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Concomitant influence of helminth infection and
landscape on the distribution of Puumala
hantavirus in its reservoir, Myodes glareolus
Alexis Ribas Salvador1†, Emmanuel Guivier2†, Anne Xuéreb2, Yannick Chaval2, Patrice Cadet3, Marie-Lazarine Poulle3,
Tarja Sironen4, Liina Voutilainen5, Heikki Henttonen5, Jean-François Cosson2, Nathalie Charbonnel2*

Abstract

Background: Puumala virus, the agent of nephropathia epidemica (NE), is the most prevalent hantavirus in Europe.
The risk for human infection seems to be strongly correlated with the prevalence of Puumala virus (PUUV) in
populations of its reservoir host species, the bank vole Myodes glareolus. In humans, the infection risks of major
viral diseases are affected by the presence of helminth infections. We therefore proposed to analyse the influence
of both helminth community and landscape on the prevalence of PUUV among bank vole populations in the
Ardennes, a PUUV endemic area in France.

Results: Among the 313 voles analysed, 37 had anti-PUUV antibodies. Twelve gastro-intestinal helminth species
were recorded among all voles sampled. We showed that PUUV seroprevalence strongly increased with age or
sexual maturity, especially in the northern forests (massif des Ardennes). The helminth community structure
significantly differed between this part and the woods or hedgerows of the southern cretes pre-ardennaises. Using
PUUV RNA quantification, we identified significant coinfections between PUUV and gastro-intestinal helminths in
the northern forests only. More specifically, PUUV infection was positively associated with the presence of
Heligmosomum mixtum, and in a lesser extent, Aonchotheca muris-sylvatici. The viral load of PUUV infected
individuals tended to be higher in voles coinfected with H. mixtum. It was significantly lower in voles coinfected
with A. muris-sylvatici, reflecting the influence of age on these latter infections.

Conclusions: This is the first study to emphasize hantavirus - helminth coinfections in natural populations. It also
highlights the importance to consider landscape when searching for such associations. We have shown that
landscape characteristics strongly influence helminth community structure as well as PUUV distribution. False
associations might therefore be evidenced if geographic patterns of helminths or PUUV repartition are not
previously identified. Moreover, our work revealed that interactions between helminths and landscape enhance/
deplete the occurrence of coinfections between PUUV and H. mixtum or A. muris-sylvatici. Further experimental
analyses and long-term individual surveys are now required to confirm these correlative results, and to ascertain
the causal links between helminth and PUUV infection risks.

Background
Puumala virus (PUUV) is the most prevalent hantavirus
in Europe [1,2]. It is the agent of a mild form of hemor-
rhagic fever with renal syndrome called nephropathia

epidemica (NE). The main course of transmission to
humans is indirect by inhalation of virus-contaminated
aerosols [3] from excreta of infected bank voles, Myodes
glareolus, the reservoir of PUUV [4,5]. In France, about
60 cases of NE are yearly notified, but up to 250 cases
can be observed during epidemic years (Data from the
Institut National de Veille Sanitaire, INVS). The most
important endemic areas of NE, which account for
30-40% of the human cases, are located in the Ardennes,
along the Belgian border [6,7].
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The risk for human infection seems to be strongly
correlated with M. glareolus population abundance [e.g.
[8]], which shows multi-annual fluctuations driven in
temperate Europe by variations in tree seed production
[9,10]. It is also related to the spatial distribution of
PUUV-infected rodents, which depends on diverse fac-
tors including rodent community structure [11-14] or
landscape features [15-17]. Patch size, fragmentation
and isolation of landscape may influence the dispersal of
voles and consequently the epidemiology of PUUV [15].
In addition, different characteristics of the soil such as
moisture may affect the survival of PUUV in the natural
environment, therefore influencing the importance of an
indirect transmission of this hantavirus among rodents
[18,19].
Landscape features are also strong determinants of the

