̃u)− 2γ̃ṽ2 in (0, T )× Ω,

w̃ = w on [0, T )× ∂Ω,

w̃(0, ·) = D∆(∆ui + ui(µ̃− γ̃ui)) + (∆ui + ui(µ̃− γ̃ui))(µ̃− 2γ̃ui) in Ω.

(3.29)

The regularity of w and w̃ – they belong to C2
1([0, T ]×Ω) – follows from the assumption

ui ∈ C7(Ω) and from the fact that µ(x) = µ̃(x) and γ(x) = γ̃(x) when x is close to the

boundary ∂Ω.

Let us set

g := w̃(µ̃− 2γ̃ũ)− 2γ̃ṽ2 and h(t, x) := w(t, x) + w̃(0, x)− w(0, x).

Using the same arguments as above with w and w̃ instead of v and ṽ, we get

‖w̃‖C2,α
1,α/2

([0,T ]×Ω) ≤ C6

(
‖g‖C0,α

0,α/2
([0,T ]×Ω) + ‖h‖C2,α

1,α/2
([0,T ]×Ω)

)
. (3.30)

From the hypothesis on the coefficients and (3.21) and (3.27), we get:

‖w̃‖C2,α
1,α/2

([0,T ]×Ω) ≤ C7, (3.31)

where C7 is independent of µ̃ and of γ̃. Setting C = max{C3, C5, C7}, we obtain the

result of Lemma 3.3. �

4. Stability inequality

4.1. The inverse problem

Let u (resp. ũ) be the solution of (2.3) (resp. of (2.4)) associated to (µ, γ) (resp.

(µ̃, γ̃)). We set U = u− ũ. The function U satisfies:
∂tU = D∆U + µU − γU(ũ+ u) + αũ− βũ2 in (0, T )× Ω,

U(t, x) = 0 on [0, T )× ∂Ω,

U(0, x) = 0 in Ω,

where α = µ − µ̃ and β = γ − γ̃. Using Lemma 3.2, part (i), we can set y = U/ũ and

the previous system becomes:
∂ty = D∆y + 2D

ũ
∇ũ · ∇y

+y(µ+D∆ũ
ũ
− ∂tũ

ũ
− γ(u+ ũ)) + α− βũ, in (0, T ]× Ω,

y(t, x) = 0 on [0, T ]× ∂Ω,

y(0, x) = 0 on Ω.

(4.32)
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 11

We set z = ∂ty. Writing A1 = µ+D∆ũ/ũ− ∂tũ/ũ− γ(u+ ũ), we get:
∂tz = D∆z + 2D

ũ
∇ũ · ∇z + A1z + ∂t

(
2D
ũ
∇ũ
)
· ∇y

+y∂tA1 − β∂tũ, in (0, T )× Ω,

z(t, x) = 0 on [0, T )× ∂Ω,

z(0, x) = (D∆y + 2D
ũ
∇ũ · ∇y + A1y(0, ·) + α− βũ(0, ·) on Ω.

(4.33)

Then thanks to Lemma 3.2, part (ii), we set z̃ = z/∂tũ, w = ∂tz̃ and for the sake of

simplicity we denote:

A2 =

(
−2D

∇∂tũ
∂tũ

+ 2D
∇ũ
ũ

)
,

and

A3 =

(
∂2
t ũ

∂tũ
−D∂tũ∆ (1/∂tũ)− 2D

∇∂tũ · ∇ũ
ũ∂tũ

+ 2D|∇(1/∂tũ)|2|∂tũ|2 + A1

)
.

We obtain that w satisfies the following system:
∂tw = D∆w + A2 · ∇w + A3w + 2D∂t

(∇ũ
ũ

)
· ∇z
∂tũ

+ ∂tA1

∂tũ
z

+∂t(A2) · ∇z̃ + ∂t(A3)z̃ + ∂t

(
2D∂t

(∇ũ
ũ

)
1
∂tũ

)
· ∇y

+∂t

(
∂tA1

∂tũ

)
y in (0, T )× Ω,

w(t, x) = 0 on [0, T )× ∂Ω.

(4.34)

Lemmas 3.2 and 3.3 show that all the quantities in the right-hand side of the equation

satisfied by w are well-defined.

4.2. Carleman estimate

In this section, we prove a Carleman inequality for the solution w of the system (4.34).

