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Abstract

Background: Synthetic biology is used to develop cell factories for production of chemicals by constructively
importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic
approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host
cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical
transformations (reversed enzyme-catalyzed reactions in the metabolic space) starting from a target product to
reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the
manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for
a given compound.

Results: In our method, we efficiently address the complexity problem by coding substrates, products and
reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is
controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate
pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can
integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state
fluxes from the genome-wide reconstruction of the organism’s metabolism, or the estimation of metabolite toxicity
from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction
efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics
and for one antitumor agent, as well as for several essential metabolites are outlined.

Conclusions: We present here a unified framework that integrates diverse techniques involved in the design of
heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space. Our
engineering methodology enables the flexible design of industrial microorganisms for the efficient on-demand
production of chemical compounds with therapeutic applications.

Background
Synthetic biology is being used for therapeutic produc-
tion either to develop cell factories using industrial
microorganisms [1,2] or to synthesize genetic circuits
allowing in situ therapeutic delivery [3]. Recombinant
DNA technology has already provided the ability to
genetically engineer cell strains in order to import path-
ways from other organisms capable of producing small
molecule chemicals into microbial chassis. Moreover, to
estimate the efficiency of the overall process, metabolic
engineering-based tools consider models of cell metabo-
lism as a whole, allowing the identification and redesign

of bottlenecks in the biosynthetic pathways. Therefore,
the next challenge ahead remains the integration of all
these design steps into a flexible and automated biosyn-
thetic manufacturing pipeline of molecules.
In recent years, many successful examples of biopro-

duction of chemicals with therapeutic interest through
metabolic engineering have been reported. Among
others, plant secondary metabolites that are of medicinal
value, such as the terpenoids artemisinic acid [4] and
paclitaxel (taxol) [5], benzylisoquinoline alkaloids [6],
and flavonoids [7,8] have been successfully produced by
metabolically engineered microorganisms. Similarly, het-
erologous production of therapeutically important anti-
biotics such as aminoglycosides derivatives, which
include ribostamycin [9], neomycin, gentamicin and
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kanamycin, as well as other natural products like poly-
ketides [10,11] and nonribosomal peptides [12] have
been reported. Flexible production of novel antibiotics is
of special interest in order to fight against the increasing
emergence of multidrug-resistant pathogens [13-15].
In an attempt to rationalize the biosynthetic design

process, metabolic engineering models the metabolic
network of the cell as a whole [16,17]. A suitable topo-
logical representation of the metabolic network can be
achieved by using directed hypergraphs [18,19] where
catalytic reactions are hyperedges connecting node sub-
strates to products. Moreover, genome-wide reconstruc-
tions of an organism’s metabolism with explicit
reference to the stoichiometry of the reactions can be
studied in order to estimate steady-state fluxes [20].
Sensitivity analysis of fluxes provides a systematic way
to determine production bottlenecks, where gene over-
expression or repression might enhance production for
the target compound [21,22]. In addition, stochastic and
deterministic system dynamics methods are used to
simulate enzymatic reaction kinetics [23].
Through metabolic modeling, the repertoire of bio-

chemical transformations in de novo biosynthetic path-
ways are extended beyond what is present in metabolic
databases like KEGG [24] and MetaCyc [25]. In silico
methods for de novo pathway prediction and optimiza-
tion are mainly based on two approaches: homologies
of chemical structure transformation patterns [26-29],
and knowledge-based expert systems [30,31]. Retro-
synthesis algorithms [32] perform a backward search
for biosynthetic routes leading from a target com-
pound to the host metabolites through iterative appli-
cation of a defined set of biochemical transformation
rules. One approach is BNICE [33], where molecules
and reactions are represented by bond-electron
matrices (BEM) [34]. BEM entries correspond to the
covalent bond order between atoms, whereas the
Dugundji-Ugi model for a metabolic reaction is imple-
mented through the matrix difference between the
BEM of products and substrates. With BNICE, reac-
tions in the KEGG database [24] are represented
through approximately 250 unique elementary trans-
formations, which approximately correspond to the
classification at the 3rd EC digits [35,36]. In the same
fashion, the molecular signature descriptor [37] is an
algorithm that returns for a given target compound
fourth and third EC digits, respectively, of predicted
enzymes capable of producing the structure. Similarly,
other retrosynthetic framework has been proposed
based on 50 reaction rules [38].
A retrosynthetic search in the metabolic hypergraph

might lead to a combinatorial explosion. For instance,
using only 50 reaction rules, 100,000 reaction routes
were predicted for the production of isobutanol [38],

far more than what could be realistically tested in the
laboratory. Thus, in order to find a trade-off between
the inherent complexity of de novo pathway design
and the use of experimental information, we present
here a tool based on the coding of compounds and
reactions through molecular signatures [39]. The
molecular signature is a canonical representation of
the subgraph surrounding a particular atom in a mole-
cular structure up to a predefined diameter or height
h. A metabolic reaction signature is given by the dif-
ference between the signatures of products and sub-
strates [40]. As further described in the Methods
section, the signature coding system can be made
more or less specific to compounds and reactions by
selecting the height, low heights are less specific (as
molecular signatures become more and more ambigu-
ous) and high heights are specific (as molecular signa-
tures become more and more precise), thus the
numbers of de novo reactions and consequently de
novo pathways can be controlled.
Once metabolic models for the heterologous bio-

synthesis of target compounds have been determined,
individual performances for the predicted pathways
need to be characterized in order to prioritize the
engineering of the most promising routes into the
chassis organism. Several computational frameworks
have proposed different factors that might influence
the performance of an engineered strain. PathMiner
introduced a path cost associated with the number of
heterologous enzymes measured through a chemical
distance [41]. BNICE applied the group contribution
method [42] for reactants and products in order to
rank pathways based on the thermodynamic favorabil-
ity [43]. Other aspects influencing the pathway perfor-
mance are pathway length, organism specificity [38],
heterologous expression, growth rate, and precursor
supply [44]. In addition, many other factors might be
considered, for instance, PathoLogic defined 123 path-
way features that may be relevant to the pathway rank-
ing problem [31]. Therefore, subsequent optimization
of the heterologous engineered strain through genetic,
metabolic and enzyme design approaches would be
usually necessary in order to attain the desired final
yields in the production of the target compound.
Moreover, increasing efficiency levels for rate-limiting
enzymatic reactions involved in the pathway is an
additional strategy for the rational design of industrial
strains [37,45,46]. We present here a unified frame-
work that combines several techniques involved in the
design of heterologous biosynthetic pathways through
a retrosynthetic approach in the reaction signature
space, enabling the flexible design of industrial micro-
organisms for the efficient on-demand production of
chemical compounds of interest.
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Results and Discussion
The extended metabolic reaction space (EMRS)
Our method starts by mapping the metabolic network
into the signature space in order to build an extended
representation of the metabolic reaction space (see defi-
nitions in Methods). Molecular signatures, which are a
representation of the molecular graph, can be used in
order to code reactions [46]. This process is illustrated
in Figure 1. Canonical molecular signatures identify
unique compounds when they are computed at the
height h of the maximum diameter of the molecular
graph, whereas signatures at lower height h provide a
way to search for and enumerate similar chemical com-
pounds. Likewise, reaction signatures, which are bio-
chemical reactions coded into the molecular signature
representation (Equation 7 in Methods), are used in
order to search for and enumerate similar reactions. We
define the extended metabolic reaction space (EMRS) as
the set of all possible reactions that can be generated
from signatures contained in the metabolic network.
Therefore, the EMRS consists of both reactions in the
metabolic network and additional putative reactions,
which are assumed to be promiscuously catalyzed by
enzymes present in the organism. Given a finite height
h, novel reactions are discovered through this method
by performing a search in the metabolite signature
space of combinations of stoichiometric coefficients of
metabolites having the same signature as either the sub-
strates or the products. Figure 2 shows the metabolic
reaction map of the 966 endogenous metabolites in E.
coli (Figure 2A) and of the additional 2338 compounds
that are reachable from E. coli after the generation of
the EMRS (Figure 2B).
An illustrative example is the metabolite signature