macroparasite community structure [20]. Interestingly,
recent reviews have stressed the importance of helminth
coinfection for viral disease epidemiology [21,22]. Such
infections could lead to variations in the outcome of
virus infection through direct or indirect mechanisms.
First, helminths and viruses might compete either for
food or space. For example, helminths that induce ane-
mia could limit the replication of viruses that depend on
red blood cells [see, [21]]. Second, host immunity may
modulate the outcomes of helminth-virus coinfection
through immunosuppression or cross-immunity [21-23].
In the majority of cases, helminth infections induce a
polarisation of the immune response to Th2, and a
down-regulation of the Th1 cell-subset [24,25]. They
may also induce immunomodulatory mechanisms [24].
As such, the risks of infections and the severity of major
viral diseases of humans (e.g. HIV, Hepatitis B and C)
are known to be affected by the presence of many hel-
minthic infections [e.g. Schistosoma mansoni, Ascaris,
see [26-28]].
To our knowledge, there is no study that investigated

this question of the potential concomitant influence of
helminth community structure and landscape on the
risk of hantavirus infection, either in humans, laboratory
animals or natural reservoir populations. We explored
this issue by analysing the interspecific interactions
between gastro-intestinal helminths and PUUV among a
cross-sectional natural population sample of bank voles
trapped in different landscapes of the Ardennes, the
main PUUV endemic area in France.

Methods
Bank vole sampling and parasitological screenings
Bank voles were sampled from September to October
2008 as PUUV and helminth prevalence levels are
usually higher in autumn, which corresponds to the end
of the reproductive season [e.g. among many studies
[29,30]]. We used French Agricultural Research Institute

(INRA) live traps, fitted out with dormitory boxes and
baited with potatoes and sunflower seeds. Nine sampling
sites were surveyed along a North - South transect in
the French Ardennes. They corresponded to three dif-
ferent landscape configurations: forests, which are found
in the northern ‘massif des Ardennes’ and refer to large
wooded areas of several thousand hectares, smaller for-
est fragments (wooded areas of about 50 km2) and
hedge networks surrounding these fragments, which are
found in the Southern ‘crêtes pré-ardennaises’ (Figure 1).
Ten 200-m trap-lines composed of 20 traps placed at
10-m intervals were placed within each site. They were
checked twice a day during three consecutive nights.
The minimum distance between sites was 3.2 km, that
is much larger than the dispersal distance of bank voles
[estimated to be 500 m in patchy landscapes, [31]].
Once trapped, voles were sacrificed by cervical dislo-

cation as recommended by Mills et al. [32]. They were
sexed and weighted. Body length was measured from
snout to vent to the nearest 1 mm. Body condition
of bank voles was estimated as the body mass index
[BMI = weight/length2, [33]]. Animals were dissected.
The sexual maturation of bank voles was deduced from
testes and uterus size by visual observation. Males with
developed epididymis were considered as sexually
mature. Females with uterus smaller than 1 mm were
considered as nullipare. We also distinguished females
that were in gestation or lactation (uterus larger than
3 mm, presence of fetuses or lactating mammary glands)
from females that had previously reproduced (uterus
size of 2 mm or uterine scars) but that were not repro-
ducing at the time of sampling. The digestive tracts
were removed and stored in 96% ethanol before being
analysed in the laboratory. All the helminths detected
were carefully counted under the microscope and identi-
fied unambiguously using morphological criteria. For
each individual, blood samples were also taken from the
heart or the thoracic cavity on a 1-cm2 Whatman blot-
ting paper.
All listed animal procedures were pre-approved by the

Direction des Services Vétérinaires of the Herault
Department (B 34-169-1 Agreement).

PUUV serological screening and viral load quantification
In the laboratory, each piece of Whatman blotting paper
was placed in 1 ml phosphate-buffered saline. These
diluted blood samples were screened for IgG antibodies
to Puumala virus (PUUV) using immunofluorescence
antibody test (IFAT) as described in Lundkvist et al. [34].
PUUV load was measured in PUUV seropositive voles

using real-time quantitative RT-PCR. Total RNA was
extracted from lung tissue samples as PUUV concentra-
tion is high compared to other organs [35]. We used
TriPure Isolation Reagent (Roche) according to the
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manufacturer’s instructions. One μg of RNA was used
for first-strand cDNA synthesis using RevertAid™ H
Minus Kit (Fermentas) with random hexamers. Real-
time quantitative PCR was done using a DyNAmo
Capillary SYBR Green Quantitative PCR kit (Finnzymes)
with a LightCycler instrument (Roche). The following

primers (Oligomer) were used: PUUV-forward 5’-GAG
GAT ATA ACC CGC CAT GA-3’, PUUV-reverse 5’-
CTG GCT TGC AGT GTG TTT TT-3’. Samples were
first normalized against variation in vole lung sample
quality and quantity to GAPDH expression with the fol-
lowing primers: GAPDH-forward 5’-ATG GGG AAG