Let ω be a nonempty subset of Ω, included in the interior of Ω. For any couple

0 < τ0 < τ1 and for any δ ∈ (0, τ0), we set Qωi = [τi − δ, τi + δ] × ω and

Qi = [τi − δ, τi + δ]× Ω, for i = 0, 1. Given any function ζ(x) satisfying:

ζ(x) ∈ C2(Ω), ζ(x) > 0 in Ω, ζ(x) = 0 on ∂Ω, and |∇ζ| > 0 on Ω \ ω, (4.35)

and any constant K > 0, we may also define:

ϕi(t, x) =
eλζ(x)

(t− (τi − δ))(τi + δ − t)
and ηi(t, x) =

e2λK − eλζ(x)

(t− (τi − δ))(τi + δ − t)
,

where λ > 0 and for i = 0, 1. Note that η0(τ0, ·) = η1(τ1, ·) on Ω.

Let us recall a classical Carleman estimate (see [30]):

Theorem 4.1. Let τ0, τ1, δ such that 0 < τ0 < τ1 and 0 < δ < τ0. Then it exists a

constant K > 0, a function ζ(x) satisfying (4.35) and such that K < ζ(x) < 2K, two

constants λ0 ≥ 0, s0 > 0 and a positive constant C0 such that, for any λ ≥ λ0, any
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 12

s ≥ s0, and any function q ∈ C2(Qi) with q ≡ 0 on [τi − δ, τi + δ] × ∂Ω, the following

estimate holds:

Ii(q) ≤ C0

[∫
Qωi

e−2sηiλ4(sϕi)
3|q|2 dtdx

+
∫
Qi
e−2sηi|∂tq −D∆q|2 dtdx

]
,

(4.36)

where

Ii(q) =
∫
Qi
e−2sηi(sϕi)

−1(|∂tq|2 + |∆q|2) dtdx

+λ2
∫
Qi
e−2sηisϕi|∇q|2 dtdx+ λ4

∫
Qi
e−2sηi(sϕi)

3|q|2 dtdx.
(4.37)

Remark 4.2. If we set

M
(i)
1 ψ = −D∆ψ − s2λ2Dϕ2

i |∇ζ|2ψ + sψ∂tηi,

and

M
(i)
2 ψ = ∂tψ + 2sλDϕi∇ζ · ∇ψ,

with ψ = e−sηiq, then the Carleman estimate (4.36) also gives an upper bound for

‖M (i)
1 ψ‖2

L2(Qi)
+ ‖M (i)

2 ψ‖2
L2(Qi)

(see [46]).

Using Theorem 4.1 applied to the solution y of (4.32), together with Lemma 3.2

and 3.3 we get that, for any 0 < τ0 < τ1, 0 < δ < τ0 and for s large enough, there exist

ϑ(s) > 0 and κ > 0 such that, independently of the choice of (µ̃, γ̃) ∈M × Γ,

Ii(y) ≤ ϑ(s)

∫
Qωi

ϕ3
i |y|2e−2sηi dt dx+ κ

∫
Qi

|α− βũ|2e−2sηi dt dx. (4.38)

Note: in the sequel, for the sake of simplicity, we denote by κ any constant independent

of s > 0 and of (µ̃, γ̃) ∈ M × Γ, and we denote by ϑ(s) any constant independent of

(µ̃, γ̃) ∈M × Γ.

We recall here the Lemma 2.1 of [47],

Lemma 4.3. Let τi, δ, Qi and ηi be as previously. There exists a constant κ = κ(τi) > 0

depending only on τi, and a constant C(s) > 0, such that we have∫
Qi

e−2sηi

∣∣∣∣∫ t

τi

p(ξ, x) dξ

∣∣∣∣2 dt dx ≤ κ

s
‖e−sηip‖2

L2(Qi)
+ C(s)‖p̌(τi, .)‖2

L2(Ω),

for every p ∈ L2(Qi), all s > 0 and with ∂tp̌ = p.

Now, using Theorem 4.1 applied to the solution z of (4.33) and by Lemmas 3.3 and

4.3, we get that there exist ϑ(s) > 0 and κ > 0 such that :

Ii(z) ≤ ϑ(s)
∫
Qωi

ϕ3
i |z|2e−2sηi dt dx

+κ
∫
Qi
|β|2e−2sηi dt dx+ ϑ(s)‖(y(τi, ·)‖2

H1(Ω).
(4.39)
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Stable estimation of two coefficients in a nonlinear Fisher-KPP equation 13

Then, we are going to establish a similar inequality for w. We come back to the first

equation of system (4.34) and we rewrite it in the following form:

∂tw = D∆w + P1(w) + P2(z) + P3(z̃) + P4(y),

where Pi(·), i = 1, . . . , 4 correspond to first order linear operators.