space of height h = 0. In this space, compounds are
represented by their elemental formula. Similarly, the
combination of the substrates and products in the reac-
tion are represented by their total molecular formula.
Thus, any combination of compounds satisfying the ele-
mental formula is considered a putative set of reactants.
In order to compute the EMRS of height h = 0, we need
to solve Diophantine equations in the signature space of
height h = 0 that generally lead to a set of solutions too
large to be of use. In the case of h = 1, the number of
newly created reactions is still significantly large (for a
network like the one shown in Figure 2, it would be
above 106). This number, nevertheless, becomes tract-
able once we consider heights higher than h = 2, which
corresponds to a 17.72% increase in the number of reac-
tions with respect to nominal reactions, as it is shown in
Table 1. Starting from the list of coded reactions, the
iterative backward application of the biochemical trans-
formations to compounds of interest allows the

identification of enzymatic routes linking the desired
compound to precursors that are endogenous to the
chassis organism. Each of these routes constitutes an
exogenous biosynthetic pathway for that compound. In
the next sections, we present an approach for ranking
the biosynthetic pathways of a given compound in order
to select the best pathways to engineer in the chassis
organism.

Decision flowchart for selecting and ranking best
pathways
The EMRS introduces putative novel reactions that
share the same signature as their parent nominal reac-
tions at the chosen height h of molecular resolution
(Equation 8 in Methods). Those putative reactions gen-
erated by our molecular signature-based algorithm need
to be validated and ranked. Figure 3 shows the decision
flowchart used in our approach in order to accept or
reject putative reactions in a pathway as well as to score
its overall performance once inserted into the chassis
organism. Reactions are first tested for their thermody-
namic feasibility. Next, if no known enzyme sequences
are available in the database, the enzyme sequence space
is searched in order to find candidate sequences that
might catalyze the given reaction as a promiscuous
activity. Gene compatibility, enzymatic performance,
toxicity of products and steady state fluxes are finally
estimated in order to score the pathway.
We introduce the following function to quantify the

cost of inserting an exogenous enzyme sequence Si pro-
cessing the reaction r* in the pathway:

W(r∗, Si) =

= 1 − ωp promis(Si) + 1 − ωe perf(r∗, Si) + het(Si)

0 ≤ promis(Si),perf(r∗, Si),het(Si) ≤ 1

0 ≤ ωp, ωe ≤ 1

(1)

where promis(Si) is the predicted enzyme promiscu-
ity for the sequence Si, perf(r*, Si) is the estimated cat-
alytic performance of the given sequence Si for reaction
r*, and het(Si) is the gene compatibility of the sequence
Si. ωp, ωe are parameters used in order to weight the
contribution of each term to the cost function. All three
terms are normalized before entering the expression so
that each score is always given by a value in the same
range between 0 and 1. Therefore, the cost function
W(r∗, Si)in Equation 1 is always defined positive and
bounded. Promiscuity contributes negatively to the cost
function because enzymes with higher level of promis-
cuity are considered better candidates for catalyzing the
desired transformation r* as a side reaction. In the same
fashion, enzyme performance contributes negatively
since reactions with higher performance are considered
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Figure 1 The atomic, molecular and reaction signature coding. A) The process for computing the molecular signature for a compound C is
illustrated for 6-aminohexanate. The process starts by computing the atomic signature for each atom. In the given example, the atomic
signature for the carbon in the carboxylic group is computed up to height h = 2. At height h = 0 (blue), the molecular graph rooted at the
atom is given by the atom itself; at height h = 1 (green) a canonical representation of the root atom and its first atomic neighbors are given;
the process continues similarly for heights h = 2 (orange) and higher until the diameter of the graph is reached. Atomic signatures are collected
for all atoms and sorted in order to provide the molecular signature, for instance the molecular signature 1s(C) of height h = 1 is given at the
left; B) The coding of reactions signatures is illustrated for the 6-aminohexanoate hydrolase (EC 3.5.1.46). The reaction signature contains the net
difference between the products and the substrates. In the figure, the reaction signature 1s(R) was computed for height h = 1; C) Illustration of
how signatures of reactions provide a way to measure their chemical similarity. For example, the previous reaction (EC 3.5.1.46) has the same
signature at height h = 1 than 4-(g-glutamylamino)butanoate amidohydrolase (EC 3.5.1.94). However, both signatures differ at height h = 2,
having in this case a Tanimoto similarity of 2s(R1, R2) = 0.81 (see Equation 14 in Methods).
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less expensive in terms of the cost of insertion. Once all
terms are defined for each reaction r* in the EMRS, this
strategy enables the determination of those gene
sequences S* that minimize the insertion cost:

S∗(r∗) = arg min
Si

W(r∗, Si) (2)

Furthermore, several additional adverse effects may
be hindering the successful expression and perfor-
mance of inserted enzymes, while the toxicity of inter-
mediate metabolites might impede cell survival and
growth. These effects need to be taken into account in
order to rank the pathways. For instance, an estimate
of toxicity values (IC50 or half minimal inhibitory con-
centration) for the intermediates p in the chassis
organism, may be obtained either from experimental
databases [47] or from structure-activity relationship
models [48]. In addition, compound yields from
inserted pathways are rarely additive, since other
routes may be competing with the target pathway and
inhibiting the production of the desired compound [5].
Here we use a multi-criteria approach in order to
score the cost of pathway insertion with respect to the
general goal of producing a target molecule c, with a
cost function defined as follows:

W(c, ρ) = − λfluxvc(ρ)+

+ λpath

N∑
r∗∈ρ

W(r∗, S∗(r∗)) + λtox

N∑
r∗∈ρ

∑
p∈r∗

tox(p)
(3)

where W(c, r) considers the following effects: vc(r),
nominal yield of compound c in pathway r;
W(r∗, S∗(r∗)), minimum cost of insertion of each
enzyme in the pathway as given by Equation 1; and tox
(p), the inverse of the IC50 value. Parameters (lflux,
lpath, ltox) need to be adjusted in function of the
desired weight given to the costs of pathway insertion
and metabolite toxicity. In our method, these para-
meters were optimized so that pathways that are fully
annotated in the reference database, for instance KEGG,
are ranked first with respect to predicted pathways (see
details in Methods).
The minimum of this cost function W(c, r*(c)) at the

optimal pathway:

ρ∗(c) = argρ min W(c, ρ) (4)

provides a trade-off between the simultaneous goals of
obtaining the maximum nominal yield while keeping the

Figure 2 Metabolic networks in the EMRS. A) Metabolic reaction
map of E. coli, where endogenous metabolites are depicted as light
blue nodes connected by edges representing reactions; B)
Retrosynthetic map containing reachable compounds in the E. coli
EMRS through exogenous reactions, where exogenous metabolites
are represented by pink nodes connected through reactions (thin
edges) to the E. coli network. There are 966 endogenous and 2338
exogenous compounds, respectively, that can be reached through
reactions in the EMRS. There are 4,344 edges connecting
endogenous compounds and 8,931 edges leading to exogenous
compounds.

Table 1 Reactions in the EMRS

height h reactions % increase from canonical

2 9083 17.72%

3 7882 2.15%

4 7800 1.09%

5 7752 0.47%

6 7725 0.12%

canonical 7716 0%

Number of novel generated putative reactions in the EMRS for different
heights h.
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overall process efficient and side effects attenuated. In
the following sections, we present our approach in order
to quantify each term in the pathway cost function W(c,
r) in Equation 3.

Predicting enzyme activity in promiscuous putative
reactions
Our method provides for each reaction in the EMRS a
ranked list of candidate sequences, as given by the score
in Equation 1, along with their predicted catalytic effi-
ciencies. When there is no sequence information in
databases about enzymes catalyzing the desired reaction
r*, we must rely on the prediction of enzymes as puta-
tive candidates to process other substrates (multispecifi-
city) or to catalyze a promiscuous reaction other than

their native ones [49]. Furthermore the thermodynamic
feasibility of that reactions as well as the performance of
the predicted promiscuous enzymes need to be evalu-
ated. These preliminary evaluations, which are described
next, are carried out in order to implement an early
rejection of false hits, as shown in the flowchart of Fig-
ure 3.
Thermodynamic feasibility
Putative reactions need to be validated for their direc-
tionality or thermodynamic feasibility. We performed
this validation assuming that the metabolites’ concentra-
tion are spatially invariant and that temperature and
pressure are constant. Under these assumptions, stan-
dard Gibbs free energies of reactions can be estimated
using a group contribution approach [43,50]. Only

Figure 3 Flowchart for ranking pathways. In order to rank pathways, each reaction r = 1 ... N in the enumerated pathways p1 ... pM is first
tested for thermodynamical feasibility; enzyme candidates are subsequently tested for performance and homogeneity so that the one with the
lowest cost is selected; the cost of toxicity of each reaction product is then added; finally, the nominal flux is estimated for the overall pathway.
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reactions estimated to be thermodynamically feasible are
added to the EMRS.
Enzyme promiscuity
As part of our methodology for biosynthetic pathway
design, candidate enzyme sequences catalyzing feasible
reactions in the EMRS have to be identified from the set
of known enzymes. Namely, our procedure for extend-
ing the metabolic network relied on the underlying
assumption that reactions with the same signature are
likely to be processed by similar enzyme sequences [37],
which in turn implies that the ability to catalyze the
putative reaction is already present in the enzyme in the
form of latent promiscuous activity. We have shown in
a previous study [46] that enzyme multispecificity and
promiscuity are properties that can be characterized by
using a molecular signature representation. Thus, those
multiple reactions generated in the EMRS from a nom-
inal parent reaction can be interpreted as promiscuous
activities predicted to be present in the set of known
enzymes. Therefore, as shown in the decision flowchart
in Figure 3, in order to consider a given sequence as a
potential candidate that processes the putative reactions,
a preliminary requirement has been introduced in the
decision chart so that the enzyme should exhibit pro-
miscuous activity based on the estimations performed
by a molecular signature-based predictor (see Methods).
Tensor product
The next step consists of searching for candidate
enzymes to process a given reaction in the EMRS. In
case that no known enzyme sequences were available
for the reaction, candidate enzymes were determined by
a signature-based enzyme-reaction predictor by follow-
ing the procedure known as the tensor product [51].
We assumed that best candidate enzyme sequences for
a putative reaction were more likely to belong to the list
of sequences known to catalyze reactions that are che-
mically similar to the given reaction.
Therefore, reactions generated by the enumeration

algorithm in the EMRS were first clustered into groups
of similar reactions by a distance metrics, which was
defined as the Tanimoto similarity of reaction signatures
[52]. The tensor product procedure (see Methods) was
then used in order to locate best enzyme sequence can-
didates within the reaction cluster.
Enzyme performance
In addition, performance of exogenous enzymes needs
to be evaluated. We have developed a decision tree
learning method to estimate enzyme activity [53] using
kinetics information from the BRENDA database [54]
(turnover rates, Michaelis constant KM , and inhibition
constant Ki). As shown in Figure 3, predictions of
enzyme performance perf(r*, Si) for the list of candidate
enzymes entered into our decision flowchart in order to
score the sequences in Equation 1.

Quantifying the compatibility between the host and
heterologous genes
Another aspect to be addressed when considering the
overall enzyme cost defined in Equation 1, is the effect
of inserting heterologous genes, since the diversity of
base-pair content is organism-specific. By minimizing
this difference, expression levels can be maximized [55].
In order to quantify the compatibility between the host
and heterologous genes, we have implemented a
machine-learning approach based on several descriptors:
gene sequence descriptors (sequence length, GC con-
tent); organism specificity (phylogenetic distance
between source organism and chassis); probability of
protein expression as inclusion bodies; protein descrip-
tors (percentage of hydrophobic and charged amino
acids); and secondary structure distribution. These
descriptors were computed for the entire KEGG data-
base of non-redundant enzyme sequences and then used
in order to train support vector machine-based predic-
tors for the chassis organisms of interest (see Methods).
Furthermore, the successful expression of a heterolo-

gous gene depends on several additional sequence-inde-
pendent factors, such as an adequate selection of
promoters, RBS, and codons [56]. In some cases, we
should also consider the need for some other type of
specific modifications depending strictly on the type of
compound to be synthesized, such as protein engineer-
ing of P450s [57] or modular design for the complex
assembly machinery involved in the production of sec-
ondary metabolites like polyketides [58] and nonriboso-
mal peptides [59,60], which need to be evaluated on a
case-by-case basis in order to rank and select the best
genes to engineer.