Figure 1 Sampling localities for M. glareolus in the French Ardennes. Forests and wooded areas are indicated in grey. White circles
correspond to forested areas of the Northern massif des Ardennes. White and dashed circles respectively correspond to wooded areas and
hedge networks of the Southern crêtes pré-ardennaises. The dashed line indicates the limit between the Northern massif des Ardennes and the
Southern crêtes pré-ardennaises. Numbers refer to site codes indicated in Table 1.
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GTG AAG GTC G-3’ and GAPDH-reverse 5’-TAA
AAG CAG CCC TGG TGA CC-3’. We then provide an
absolute quantification for PUUV RNA: PUUV copy
numbers (copies per 1 μg of total RNA) were calculated
from a standard curve created using 10-fold dilutions
of in vitro transcribed PUUV S segment RNA
(T7 transcription kit, Fermentas). Melting curve analysis
was performed according to recommendations of the
DyNAmo kit to confirm the specificity of positive sam-
ples. Samples were considered PUUV RNA positive
when the CT(cycle threshold) value was lower than
40 cycles and the melting curve showed a specific
product.

Statistical analyses
A logistic regression was first applied to determine vole
individual characteristics that best explained PUUV
infection. The dependent variable was the presence/
absence of anti-PUUV antibodies in voles. Sex, sexual
maturity, mass, body condition, landscape and site
nested within landscape were included as independent
variables. All possible two way interactions were consid-
ered. Model selection was performed using the Akaike’s
Information Criterion [AIC, [36,37]]. The model with
the lowest AIC value was viewed as the most parsimo-
nious one, i.e. the one explaining most of the variance
with the fewest parameters [36]. Nested models with dif-
ference of AIC <2 compared to the model with the low-
est AIC were selected. Significance of explanatory
factors and their interaction were determined using
deletion testing, with the significance of a term deter-
mined by the log-likelihood ratio-test [38]. If the inter-
action term was significant, both lower order terms
involved in that interaction were retained [39]. The sum
of squares was used to test model fit (F-statistic). In a
posteriori pairwise comparisons for least square means,
a multiple comparison adjustment for the p-values were
done according to the Tukey-Kramer method. These
analyses were performed in Genstat 7.1 (Lawes Agricul-
tural Trust, Rothamstead).
The helminth community structure was next analysed

with regard to geographic parameters (site and land-
scape configuration). The helminth infracommunity
structure was assessed by the number of helminth spe-
cies. The prevalence (i.e. the proportion of voles
infected) of each helminth species was estimated per
site. Spatial variations of helminth co-occurrence/antag-
onism were explored using a correspondence analysis
(CA) performed in ADE4 [40] and based on the pre-
sence/absence data of each helminth species per vole.
Results were projected on the site map to illustrate geo-
graphic heterogeneity in helminth structure. Site/land-
scape differences along the two first CA axes were
tested using non-parametric Kruskal-Wallis tests

performed in Genstat 7.1 (Lawes Agricultural Trust,
Rothamstead). We could therefore identify sites/land-
scape configurations exhibiting homogeneous helminth
communities.
We used this partition to identify synergistic or antag-

onistic interactions between helminth species and
PUUV infection. As such we avoided associations that
would only be mediated by differences of helminth and
PUUV distribution among landscapes. We applied the
discriminant analysis (DA) performed in ADE4 [40] to
maximize the variance between designated groups
(PUUV seronegative vs seropositive voles) while keeping
the intra-group variance constant [41]. The significance
of the ratio of these two values was tested using
10,000 permutations. For each helminth, we estimated
the relative risk following Haldane [42] and we tested
the association with PUUV-serological status using
Fisher exact tests followed by Bonferroni sequential
corrections.
Finally, we considered PUUV infected voles to com-

pare the viral load of individuals coinfected with
helminths significantly associated with PUUV and indi-
viduals non-infected with these helminths. Under the
assumption of a positive interaction between PUUV and
a given helminth, we expected that PUUV viral load
should be comparatively lower in PUUV-helminth coin-
fected voles than in voles only infected by PUUV [43].