First, by the classical Carleman estimate of Theorem 4.1 we have:

Ii(w) ≤ κ
(∫

Qi
e−2sηi|P1(w)|2 dtdx+

∫
Qi
e−2sηi|P2(z)|2 dtdx

+
∫
Qi
e−2sηi|P3(z̃)|2 dtdx+

∫
Qi
e−2sηi|P4(y)|2 dtdx

)
+ϑ(s)

∫
Qωi

ϕ3
i |w|2e−2sηidtdx.

(4.40)

From the definition of Ii(w), see Eq. (4.37), the first integral is absorbed by the term

Ii(w) for s large enough. Using Lemma 4.3, we observe that the second integral is

bounded from above by
κ

s
Ii(z) for s large enough. Lemmas 3.2 and 3.3 imply that

the third integral can be treated similarly. By Lemma 4.3, the fourth integral can be

estimated as follows :∫
Qi

|P4(y)|2 e−2sηidt dx ≤ κ

s

∫
Qi

(|z|2 + |∇z|2)e−2sηidtdx+ ϑ(s)‖y(τi, ·)‖2
H1(Ω).

Finally, for s large enough, we have:

Ii(w) ≤ ϑ(s)

∫
Qωi

ϕ3
i |w|2e−2sηidtdx+

κ

s
Ii(z) + ϑ(s)‖(y(τi, ·)‖2

H1(Ω),

and we get:

Theorem 4.4. Let τ0, τ1, δ be such that 0 < τ0 < τ1 and 0 < δ < τ0. Then there exist

a constant K > 0, a function ζ(x) in C2(Ω) such that K < ζ(x) < 2K, two constants

s1 > 0 and κ > 0 such that, for any s ≥ s1, there exits ϑ(s) > 0 such that:

Ii(w) ≤ ϑ(s)
∫
Qωi

e−2sηiϕ3
i (|w|2 + |z|2)dtdx+ κ

s

∫
Qi
|γ − γ̃|2e−2sηi dt dx

+ϑ(s)‖(y(τi, ·)‖2
H1(Ω).

(4.41)

All the coefficients in this inequality are independent of µ̃ and γ̃.

4.3. Stability result

Recall that our goal is to obtain a global stability estimate for both µ − µ̃ and γ − γ̃.

A natural idea would be to obtain a first stability inequality for µ − µ̃, using the

usual method in the case of a unique unknown coefficient, and then to obtain a second

inequality for γ − γ̃. However, this approach faces two difficulties. First, the existing

stability inequalities for one coefficient only work in the linear case. Second, even if

these inequalities were available in the nonlinear context considered here, we would

obtain two stability inequalities of the form ‖µ − µ̃‖ ≤ C(γ) ‖Observation(Sµ,γ) −
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Observation(Sµ̃,γ)‖, and ‖γ−γ̃‖ ≤ C(µ) ‖Observation(Sµ,γ)−Observation(Sµ,γ̃)‖. These

two inequalities are useless for the determination of µ and γ.

Here, we work at two different times t0 and t1 and, using Lemma 2.1, we adjust

these values in order to get a single stability inequality for ‖µ− µ̃‖2 + ‖γ − γ̃‖2.

In a first step, we get an upper bound for ‖αe−sη0(τ0,·)‖2
L2(Ω), where α = µ− µ̃:

Lemma 4.5. Let z and w denote the solutions of (4.33) and (4.34), respectively. There

exist three constants s2 > 0, κ > 0 and ϑ(s) > 0, such that:

‖αe−sη0(τ0,·)‖2
L2(Ω) ≤ ϑ(s)

∫
Qω0

ϕ3
0e
−2sη0(|w|2 + |z|2)dtdx+ ϑ(s)‖y(τ0, ·)‖2

H2(Ω)

+(2 + κ/s2) max
x∈Ω
|ũ(τ0, ·)|2‖βe−sη0(τ0,·)‖2

L2(Ω)

for all s ≥ s2.