Predicting compound toxicity
Exogenous enzymes inserted in the chassis might cata-
lyze reactions synthesizing new products in the organ-
ism. As a side effect, however, intermediate metabolites
involved in the exogenous pathways as well as any other
side product of the new reactions may induce undesired
toxic responses in the cell. Therefore, it is necessary to
consider toxicity effects of the compounds. For this pur-
pose, we have developed a structure-activity relationship
model based on a library of 150 tested compounds cov-
ering a wide range of toxicity levels [61]. The model was
built by using several molecular descriptors including
molecular signatures as input descriptors, achieving a
performance of Q2 = 0.68. For any given reaction in the
EMRS, toxicity was given by the sum of the predicted
toxicity for each product, allowing us to identify path-
ways involving highly toxic metabolites in order to rank
them with lower score.
Special consideration when predicting compound toxi-

city should be given to those cases when genes encoding
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for resistance to the compound are going to be engi-
neered as part of the biosynthetic gene cluster. For
instance, when producing an antibiotic in E. coli such as
penicillin, it is necessary to introduce genes that code
for b-lactam resistance in the organism in order to
make bacteria immune to that antibiotic. Therefore, if
resistance to some product is going to be inserted into
the strain, the attenuation effects in toxicity for that
family of compounds has to be updated into the model.

Estimation of nominal fluxes
The insertion of new reactions into the chassis organism
can perturb its metabolic network and therefore the
equilibrium of the steady-state fluxes might be altered
[20]. By using a constraints-based flux analysis on a gen-
ome-wide reconstructed metabolic model of the engi-
neered strain, we obtain the solution space within cell’s
capacity. Our objective is to maximize the production of
the desired compound while keeping cell growth. For
each engineered strain, we obtained an estimate of
expected net yield of product, which is not further
metabolized, at the given controlled media conditions.
In addition, flux balance analysis is a flexible analytical
technique that can also be applied in other ways in our
design framework for biosynthetic pathways. For
instance, it can be used in a systematic way in order to
perform a sensitivity analysis to determine production
bottlenecks, where overexpression and gene knockouts
might enhance production for the target compound
[21,22].

Pathway enumeration and optimal search in the EMRS
Given a biosynthetic pathway r(c) that produces a com-
pound c, we have shown in the previous sections how to
estimate the individual contributions to the cost func-
tion (Equation 3). By using the cost function, thus, bio-
synthetic pathways r(c) can be ranked. However, in
order to rank all viable biosynthetic pathways r(c) for a
compound c of interest, the problem of pathway enu-
meration needs to be addressed. For this purpose, mod-
eling of the metabolic network in the EMRS was done
by using directed hypergraphs, where reactions are
represented by hyperedges that connect sets of vertices
(the substrates) to disjoint sets of vertices (the products)
[62]. Directed hypergraph formalism, though more com-
plex than simple-graph models, provides a complete
representation of all compounds involved in biochemical
transformations. By using the hypergraph formalism, we
implemented a retrosynthetic algorithm that enumerates
all pathways starting from target compounds of interest.
One main advantage of the pathway enumeration in the
EMRS is that complexity can be controlled by tuning
the atomic height h of the molecular signatures. Higher
values of h imply that the number of pathways between

two metabolites is approximately the same as the num-
ber of possible pathways in metabolic networks of anno-
tated databases such as KEGG [24] or MetaCyc [25],
while lower h values generate more novel reactions and
therefore more possible pathways are formed between
those two metabolites. This result is illustrated for the
case of pathway enumeration between chorismate and
tyrosine in E. coli for different heights h using a reaction
representation at the level of the 3rd digit in the EC
number classification (Figure 4). In general, the possible
number of pathways that can be formed between these
two metabolites increases exponentially with the number
of reaction steps. When values of the molecular signa-
ture height are high (h ≥ 6), new reactions are unlikely
to be generated and therefore the number of pathways
becomes the same as the number of pathways available
in KEGG (the reference metabolic database); whereas as
the height h decreases, the number of new reactions
and, thus, the number of pathways starts growing while
getting closer to those results that were obtained in
BNICE by using BEM matrices [33].
In a general setting, the problem of finding the opti-

mal pathway r*(c) in Equation 4 that produces the tar-
get compound c is equivalent to finding the shortest
hyperpath in a weighted hypergraph. This problem is
known to be an NP-hard problem [62], although it can
be reduced to a polynomially solvable problem if the
cost function in Equation 3 is reformulated as an addi-
tive objective function [62]. In the EMRS approach,

Figure 4 Controlling the complexity of the pathway
enumeration problem through molecular signatures.
Comparison between pathway length distributions between
tyrosine and chorismate for novel reactions generated by the BEM
representation (BNICE) [33], the EMRS of heights h = 3 to 6, and the
original reactions in the KEGG metabolic database.
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complexity can be controlled by varying the specificity
of the molecular signature. This flexibility allows us to
follow the strategy of enumerating all biosynthetic path-
ways r(c) and computing their associated costs W(c, r)
in Equation 3.

Validation test for auxotrophic production in E. coli
A validation test for the ranking score was carried out
by testing its ability to identify native biosynthetic path-
ways for several essential metabolites (the 20 amino
acids, citrate, ATP, ADP, GTP and GDP) in auxotrophic
strains of E. coli. These strains were rendered unable to
synthesize those essential compounds by inactivation of
the enzymes that natively produce them. We assumed
that native pathways, which have been selectively con-
served under evolutionary pressure, are efficient ways to
produce the compounds while keeping cell growth. The
validation, thus, consisted of checking if the pathways
that were ranked at the top of the list correspond to
native pathways. In order to find all possible ways to
synthesize the amino acids, we ran the retrosynthetic
search in these auxotrophic strains. The output results
of the search, which are given in Table 2, provided both
native and alternative pathways connecting the auxo-
troph to the compounds. The results of this test showed
that in 98% of the cases native pathways were found
within the top 10 ranked pathways for each amino acid.
An additional validation test was performed in order to

evaluate the accuracy of the gene compatibility predictor.
The result of this test, summarized in Table 2, showed
that genes from the full list in the database that were pre-
dicted to be the best candidates to be inserted in the aux-
otroph strains corresponded significantly (p-value <0.05)
to native genes of E. coli. These results are significant
since the sequences under test were not part of the train-
ing set used for building the gene compatibility predictor.
In summary, this test showed that the proposed ranking
function can potentially identify heterologous biosyn-
thetic pathways to insert in an organism to produce a
desired compound while selecting the ones that are close
to native pathways in the chassis.