Results
Helminth and PUUV data
A total amount of 313 bank voles was sampled from
nine study sites. The information of sampling is pro-
vided in Table 1. Antibodies (IgG) to PUUV were found
in 37 (13.55%) of the 273 voles included in the serologi-
cal assays. Seroprevalence levels were highly variable
(Table 1) and ranged between 0% (Sauville) and 43.3%
(Hargnies). Among the 37 voles with anti-PUUV antibo-
dies, only four had null PUUV viral load (CT>40 cycles,
number of copies less than 10 per μg of vole RNA) and
were considered as PUUV RNA negative in further sta-
tistical analyses. These individuals corresponded to three
males (an immature and two old ones), and a gestant
female. Note that three of these individuals were
sampled in the ‘crêtes pré-ardennaises’. In other PUUV-
seropositive individuals, PUUV viral load ranged
between 243 and 1 324 542 copies per μg of vole RNA.
The examination of the 313 digestive tracts allowed

the detection of 12 helminth species, corresponding to
nine genera. Seven were nematode species, among
which six had direct cycles. Five were cestode species
and they all had indirect cycles (Table 2). Bank voles
experienced from none to five helminth species infec-
tion. The number of individuals of a given helminth
species infecting a bank vole was highly variable
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(Table 2). Note that the numbers of A. muris-sylvatici
and T. crassiceps worms were impossible to count.

PUUV infection risk factors
After the selection procedure, two equivalent models
were obtained: PUUV ~ Site[Landscape] + Mass + Land-
scape*Mass (AIC = 286, Deviance ratio = 14.620, p < 10-
4) or PUUV ~ Site[Landscape] + Sexual Maturity + Land-
scape* Sexual Maturity (AIC = 290, Deviance ratio =
7.401, p < 10-4). Body condition and sex were not signifi-
cant. PUUV infection risk increased with mass or with
sexual maturity, which both reflect the age of individual.
This effect was mainly observed in the three northern
sites (forests of the massif des Ardennes, see Figure 2). It
was not significant when considering wooded areas and
hedgerows of the southern part of the transect (crêtes
pré-ardennaises), although a similar trend was observed.

Helminth community structure and coinfection with
PUUV
Three helminth species, namely P. omphalodes, T. cras-
siceps and A. annulosa, were too rare to be included in

the multivariate analysis of the community structure.
The first two factors (named hereafter F1 and F2) of the
CA performed on the nine other helminth species
described 30.08% of the variability. T. arvicolae,
M. muris and A. muris-sylvatici had the highest correla-
tions with the negative part of F1 (respective absolute
contributions in 1/10000: 768, 752 and 442). M. muris
and A. muris-sylvatici were also strongly correlated with
the negative part of F2 (respective absolute contribu-
tions in 1/10000: 3733 and 2535). T. taeniaeformis was
correlated with the positive values of F1 (absolute con-
tributions in 1/10000: 7651) and S. petrusewiczi with the
positive values of F2 (absolute contributions in 1/10000:
1392) (Figure 3a).
The factor ‘Site of sampling’ had a significant impact

on both F1 and F2 axis values (Kruskal-Wallis, p <
10-4). This effect was mediated by the impact of ‘Land-
scape configuration’ (F1: Kruskal-Wallis, p < 10-4; F2:
Kruskal-Wallis, p = 4 × 10-4, Figure 3b). Post-hoc Tukey
Kramer tests showed that the helminth community
observed in voles sampled in the Northern massif des
Ardennes significantly differed from the one observed in

Table 1 Description of the helminth diversity and PUUV seroprevalence per site of sampling

Site of sampling Landscape configuration Nv Nh(Nces-larv/Nces-ad/Nnem) Dominant taxa PUUV (%)

1-Hargnies Forest 34 9 (1/2/6) Aonchoteca annulosa 13 (43.33)

2-Woirie Forest 37 7 (1/1/5) Heligmosomoides glareoli 3 (8.82)

3-Renwez Forest 38 7 (1/0/6) Heligmosomoides glareoli 6 (16.67)

4-Cliron Hedge 34 7 (2/1/4) Syphacia petrusewiczi 3 (9.67)

5-Elan Wood 27 5 (1/0/4) Heligmosomum mixtum 2 (8.00)

6-Cassine Wood 27 4 (1/1/2) Syphacia petrusewiczi 6 (23.07)

7-Sauville Hedge 31 8 (1/2/5) Syphacia petrusewiczi 0 (0.00)

8-Croix-aux-bois Wood 38 4 (1/0/3) Heligmosomoides glareoli 3 (11.11)

9-Briquenay Hedge 47 4 (2/0/2) Syphacia petrusewiczi 1 (3.33)

Nv, total number of voles trapped; Nh, total number of helminth species observed per site; Nces-larv, number of cestode species in their larval stage; Nces-ad, number
of cestode species in their adult stage; Nnem, number of nematode species; PUUV, number of PUUV seropositive voles with corresponding prevalence in brackets.