Proof of Lemma 4.5. Let τ0 > 0 and δ ∈ (0, τ0). We begin with a technical lemma:

Lemma 4.6. There exists a constant s̃ > 0 depending only on τ0 such that, for all

q ∈ H1((τ0 − δ, τ0 + δ), L2(Ω)) and s ≥ s̃ we have:∫
Ω

|q(τ0, x)|2dx ≤ 2

(
s

∫
Q0

|q(t, x)|2dtdx+ s−1

∫
Q0

|∂tq(t, x)|2dtdxt
)
.

Proof of Lemma 4.6. Let χ ∈ C∞(R; [0, 1]) be a cut-off function fulfilling

χ(t) =

{
1 if |t− τ0| < δ − 2ε,

0 if |t− τ0| ≥ δ − ε,
(4.42)

for some fixed ε ∈ (0, δ/2). Then, for every q ∈ H1((τ0− δ, τ0 + δ), L2(Ω)), the following

identity holds:∫
Ω

|q(τ0, x)|2dx =

∫ τ0

τ0−δ

d

dt

(∫
Ω

χ2(t)|q(t, x)|2dx
)
dt

= 2

(∫ τ0

τ0−δ

∫
Ω

χ2(t)q(t, x)∂tq(t, x)dtdx

)
+ 2

∫ τ0

τ0−δ

∫
Ω

χ(t)∂tχ(t)|q(t, x)|2dtdx.

Applying Young’s inequality, this entails∫
Ω

|q(τ0, x)|2dx ≤ (s+ 2‖∂tχ‖∞)

∫
Q0

|q(t, x)|2dtdx+ s−1

∫
Q0

|∂tq(x, t)|2dtdx,

for each s > 0, so the result follows by taking s̃ = 2‖∂tχ‖∞. �

Returning to the proof of Lemma 4.5, we consider the first equation of the system

(4.32) evaluated at some time t = τ0:

z(τ0, ·) = α−βũ(τ0, ·)+

(
D∆y +

2D

ũ
∇ũ · ∇y + y(µ+D

∆ũ

ũ
− ∂tũ

ũ
− γ(u+ ũ))

)
(τ0, ·).
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Multiplying this equality by e−sη0(τ0,·) and applying Lemma 4.6 for q = ze−sη0 , we get

that ∫
Ω
|z(τ0, x)|2e−2sη0(τ0,·)dx ≤ 3s

∫
Q0
|z(t, x)|2e−2sη0(t,x)dtdx

+3s−1
∫
Q0
|∂tz(t, x)|2e−2sη0(t,x)dtdx,

for s large enough. Using this last inequality and the equality satisfied by z(τ0, ·), and

using the results of Lemmas 3.2 and 3.3 we obtain:

‖αe−sη0(τ0,·)‖2
L2(Ω) ≤ κ

(
s−1‖we−sη0‖2

L2((τ0−δ,τ0+δ),L2(Ω))

+s‖ze−sη0‖2
L2((τ0−δ,τ0+δ),L2(Ω))) + ‖y(τ0, ·)‖2

H2(Ω)

)
+2 maxx∈Ω |ũ(τ0, ·)|2‖βe−sη0(τ0,·)‖2

L2(Ω),

(4.43)

for s sufficiently large, and where y is defined as in Section 4.1.

Using the inequality (4.39) and the result of Theorem 4.4 we can write:

‖αe−sη0(τ0,·)‖2
L2(Ω) ≤ κ

(
I0(w)

s4
+
I0(z)

s2
+ ‖y(τ0, ·)‖2

H2(Ω)

)
+2 max

x∈Ω
|ũ(τ0, ·)|2‖βe−sη0(τ0,·)‖2

L2(Ω),

and:

‖αe−sη0(τ0,·)‖2
L2(Ω) ≤ ϑ(s)

(∫
Qω0

ϕ3
0e
−2sη0(|w|2 + |z|2)dxdt+ ‖y(τ0, ·)‖2

H2(Ω)

)
+

(
κ

(
1

s5
+

1

s2

)
+ 2 max

x∈Ω
|ũ(τ0, ·)|2

)
‖βe−sη0(τ0,·)‖2

L2(Ω).

This concludes the proof of Lemma 4.5. �

In a second step we give an upper bound for ‖(α − βũ(τ1, ·))e−sη1(τ1,·)‖2
L2(Ω). The

proof essentialy relies on the following Lemma

Lemma 4.7. Let z denote the solution to (4.33) and put I := ‖e−sη1z(τ1, ·)‖2
L2(Ω).