The RetroPath webserver
As shown in previous sections, the procedure of path-
way selection by retrosynthesis is a complex task that
implies the adoption of several design decisions, some of
them on a case-by-case basis. In order to help on the
decision-making process, we have developed an online
tool: the RetroPath webserver that guides the designer
through the retrosynthesis process. The design starts by
choosing the target compound, which can be given as
an SDF molecular file. Additionally, the user decides the
level of molecular resolution to use in the molecular sig-
nature representation. For instance, we have analyzed

the set of molecular structures in DrugBank [63] as
initial target compounds. For this set, we found that
more than 50% of reactions producing these compounds
belong to the E. coli EMRS of height h = 6. Further-
more, the distribution of the number of alternative bio-
synthetic pathways in the compound set follows a power
law, as it is shown in Figure 5, which means that in
some cases there might be thousands of alternative
pathways that have to be ranked according to the rank-
ing function in Equation 3 to search for the optimal
pathway.
In order to illustrate the design process, we next pre-

sent three examples of heterologous pathway design
using the RetroPath webserver, the production of two b-

Table 2 Native pathway identification in auxotrophic E.
coli

Compound Total Native
pathways

% of natives in best
10

p-value

Alanine 19 7 60.00% 8.59e-08

Arginine 1 1 100.00% 4.65e-02

Asparagine 3 3 100.00% 8.42e-05

Aspartic acid 7 7 100.00% 6.91e-09

Cysteine 11 5 100.00% 1.32e-07

Glutamic acid 74 53 100.00% 6.41e-52

Glutamine 7 5 100.00% 1.41e-05

Glycine 31 16 80.00% 3.16e-08

Histidine 4 4 100.00% 4.85e-04

Isoleucine 1 1 100.00% 4.55e-02

Leucine 1 1 100.00% 4.54e-02

Lysine 1 1 100.00% 6.38e-02

Methionine 107 106 100.00% 1.08e-
259

Phenylalanine 4 1 100.00% 6.38e-02

Proline 1 1 100.00% 2.17e-02

Serine 2 2 100.00% 1.11e-03

Threonine 1 1 100.00% 4.35e-02

Tryptophan 2 2 100.00% 1.89e-03

Tyrosine 2 1 100.00% 1.92e-02

Valine 1 1 100.00% 4.55e-02

Citrate 4 3 100.00% 5.71e-05

ATP 12 6 100.00% 6.73e-06

GTP 2 2 100.00% 2.08-03

ADP 316 204 100.00% 2.89e-
169

GDP 283 171 100.00% <1.0e-
324

Biosynthetic pathways for the 20 amino acids, citrate and ATP/ADP and GTP/
GDP enumerated for E. coli strains where enzymes producing the compounds
have been deleted. For each test, columns correspond to: total number of
enumerated pathways; number of native pathways in the wild-type strain;
percentage of native pathways in the top 10 best ranked pathways; and p-
values for the number of genes in E. coli strains top ranked with respect to
the total enzyme genes in the database.
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lactams antibiotics in E. coli (penicillin G and cephalos-
porin), and of one antitumor drug (taxol) in yeast.

Design examples of retrosynthetic pathways
Production of b-lactams in E. coli
The industrial production of penicillin G occurs via fer-
mentation using the filamentous fungus Penicillium
chrysogenum. A recent study has opened up the possibi-
lity of producing penicillin G in an organism that is
used as a producer of pharmaceuticals; the yeast Hanse-
nula polymorpha [64]. Interestingly, the biosynthetic
pathways of penicillin G are shared by another b-lactam
antibiotic, cephalosporin, which is produced in the fun-
gus Acremonium chrysogenum and synthetised from iso-
penicillin N, the penultimate precursor for penicillin
production [65].
Using the retrosynthetic method that we have devel-

oped, retrosynthetic graphs were generated for b-lactam
antibiotics, in particular penicillin and cephalosporin
(Figures 6A,B). The chosen chassis organism was E. coli.
Four different pathways were found at a signature reac-
tion height of h = 4 for penicillin N production and in
particular one involving the nonribosomal peptide
synthetase δ-(L-a-aminoadipyl)-L-cysteinyl-D-valine
synthetase (EC 6.3.2.26) and isopenicillin N synthetase
(EC 1.21.3.1). These pathways are the same as those
that were implemented in the aforementioned studies in
yeast and fungi to produce the isopenicillin N. In the
cephalosporin biosynthesis pathway the isopenicillin N
is converted into penicillin N, itself transformed into
deacetoxycephalosporin. The retrosynthetic maps of

height h = 4 for heterologous production of penicillin N
and deacetoxicephalosporin in E. coli are shown in Fig-
ure 6. In the retrosynthetic graph, the enzyme deacetox-
ycephalosporin-C synthase (EC 1.14.20.1) is the one
responsible of the deacetoxycephalosporin formation.
Table 3 ranks the 6 pathways in the map leading to
penicillin N according to the cost function in Equation
3. Toxicity values for intermediates were predicted by
using our model built from an experimental library of
toxicity values in E. coli while fluxes were estimated
from a reconstructed metabolic model of E. coli, as
described in the Methods section. The optimal pathway
involves five exogenous enzymatic steps, while the alter-
native pathways involves up to seven steps. In Table 3,
the alternative routes for the production of penicillin N
are generated by the synthesis step of the precursor L-2-
aminoadipate-6-semialdehyde, where the retrosynthetic
search identified several enzymatic routes that can be
connected to precursors in E. coli.
Production of taxol (paclitaxel) in yeast
Taxol (paclitaxel) is an anticancer drug first isolated
from the Pacific yew tree Taxus brevifolia. Today, taxol
derives largely by semisynthesis from the advanced tax-
oid 10-deacetylbaccatin III obtained from the European
yew tree Taxus baccata [66]. Currently its production
has a limiting rate as it depends on plant cell processes
as well as chemical and biotechnological semisynthesis
processes. For the past few years, a number of studies
have been contributing to the elucidation of the biosyn-
thetic mechanism of taxol and efforts have been made
in order to attain cost-effective production through het-
erologous biosynthesis of taxol and its analogues [5].
The retrosynthetic graph for yeast (Saccharomyces cere-
visiae) which was computed for a signature height h =
4, (Figure 7), goes from the isopentenyl to taxol and
contains 2 different pathways with 8 and 9 steps, respec-
tively, that share most of the intermediates and only dif-
fer at two steps:

1. From isopentenyl (IPP) to taxadien-5a-ol: The
isopentenyl, native to yeast, undergoes 3 reaction
steps to form the taxadien-5a-ol. Those are cata-
lyzed by the geranylgeranyl-diphosphate (GGPP)
synthase (EC 2.5.1.29) that forms the GGPP
(C00353) [67], by the taxadiene synthase (EC
4.2.3.17) that forms taxa-4(5),11(12)diene (C11894)
[68] and finally by the taxadiene 5a hydrolase (EC
1.14.99.37) that forms the taxadien-5a-ol [69]. The
first two reactions have been reportedly implemen-
ted in E. coli [5,70] and, furthermore, were subject
to engineering in order to optimize the taxadiene
pathway production [5].
2. From the taxadien-5-a-ol to taxol: From the taxa-4
(20),11(12)-dien-5a-ol two pathways are possible,

Figure 5 Retrosynthetic pathways for production of DrugBank
compounds in E. coli. Percentage of compounds in the DrugBank
database with alternative biosynthetic pathways in E. coli.
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producing either taxa-4(20),11(12)-dien-5a,13a-diol
by the taxane 13a hydrolase (EC 1.14.13.77) or the
taxa-4(20),11(12)-dien-5a-yl acetate by the taxadien-
5a-O-acetyl transferase [71]. Taxane 10b hydroxylase
(EC 1.14.13.76) is producing the taxa-4(20),11(12)-die-
n5a,10b-diol 5 acetate [72]. This part of the pathway
was implemented in the yeast Saccharomyces cerevisiae
[73]. The next steps described successively the

formation of 10-deacetyl-2-debenzoylbaccatin III
(C11899), the 10-deacetylbaccatin III (C11700) cata-
lyzed by taxane 2a-O-benzoyltransferase (EC
2.3.1.166), and the Baccatin III catalyzed by taxane 2a-
O-benzoyltransferase [74] to finally form the taxol.