Table 2 Description of the helminth species observed in M. glareolus trapped in the french Ardennes

Species Parasite
group

Cycle
(definitive or intermediate hosts)

Prevalence per site
(range in %)

Number of helminths per vole
(range, for non null values)

Taenia taeniaeformis CES-LARV I [0-23.53] [1-5]

Taenia crassiceps CES-LARV I [0-2.94] -

Catenotaenia henttoneni CES-AD I [0-8.82] [1-6]

Hymenolepis (Arostrilepis s.l.) horrida CES-AD I [0-8.51] [1]

Paranoplocephala omphalodes CES-AD I [0-2.13] [1]

Mastophorus muris NEM I [0-17.65] [1-12]

Heligmosomoides glareoli NEM Di [2.63-44.44] [1-17]

Heligmosomum mixtum NEM Di [0-85.18] [1-20]

Trichuris arvicolae NEM Di [0-21.05] [1-2]

Syphacia petrusewiczi NEM Di [0-23.40] [1-226]

Aonchotheca annulosa NEM Di [0-8.82] [1-70]

Aonchotheca muris-sylvatici NEM Di [0-27.03] -

NEM, nematodes; CES-LAR, cestodes infecting M. glareolus in their larval stage; CEST-AD, cestodes infecting M. glareolus in their adult stage; I, indirect cycle; Di,
direct cycle. ‘-’ indicates that helminth number could not be counted for the helminth species considered.
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voles sampled in the Southern part of the crêtes pré-
Ardennaises, either in wooded or hedgerow areas. This
result was confirmed when we projected the F1 or
F2 values on the site map. Sites appeared divided into
two areas, corresponding to the Northern massif des
Ardennes and to the Southern crêtes pré-Ardennaises
(Figure 3c). Most of the negative F1 values (squares)
were located in the northern part of the area whereas
the F2 positive values (circles) were observed in the
southern part. By plotting the gravity centres of each
landscape configuration on the F1xF2 factorial plan, it
appeared that northern sites were characterized by the
presence of M. muris, A. muris-sylvatici (they were not
detected in Southern sites) and T. arvicolae whereas
Southern sites experienced more infections associated
with T. taeniaeformis and S. petrusewiczi (this latter spe-
cies was not detected in Northern sites).
We therefore tested whether the helminth community

varied between PUUV infected and non-infected bank
voles. We analysed data independently for the Northern
and the Southern parts of the transect. The discriminant
analyses revealed significant differences when consider-
ing the northern area only (Massif des Ardennes, p =
0.005; Crêtes pré-ardennaises, p = 0.551, Figure 4a). The
main discriminant species variable was the presence of

H. mixtum, and in a lesser extent of A. muris-sylvatici
(Figure 4b). Bank voles exhibiting anti-PUUV antibodies
were more likely to be infected with these nematode
species than bank voles with no anti-PUUV antibodies
(H. mixtum: RR = 5.91, Fisher exact test: p = 0.002; A.
muris-sylvatici: RR = 2.34, Fisher exact test, p = 0.125).
We obtained similar results when comparing PUUV
infected (with anti-PUUV antibodies and PUUV RNA)
and non infected (without anti-PUUV antibodies or
PUUV RNA) bank voles (H. mixtum: RR = 4.74, Fisher
exact test: p = 0.007; A. muris-sylvatici: RR = 2.53,
Fisher exact test, p = 0.102).
The viral load in infected individuals tended to be