Then there are three constants s3 > 0, ϑ(s) > 0 and κ > 0, such that we have

I ≤ ϑ(s)

∫
Qω1

e−2sη1|z|2dtdx+ κs−3/2

∫ t1

t1−δ

∫
Ω

e−2sη1|β|2dtdx (4.44)

for all s ≥ s3.

Proof of Lemma 4.7. Set ψ = e−sη1z. Bearing in mind that ψ(τ1 − δ, ·) = 0 and since

∇ϕ1 = λϕ1∇ζ , we find that

I =

∫ τ1

τ1−δ

∫
Ω

∂t|ψ(t, x)|2dtdx

= 2

(∫ τ1

τ1−δ

∫
Ω

M
(1)
2 ψ ψdtdx− sD

∫ τ1

τ1−δ

∫
Ω

ϕ1|∇ζ|2ψ2dxdt

+sD

∫ τ1

τ1−δ

∫
Ω

ϕ1∆ζψ2 dtdx

)
.
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Then we get: ∫
Ω

e−2sη1(τ1,x)z(τ1, x)2 dx ≤ 2

∣∣∣∣∫ τ1

τ1−δ

∫
Ω

M
(1)
2 ψψ dtdx

∣∣∣∣
+κs

∫ τ1

τ1−δ

∫
Ω

e−2sη1ϕ1z
2dtdx.

(4.45)

Then we give an estimate of the first integral in the right hand side of the previous

inequality. On the one hand from the Cauchy-Schwartz inequality:∣∣∣∣∫ τ1

τ1−δ

∫
Ω

M
(1)
2 ψ ψ dtdx

∣∣∣∣ ≤ s−3/2

√∫ τ1

τ1−δ

∫
Ω

(M
(1)
2 ψ)2 dtdx

√
s3

∫ τ1

τ1−δ

∫
Ω

e−2sη1ϕ3
1z

2 dtdx.

Then using Young’s inequality, we obtain∣∣∣∣∫ τ1

τ1−δ

∫
Ω

M
(1)
2 ψ ψ dtdx

∣∣∣∣ ≤ 1

2
s−3/2

(
‖M (1)

2 ψ‖2 + s3

∫ τ1

τ1−δ

∫
Ω

e−2sη1ϕ3
1z

2 dtdx

)
Finally by applying the Carleman inequality (4.39), we get:∣∣∣∣∫ τ1

τ1−δ

∫
Ω

M
(1)
2 ψ ψ dtdx

∣∣∣∣ ≤ κ

[
s3/2

∫ τ1

τ1−δ

∫
ω

e−2sη1ϕ3
1z

2 dtdx+ s−3/2

∫ τ1

τ1−δ

∫
Ω

e−2sη1|β|2dtdx
]
.

Further by using inequality (4.45) and choosing s sufficiently large, the following

estimate yields:

I ≤ ϑ(s)

∫
Qω1

e−2sη1ϕ3
1|z|2dtdx+ κs−3/2

∫ τ1

τ1−δ

∫
Ω

e−2sη1 |β|2dx dt (4.46)

This concludes the proof of Lemma 4.7. �

Let us come back to the first equation of the system (4.32) evaluated at some time

t = τ1:

z(τ1, ·) =

(
D∆y +

2

ũ
∇ũ · ∇y + y(µ+

∆ũ

ũ
− ∂tũ

ũ
− γ(u+ ũ)) + α− βũ

)
(τ1, ·).

Multiplying this equality by e−sη1(τ1,·) and combining with (4.46), we get:

Lemma 4.8. Let z and w denote the solutions of (4.33) and (4.34), respectively. Then

there are three constants s4 > 0, ϑ(s) > 0 and κ > 0, such that we have

‖(α− βũ(τ1, ·))e−sη1(τ1,·))‖2
L2(Ω) ≤ ϑ(s)

∫
Qω1

e−2sη1|z|2dtdx

+ϑ(s)‖y(τ1, ·)‖2
H2(Ω)

+κs−3/2

∫ τ1

τ1−δ

∫
Ω

e−2sη1|β|2dtdx,

for all s ≥ s4.
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It is straightforward that:

‖αe−sη1(τ1,·))‖2
L2(Ω) +‖βũ(τ1, ·)e−sη1(τ1,·))‖2

L2(Ω)

≤ 2‖(α− βũ(τ1, ·))e−sη1(τ1,·))‖2
L2(Ω) + 3‖αe−sη1(τ1,·))‖2

L2(Ω).