Table 4 ranks the 2 retrosynthetic pathways in yeast
leading to taxol production according to the cost

Figure 6 Retrosynthetic maps for the production in E. coli of A) penicillin G and B) cephalosporin. Compounds in gray are endogenous
to the chassis organism (E. coli); enzymatic reactions are represented as circles; branching compounds, which can be produced by more than
one biochemical transformation, are (S)-2,3,4,5-tetrahydropyridine-2-carboxylate, L-2-aminoadipate-6-semialdehyde; the target compound is at the
bottom of the plot.
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function in Equation 3. In this example, toxicity of inter-
mediates was not considered in the ranking (ltox = 0)
and therefore the optimal weighting terms in Equation 3
were taken accordingly (see details in Methods). The
two alternative routes are given by the way the precur-
sor 10-deacetyl-2-debenzoylbaccatin is produced. The
optimal pathway involves 8 exogenous enzymes, while
the alternative one involves 9 enzymes.

Conclusions
We presented in this work an automated protocol to
assist synthetic biologists and metabolic engineers in the
design and insertion of efficient heterologous biosyn-
thetic metabolic pathways in chassis organisms. Our
method is based on the retrosynthesis algorithm, an idea
borrowed from the allied field of synthetic chemistry. In
order to perform this analysis in metabolic networks, we
used the molecular signature descriptor, a 2D represen-
tation of molecular graphs that provides a characteriza-
tion of compounds and reactions in the network.
Molecular signatures provide a homogeneous way to
represent through hypergraphs the set of chemical spe-
cies and transformations present in cell’s metabolism.
The representation in the molecular signature space is
also an efficient way to measure chemical similarity

Table 3 Ranked pathways for biosynthesis of Penicillin N
in E. coli

EC
number

product cost
(toxicity)

r1 r2 r3 r4 r5 r6

5.1.1.17 C06564 1.17 (2.63) X X X X X X

1.21.3.1 C05557 0.81 (2.94) X X X X X X

6.3.2.26 C05556 2.05 (0.87) X X X X X X

1.2.1.31 C00956 1.09 (0.13) X X X X X X

2.6.1.36 C04076 0.74 (0.72) X - - - - -

1.4.3.20 C04076 1.13 (0.72) - - - X - -

2.6.1.71 C04076 1.34 (0.72) - - X - - -

1.4.1.18 C04076 1.54 (0.72) - X - - X X

1.5.3.7 C00450 4.94 (0.91) - - - - - X

1.5.99.3 C00450 5.30 (0.91) - - - - X -

1.4.1.18* C00408 1.43 (0.93) - - - - X X

vc(r) 6.56 6.53 6.55 5.55 5.56 5.55

W(r) 9.33 9.67 9.93 9.74 12.52 16.52

Each row corresponds to the insertion of one enzyme in the pathway in order
to produce the given intermediate product in the second column. The
estimated cost and product toxicity are given in the third column. The last
two rows provide the estimate of maximum flux vc(r) for the pathway, and
the total cost W(r) according to Equation 3. C06564: Penicillin N; C05557:
Isopenicillin; C05556: δ-(L-a-Aminoadipyl)-L-cysteinyl-D-valine; C00956: L-2-
Aminoadipate; C04076: L-2-Aminoadipate-6-semialdehyde; C00450: (S)-2,3,4,5-
Tetrahydropyridine-2-carboxylate; C00408: L-Pipecolate. Starred EC numbers
correspond to putative enzymes.

Figure 7 Retrosynthetic map for the production of paclitaxel
(taxol) in yeast. Compounds in gray are endogenous to the chassis
organism (S. cerevisiae); enzymatic reactions are represented as
circles; 10-deactyl-2-debenzoylbaccatin III appears as a branching
compound; the target compound is at the bottom of the plot.
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between compounds and reactions. We use this frame-
work to develop an algorithm to generate putative novel
reactions between compounds in the network, leading
to the extended metabolic reaction space (EMRS). The
algorithm consists of searching for all combinations of
compounds with the same signature as known metabolic
reactions.
In order to explore new biosynthetic pathways for

compounds, we implemented a retrosynthetic algorithm
in the EMRS to build the map of all reachable com-
pounds from the chassis organism through biochemical
transformations. The complexity of the retrosynthetic
search, a problem that has been limiting so far the
adoption of the retrosynthetic approach into the manu-
facturing pipeline, has been efficiently addressed in our
method through the atomic height h of the molecular
signature. As h increases, the number of possible path-
ways converges to the annotated pathways in metabolic
databases. Lowering h, in turn, leads progressively to a
combinatorial explosion with multiple alternative path-
ways containing putative reactions, as the ones obtained
in the bond-electron and atom tracking models of the
metabolic graph.
The retrosynthetic map contains both annotated and

putative reactions catalyzed by identified exogenous
enzymes, providing several alternative pathways leading
to the target compound. We associated a cost of inser-
tion to each pathway based on several criteria such as
gene insertion cost, expression levels, enzyme efficiency

and nominal fluxes. Furthermore, an algorithm similar
to the shortest pathway search has been implemented in
order to rank all possible pathways. We showed that the
distribution of alternative biosynthetic pathways for E.
coli in the list of compounds of medicinal interest in
DrugBank follows a power law, being in some cases in
the order of thousands. Therefore, it is necessary to
implement an efficient ranking function as the one pre-
sented here in order to select the best heterologous
pathways to insert in the chassis organism. For instance,
we applied the retrosynthetic algorithm in order to
search for heterologous biosynthetic pathways for two
compounds in DrugBank: penicillin N and taxol. In
both cases, several alternative pathways for bioproduc-
tion were found. The identified pathways contained
both known biochemical transformations previously
reported as well as other alternative pathways. In order
to select the best combinations to engineer, pathways
were ranked according to several cost factors such as
number of inserted enzymes, gene compatibility, toxi-
city, and nominal fluxes. The individual contribution of
these factors to the ranking function was optimally
adjusted so that native pathways were ranked first with
respect to predicted pathways. Our multi-criteria
approach can be easily tuned depending on the data
available for organisms, as it was illustrated by the opti-
mal adjustment of the weighting parameters for different
combinations of factors. The ability of the ranking func-
tion to identify native pathways was tested and validated
in the case of biosynthetic pathways of several essential
metabolites (amino acids, citrate, ATP/ADP, GTP/GDP)
in auxotrophic strains of E. coli. In this test, native
enzymes were correctly ranked by means of our metho-
dology at the top of the enumerated biosynthetic
pathways.
Even though our methodology searches for enzymes