higher in voles coinfected with H. mixtum than in voles
that did not carry any infection with this helminth spe-
cies (F1,19 = 0.992, p = 0.331, Figure 5). Although the
number of H. mixtum worms per vole had been
counted, we could not analyse the relationship between
PUUV viral load and H. mixtum burden. Indeed, among
the eight voles that were coinfected by PUUV and H.
mixtum, only one had more than one worm (this indivi-
dual carried six H. mixtum worms), the seven other
voles had only one H. mixtum worm. Surprisingly, voles
coinfected with A. muris-sylvatici exhibited significantly
lower viral load of PUUV than voles non-infected with
this helminth species (F1,19 = 13.551, p = 0.001, Fig-
ure 5). As this negative relationship could be mediated
by a delay between PUUV and A. muris-sylvatici infec-
tion, we analysed roughly the influence of vole age
(reflected by vole mass) on these infections. We con-
firmed that voles coinfected with PUUV and A. muris-
sylvatici were significantly heavier (thus probably older)
than those infected with A. muris-sylvatici only, with
PUUV only or non infected either with PUUV or A.
muris-sylvatici (F3,96 = 7.279, p = 2 × 10-4).

Discussion
Biomedical research has long explored the impact of
coinfection on the outcome of human diseases [e.g.
[27,28,44,45]]. Particular attention has been given to hel-
minth-microparasite interactions, because host immune
responses or immune regulation mediated by these
pathogens generally have antagonistic effects [46].
So far, there are no studies on the interactions

between helminths and hantaviruses even though hel-
minth communities and PUUV distribution have been
independently described for several natural populations
of bank voles in the context of ecological, geographical
and/or immunogenetic studies [e.g. [16,29,47-54]]. In a
previous study, we combined macroparasites and PUUV
infection data from bank vole populations sampled in
the French Jura to analyse the relationships between
immune gene variation and parasitism [52]. Unfortu-
nately, the small number of PUUV-seropositive bank

Figure 2 Relationships between the mass (g) of bank voles and
their seroprevalence with regard to PUUV (0: no anti-PUUV
antibodies detected, 1: anti-PUUV antibodies detected) for
each landscape configuration. Grey bars represent data from the
Northern sites (massif des Ardennes) and dashed bars correspond to
the Southern sites (crêtes pré-ardennaises).
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Figure 3 Correspondence analysis of the helminth community structure. a) Factorial plan (F1 × F2) showing the relationships between the
helminth species. b) Factorial plan of the landscape according to its effect on the helminth community. The grey circles represent the gravity
centres of the three landscapes considered, forest (F), wood (W) and hedge network (H). The lines show the variation within each site. c)
Schematic representation of the site map based on helminth community characteristics. Sites represented with circles have above average F1
factorial values, whereas sites represented with squares have below-average F1 factorial values. Hedge networks are indicated with black dashed
lines. Circle or square sizes are proportional to the distance of the value above or below the average value.
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voles then prevented the possibility of searching for hel-
minth-PUUV coinfection.
In this study, we combined serological and molecular

methods to detect PUUV infection. Because PUUV
infections are chronic in voles [55], the presence of anti-
bodies is expected to be highly correlated with the pre-
sence of the virus. However during the breeding season,
maternal antibodies might account for up to one third

of the seropositive voles detected [56]. Moreover, pre-
vious studies in natural [57] or controlled [55] condi-
tions have shown that the levels of shed hantavirus
RNA could change a lot over time in excretion and
blood samples. Although the highest rates of hantavirus
shedding is generally observed during the first weeks
after infection, viral RNA can be detected in blood for
as much as 133 or 217 days post-infection [55,57]. Most

Figure 4 Results of the discriminant analysis performed on the helminth community of PUUV-seronegative and PUUV-seropositive
bank voles sampled in the northern sites of the transect. a) Sample scores of the discriminant function for PUUV-seronegative and PUUV-
seropositive bank voles. The symbols (-) and (+) represent the group averages of these two classes of individuals. b) Coefficient of the
discriminant scores on this axis.
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of the PUUV antibody positive voles detected in this
work were also PUUV RNA positive (33 out of 37).
Among the four that had too low PUUV viral load to be
considered RNA positive, one was an immature male.
PUUV antibodies were likely to result from maternal
transfer [e.g. [56,58]]. The three other voles were adults,
and were probably not shedding PUUV at this time. We
could however not investigate the reasons underlying
these differences in PUUV viral load between PUUV
antibody positive adult voles.
We used two appropriate methods to detect negative

and positive interactions [43]. We reported significant
positive associations between two helminth species (H.
mixtum and A. muris-sylvatici) and PUUV infection in
bank voles. Because helminths generally drive strong
type 2 responses [59], which are antagonistic to type
1 responses involved in the immune defense against
hantaviruses [review in [60]], we addressed the question
of whether these helminth infections could influence
vole susceptibility to PUUV.
First, we found that PUUV infection was more often