Then since η0(τ0, ·) = η1(τ1, ·) we get:

‖αe−sη0(τ0,·))‖2
L2(Ω) +‖βũ(τ1, ·)e−sη0(τ0,·))‖2

L2(Ω)

≤ 2‖(α− βũ(τ1, ·))e−sη1(τ1,·))‖2
L2(Ω) + 3‖αe−sη0(τ0,·))‖2

L2(Ω).

and according to Lemmas 4.5 and 4.8 we obtain, for s large enough:

‖αe−sη0(τ0,·))‖2
L2(Ω) +‖βũ(τ1, ·)e−sη0(τ0,·))‖2

L2(Ω)

≤ ϑ(s)

∫
Qω1

ϕ3
1|z|2dtdx

+ϑ(s)

∫
Qω0

ϕ3
0(|w|2 + |z|2)dtdx

+ϑ(s)
(
‖y(τ1, ·)‖2

H2(Ω) + ‖y(τ0, ·)‖2
H2(Ω)

)
+(κ/s2 + 6 max

x∈Ω
|ũ(t0, ·)|2)‖βe−sη0(t0,·)‖2

L2(Ω).

(4.47)

Thus, we get:

‖αe−sη0(τ0,·))‖2
L2(Ω) + (min

x∈Ω
|ũ(t1, x)|2 − κ

s2
− 6 max

x∈Ω
|ũ(t0, ·)|2)‖βũ(τ1, ·)e−sη0(τ0,·))‖2

L2(Ω)

≤ ϑ(s)

∫
Qω1

ϕ3
1|z|2dtdx

+ϑ(s)

∫
Qω0

ϕ3
0(|w|2 + |z|2)dtdx

+ϑ(s)
(
‖y(τ1, ·)‖2

H2(Ω) + ‖y(τ0, ·)‖2
H2(Ω)

)
.

(4.48)

We then use Lemma 2.1 to find two times t0 and t1 such that

6 max
x∈Ω

ũ(t0, x) < min
x∈Ω

ũ(t1, x),

and we fix δ ∈ (0, t0). Applying the inequality (4.48) with τ0 = t0 and τ1 = t1 and s

large enough, we obtain the existence of a constant C > 0 such that, for any couple

(µ̃, γ̃) ∈M × Γ,

‖α‖2
L2(Ω) + ‖β‖2

L2(Ω) ≤ C

∫ t1+δ

t0−δ

∫
ω

(|z|2 + |w|2)dtdx+ C‖y(t0, ·)‖2
H2(Ω)

+C‖y(t1, ·)‖2
H2(Ω)

≤ C
(
‖u− ũ‖2

H2((t0−δ,t1+δ),L2(ω)) + ‖(u− ũ)(t0, ·)‖2
H2(Ω)

+‖(u− ũ)(t1, ·)‖2
H2(Ω)

)
and Theorem 2.2 follows directly. �
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Appendix A: existence of non-constant initial conditions satisfying (2.5)

and (2.6)

Under our assumptions, we can prove the existence of a non-constant function ui which

satisfies (2.5) and (2.6). Let us recall that, from Krein-Rutman theory (see [48] for

further details), for any ρ ∈ C5(Ω), it exists a unique real number λ1[ρ] and a unique

function ϕ ∈ C7(Ω) which satisfy{
−D∆ϕ− ρϕ = λ1[ρ]ϕ in Ω,

∂νϕ = 0 on ∂Ω, ϕ > 0 in Ω, ‖ϕ‖∞ = 1.
(4.49)

Definition 4.9. λ1[ρ] and ϕ are respectively the principal eigenvalue and principal

eigenfunction of the operator −D∆− ρ, with Neumann boundary conditions.

Let us set λ− = λ1[µ−], and let ϕ− be the associated principal eigenfunction.

Lemma 4.10. For any κ ∈
(

0,
minΩ µ

−

6 maxΩ γ
+

)
, the function ui = κϕ− satisfies (2.5) and

(2.6).