providing the best performance for the overall process,
we might be interested in some cases in increasing the
efficiency levels for some of the promiscuous reactions
involved in the pathway due to their poor performance,
a rate-limiting factor in the production of the target
compound. In that case, it would be necessary to intro-
duce mutations in order to re-engineer enzyme variants
with detectable levels of the desired catalytic activity.
Using protein molecular signatures and kernel methods,
we already proposed a methodology to search for pro-
miscuity hot-spot residues in the enzyme sequence and
outlined a method to find variants with enhanced pro-
miscuity levels [46], which might be applicable in this
case. Therefore, this work provides a full biosynthetic
automated pipeline for the design and production of
therapeutics and other compounds in flexible on-
demand cell factories. Going beyond classical metabolic
engineering, our synthetic biology approach meets the

Table 4 Ranked pathways for biosynthesis of taxol in S.
cerevisiae

EC number product cost r1 r2
2.3.1.- * C07394 1.34 X X

2.3.1.167 C11900 1.17 X X

2.3.1.166 C11700 1.07 X X

1.14.14.1* C11899 1.78 X X

1.14.13.76 C11898 5.64 - X

1.14.13.77 C11897 5.62 X -

2.3.1.162 C11896 1.06 - X

1.14.99.37 C11895 5.62 X X

4.2.3.17 C11894 1.28 X X

2.5.1.29 C00353 0.69 X X

vc(r) 0.094 0.093

W(r) 18.64 19.72

Each row corresponds to the insertion of one enzyme in the pathway in order
to produce the given intermediate product in the second column. The
estimated cost is given in the third column 3. The last two rows provide the
estimate of maximum flux vc(r) for the pathway, and the total cost W(r)
according to Equation 3. C07394: Paclitaxel; C11900: Baccatin; C11700: 10-
Deacetylbaccatin; C11899: 10-Deacetyl-2-debenzoylbaccatin; C11898: Taxa-4
(20),11(12)-dien-5a-acetoxy-10b-ol; C11897: Taxa-4(20),11(12)-dien-5a,13a-diol;
C11896: Taxa-4(20),11(12)-dien-5a-yl; C11895: Taxa-4(20),11(12)-dien-5a-ol;
C11894: Taxa-4(5),11(12)-diene; C00353: Geranylgeranyl. Starred EC numbers
correspond to putative enzymes.
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expected requirements of reusability and modularity that
will become integral part of next generation biosynthetic
devices.

Methods
Definitions
Atomic signature
Let G = (V, E) be a molecular graph, where vertices V
correspond to atoms, and edges E to bonds. An atomic
signature is a canonical representation of the subgraph
of G surrounding a particular atom x Î V . This sub-
graph includes all atoms and bonds up to a predefined
distance from the given atom, the signature height h.
Molecular signature
The molecular signature is a vector whose components
are represented in the space defined by a basis formed
by atomic signatures. Initially developed for chemicals
[39], the signature molecular descriptor was later
extended to protein sequences [37,75]. Each component
of a molecular signature counts the number of occur-
rences of a particular atomic signature in the molecule.
If G = (V, E) is a molecular graph, where vertices V cor-
respond to atoms, and edges E to bonds, then the mole-
cular signature of G is given by:

hσ (G) =
∑
x∈V

hσ (xi) (5)

where hs(x) is the atomic signature of G rooted at
atom xi of height h.
Reaction signature
We assume that enzymatic reactions take the general
form: r : s1S1 + ... + snSn ® p1P1 + ... + pmPm , where si
and pj are the stoichiometric coefficients of substrates Si
and products Pj. The signature of reaction R of height h
is defined by the vector:

hσ (r) =

⎛
⎝∑

Pi∈r

pi
hσ (Pi) −

∑
Si∈r

si
hσ (Si)

⎞
⎠ (6)

Metabolic reaction space
In a metabolic network, the reaction space R is formed
by the set of reactions r in the network, which are
defined as ordered pairs of substrates s Î C and pro-
ducts p Î C belonging to the metabolite space C:

r =
({s} ,

{
p
})

(7)

Metabolic reaction signature space
The signature reaction space hs(R) of height h is given
by mapping of the set of metabolic reactions r Î R into
signature reactions hs(r) according to Equation 7.
Extended metabolic reaction space (EMRS). The

extended metabolic reaction space generated by signa-
tures of height h, hs -1(R), corresponds to the inverse
mapping from the signature space into the reaction
space. Since the projection of R into the signature space
hs (R) involves some degeneracy, the regeneration of the
metabolic map creates new putative reactions consisting
of combinations of substrates and products that verify
the reaction signatures in addition to the nominal ones:

R → hσ (R) → hσ−1(R) (8)

Reaction chemical similarity
We define a measure of chemical similarity in the signa-
ture space between reaction signatures of height h by
using the Tanimoto similarity coefficient:

hs(ri, rj) =
|hσ (ri) · hσ (rj)|

|hσ (ri)|2 + |hσ (rj)|2 − |hσ (ri) · hσ (rj)|
(9)

where operations are applied into the vector space
determined by the net difference of the signatures of
products and substrates (Equation 7).
This similarity measure focus on the reaction centers

that define the chemical transformation rather than on
the full atomic structure. As the height h is increased
up to the maximum diameter of the graph or canonical
signature, the similarity measure extends further up to
the rest of the molecular structure. By definition, two
reactions r and r* that share the same signature up to
some height h possess identical signatures up to that
molecular resolution h:

hs(r, r∗) = 1, h = 1 . . . arg max
h

hσ (r) = hσ (r∗) (10)

Exogenous biosynthetic pathway
An exogenous biosynthetic pathway r Î r(c) for a target
compound c Î C is defined as a collection of reactions
{r1, r2, ..., rn} in the EMRS that connects metabolites in
the chassis organism to the product c through biochem-
ical transformations.