Proof. Let us first show that λ− < 0. We have

−D∆ϕ− − µ−ϕ− = λ− ϕ− in Ω. (4.50)

Dividing this equation by ϕ and integrating by parts over Ω, we get:

−D
∫

Ω

|∇ϕ−|2

(ϕ−)2
−
∫

Ω

µ− = λ− |Ω|, (4.51)

where |Ω| stands for the Lebesgue measure of the set Ω. Using our assumption µ− > 0

in Ω, we get

λ− < 0.

Now, let us set ui = κϕ−, for some κ > 0. The function ui satisfies

−D∆ui − ui(µ− − γ+ui) = ui (λ
− + γ+ κϕ−) in Ω. (4.52)

In particular, if κ ∈
(

0,
−λ−

maxΩ γ
+

)
, we obtain

−D∆ui − ui(µ− − γ+ui) < 0 in Ω, (4.53)

and the condition (2.6) is fulfilled. Since max
Ω

ui = κ, the assumption (2.5) is also

satisfied if κ < minΩ µ
−/(6 maxΩ γ

+). Since −λ− > minΩ µ
− (this can easily be checked

by using Rayleigh formula), ui = κϕ− satisfies the assumptions (2.5) and (2.6) for any

κ ∈
(

0,
minΩ µ

−

6 maxΩ γ
+

)
. �
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Appendix B: Proof of Lemma 2.1

We recall that we want to prove that it exists a bounded interval T ⊂ (0,∞) such

that, for any couple (t0, t1) with 0 < t0 ≤ inf T < sup T ≤ t1, and for all (µ, γ) and

(µ̃, γ̃) ∈M × Γ,

6 max
x∈Ω

ũ(t0, x) < min
x∈Ω

ũ(t1, x).

The proof of this lemma uses the hypothesis (2.5) on ui.

Recall the definition of the sets M and Γ:

M := {µ̃ ∈ C5(Ω) s.t. µ− ≤ µ̃ ≤ µ+ on Ω and ‖µ̃‖C5(Ω) ≤ m},

and

Γ := {γ̃ ∈ C5(Ω) s.t. γ− ≤ γ̃ ≤ γ+ on Ω and ‖γ̃‖C5(Ω) ≤ m}.

Let us fix two couples (µ, γ) and (µ̃, γ̃) in M × Γ, and a function ui satisfying the

hypothesis (2.5). Let u and ũ be respectively the solutions of (2.3) and (2.4).

Let us set

µ− = min
Ω
{µ−}, µ+ = max

Ω
{µ+} and γ+ = max

Ω
{γ+},

and similarly,

ui = min
Ω
{ui} and ui = max

Ω
{ui}.

Let u− and u+ be defined as in the proof of Lemma 3.2:
du−

dt
= u−(µ− − γ+u−), u−(0) = ui,

du+

dt
= u+ µ+, u+(0) = ui.

(4.54)

The functions (t, x) 7→ u−(t) and (t, x) 7→ u+(t) are respectively sub- and supersolutions

of the equation satisfied by u, with Neumann boundary conditions and with u−(t) ≤
u(t, x) ≤ u+(t) on Ω at t = 0. We therefore have

u−(t) ≤ u(t, x) ≤ u+(t) for all t ≥ 0, x ∈ Ω.

In particular we have u−(t) ≤ ũ(t, x) ≤ u+(t) in {0} × Ω ∪ (0,+∞) × ∂Ω, and since

(t, x) 7→ u−(t) and (t, x) 7→ u+(t) are also sub- and supersolutions of the equation

satisfied by ũ, we get

u−(t) ≤ ũ(t, x) ≤ u+(t) for all t ≥ 0, x ∈ Ω.

Fix some times t0, t1, with t0 < t1. We have

u+(t0) = uie
µ+t0 and u−(t1) =

µ−uie
µ−t1

µ− + γ+ui(e
µ−t1 − 1)

. (4.55)
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Thus, it exists a couple (τ0, τ1) such that 0 < τ0 < τ1 and u−(τ1) > 6u+(τ0) if and only

if
µ−

γ+ > 6ui, which corresponds to the assumption (2.5) on ui. For such a couple (τ0, τ1)

we then get, for all t0 ≤ τ0, and t1 ≥ τ1,

6 max
x∈Ω

ũ(t0, x) ≤ 6u+(t0) ≤ 6u+(τ0) < u−(τ1) ≤ u−(t1) ≤ min
x∈Ω

ũ(t1, x).

Note that the formula (4.55) allows an explicit computation of the the interval

T = [τ0, τ1]. �
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