Ranking terms
Reaction thermodynamic feasibility was computed
through the estimation of Gibbs energy of the reaction
by using a group contribution approach [43,50]. This
method considers the Gibbs energy of each metabolite
species as the sum of the contributions of their consti-
tuents structural subgroups, estimated by linear regres-
sion from experimental data. We used the dataset
given in [43] in order to compute metabolite Gibbs
energy, whereas the reaction Gibbs energy is computed
as the energetic balance between its products and sub-
strates:
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�Gr =
∑
i∈r

ni�Gi (11)

where ni is the stoichiometric coefficient of each spe-
cies, and ΔGi their estimated Gibbs energy.
Enzyme promiscuity was estimated by a support vec-

tor machine that was trained from the string or k-mer
spectra [76] of enzyme sequences ks(S) in KEGG [24] as
inputs by defining the following kernel function:

kK(Si, Sj) = kσ (Si)kσ (Sj) (12)

Enzyme promiscuity in the training set was defined by
comparing the chemical similarity of reactions catalyzed
by the enzyme sequence S, as in [46]:

{
hs(ri, rj) = 0 non - promiscuous
hs(ri, rj) > 0 promiscuous

i, j ∈ S (13)

Reaction clustering of the reaction signature space
was performed by a hierarchical agglomerative algorithm
using as distance metrics the chemical dissimilarity
between reactions d(ri, rj):

hd(ri, rj) = 1 − hs(ri, rj) (14)

The optimal partition of the reaction signature space
into Ci, i = 1...n clusters was determined by the maxi-
mum average silhouette [77].
Enzyme-metabolite interaction prediction was com-

puted within a given signature reaction space cluster by
using a kernel approach known as tensor product [51].
For each reaction cluster, a training set was built con-
sisting of pairs of known enzyme sequences and reac-
tions annotated in KEGG. This dataset was used in
order to train a support vector machine defined by the
following kernel function:

k,hK((Si, ri), (Sj, rj)) = kK(Si, Sj) · hK(ri, rj) (15)

where kK(Si, Sj) is the sequence string kernel defined
in Equation 12 and hk(ri, rj) is given by the reaction
similarity matrix computed by using the reaction chemi-
cal similarity s(ri, rj) defined in Equation 14. Enzyme
performance was estimated through a decision tree
algorithm implemented for each reaction cluster, as in
[53]. Performance data were based on the experimental
kinetic constants kcat and KM provided by the BRENDA
database [54]. Input features consisted of chemical
descriptors of substrates and products in reactions and
protein sequence descriptors.
Gene compatibility
Sequence descriptors were computed from the EMBOSS
package of sequence analysis [78]. Phylogenetic distance
between the source organism and chassis organism was
computed from KEGG taxonomy. These descriptors

were computed for the entire KEGG database of non-
redundant enzyme sequences and then used to train
support vector machine-based predictors for the chassis
organisms of interest (E. coli and yeast). The training set
consisted of a balanced positive set, formed by the list
of sequences in the chassis strains, and a negative set
formed by sequences selected randomly from the list of
organisms other than the chassis. In the model of E.
coli, we found that the average score for positive hits
had a z-score = 6.12 (p-value = 9.56e-10) for a positive
set of 24,894 sequences in E. coli strains among the
total set of 681,518 sequences. We used this predictor
in order to rank the annotated genes for a given enzyme
class, where a p-value was associated to each predicted
gene by computing the probability of ranking that gene
in the given percentile if it were picked at random from
the list of genes.
Compound toxicity in the chassis organism E. coli

was estimated through a partial least squares structure-
activity relationship model implemented from an in-
house database for E. coli of 150 compounds with
experimentally determined IC50 (half maximal inhibi-
tory concentration). Input descriptors of the model are
given by the following molecular descriptors: molecular
weight; solubility; average bond length; partition coeffi-
cient; molecular surface; and molecular signatures of the
compounds.
Nominal fluxes v were predicted by using a recon-

structed metabolic model of E. coli [79] and yeast [80]
in the COBRA toolbox [81]. For a given target com-
pound c Î C and a putative exogenous biosynthetic
pathway r, an augmented model of the metabolic phe-
notype of the engineered strain was built from the refer-
ence model. The nominal flux of the desired compound
vc(r) in the augmented model was obtained through lin-
ear programming optimization of the stoichiometric
mass balance subject to the following constraints:

Maximize f (vc(ρ), Z)
Subject to S · v = 0

α ≤ vi ≤ β

(16)

where S is the stoichiometric matrix, Z is the objective
function of maximizing the biomass formation (growth)
rate, f (vc(r), Z) is a definite positive function that
monotonically increases with both vc(r) and Z, and a, b
are the model flux constraints [79]. The chosen objec-
tive function in Equation 16 was f (vc(r), Z) = vc(r) · Z,
although in general other objectives might be possible
as well (see for instance in [82]).
Parameter optimization
Weighting parameters (lflux, lpath, ltox) in the cost
function given by Equation 3 are adjusted by optimiza-
tion. The chosen criteria is that pathways that are fully
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annotated in KEGG should be ranked first with respect
to other pathways based solely on predictions. Our
approach is similar to the one proposed in [38],
although the main difference here is that we optimize
the three parameters simultaneously for all metabolites
in KEGG by using an estimate of ranking accuracy for
each pathway within the full set of enumerated pathways
in the EMRS. For a pathway r Î r (c) producing a given
compound c, we define its ranking accuracy as:

yρ =
nTP(ρ) + nTN(ρ)

|ρ(c)| (17)

where nTP are the number of pathways of r (c) in
KEGG that are ranked at the same or higher score than
r, nTN are the number of pathways of r(c) not in KEGG
which are ranked below r, and |r(c)| are the total num-
ber of pathways producing c.
The objective is to maximize the overall aggregate

sum of yr extended to the list of enumerated pathways
in the EMRS:

Maximize
λpath, λtox, λflux

∑
c∈C

∑
ρ∈ρ(c) yρ

(
λpath, λtox, λflux

)
Subject to λpath, λtox, λflux > 0

(18)

For the ranking optimization problem, parameters
(lpath, ltox, lflux) are not independent since a simul-
taneous increase of the same magnitude in the three
parameters would leave the ranking unchanged. There-
fore, in order to solve the problem, we need to fix at
least the value of one of the parameters, for instance
taking lpath = 1.0 and ωp = ωe = 1. We give three pos-
sible solutions depending whether both toxicity and
fluxes estimates are available or only one of them (see
parameter variations in Additional file 1 Figures S1, S2
and S3): without considering fluxes (lflux = 0.0), the
optimal value for the toxicity parameter was
λ∗
tox = 0.575; without considering toxicity (λ∗

tox = 0.0),
the optimal value for the flux parameter was
λ∗
flux = 0.800; finally considering both toxicity and

fluxes, the optimal values were obtained at
λ∗
tox = 0.398, λ∗

tox = 0.398.

Additional material

Additional file 1: Pathway ranking accuracies for different values of
parameters (ltox, lflux). Figure S1 plots pathway ranking accuracy for
different values of parameter ltox without considering fluxes (lflux =
0); optimal value is obtained for λ∗

tox = 0.575. Figure S2 plots
pathway ranking accuracy for different values of parameter lflux
without considering toxicity (ltox = 0); optimal value is obtained for
λ∗
flux = 0.800. Figure S3 plots pathway ranking accuracy for

different values of parameters (ltox, lflux); optimal values are
(λ∗
flux = 0.025, λ∗

tox = 0.398).
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