observed in voles coinfected with H. mixtum, and that
PUUV viral loads were slightly higher in voles coinfected
with this nematode. These results can be interpreted with
regard to the immune knowledge acquired from the close
parasite Nippostrongylus (syn. Heligmosomum) brasiliensis,

which is extensively used as a laboratory model to study
Th2 immunity. In mice and rats, N. brasiliensis induces
polarized Th2 responses characterized by elevation of IgE
and Th2 cytokines such as IL-4, IL-5, and IL-13 [e.g.
[61,62]]. This immune response might increase the sus-
ceptibility to PUUV. On another hand, Reece et al. [62]
also reported that the baseline transcription levels of
Th1 cytokines (IFN-g, IL-12, and IL-6) are also elevated in
N. brasiliensis-infected mice. This could explain that the
Th2 response induced by H. mixtum is not strong enough
to induce a dramatic increase of PUUV viral loads in coin-
fected voles. A similar observation had been made by Lie-
senfeld et al. [45] and Erb et al. [63] on a different
biological system. They respectively showed that the densi-
ties of Toxoplasma gondii and Mycobacterium bovis
in mice were only slightly affected by the presence of
N. brasiliensis. Lastly, an added complexity in the interpre-
tation of this coinfection is the possibility that it might be
generated by correlated exposure, by parasite longevity
and host age, or by differences in the genetic constitution
of individual hosts. We can hypothesize that genetic fac-
tors of susceptibility might mediate the significant co-
occurrence of PUUV and H. mixtum infection. Major his-
tocompatibility complex (Mhc) class II genes could be
relevant candidates as their polymorphism seems to influ-
ence the risk of PUUV or H. mixtum infection in bank
voles [52,64,65]. Other candidate genes such as Tnf-a,
which encodes for the Tumor Necrosis Factor alpha and
strongly influence bank vole susceptibility to PUUV [66],
should also be explored to better understand the potential
influence of immunogenetics on the probability of hel-
minth - PUUV coinfections.
Second, we found that PUUV viral loads were signifi-

cantly decreased in voles coinfected with A. muris-
sylvatici, although the risk of PUUV infection was slightly
higher in voles coinfected with this nematode. Matura-
tion status, which strongly influences the behaviour of
voles and as such, has been shown to be a good determi-
nant of parasite infection [29], could drive this slight and
ambiguous pattern of co-occurrence observed between
PUUV and A. muris-sylvatici infections [22]. Several stu-
dies have found that Aoncotheca species only occured in
mature voles. These older individuals infected with
A. muris-sylvatici were more likely to be infected with
PUUV than younger ones as the risk of PUUV infection
increases with age [e.g. [30,67,68]]. These PUUV infec-
tions could nevertheless have occurred earlier than those
with A. muris-sylvatici, as suggested by the significant
influence of vole mass (which reflects vole age) on the
probability of single and co-infection. As bank voles
secrete PUUV only during a limited time of the infection
[55], the delay that is likely to exist between PUUV and
A. muris-sylvatici infections could explain the low viral
load observed in coinfected bank voles.

Figure 5 Comparison of PUUV viral load in bank voles infected
with H. mixtum or A. muris-sylvatici and in those not infected
by these helminth species. “0” indicates bank voles that are not
infected with H. mixtum (resp. A. muris-sylvatici) and “1” indicates
bank voles that are infected with at least 1 H. mixtum helminth
(resp. A. muris-sylvatici). Only samples from the massif des Ardennes
are considered. N indicates the sampling size for each category.
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Besides, the lower loads of PUUV detected in voles
coinfected with A. muris-sylvatici could also be the
results of host immune response or immune regulators
secreted by this nematode. A single study reported the
immune consequences of Aonchoteca (syn = Capillaria)
infection [69]. Although Kim et al. [69] showed an over-
expression of genes encoding cytokines related to
Th2 pathways, they also highlighted strong increases in
the transcription levels of the Th1 cytokine IFN-g. This
cytokine is known to be crucial for restricting Hanta-
virus replication [review in [60]]. Indeed, IFN-g is essen-
tial for inducing a variety of innate antiviral effector
mechanisms such as natural killer (NK) cells or NKT
cells [70,71]. The host is thus able to limit viral spread
before the adaptive response is mounted. A suppressive
effect of A. muris-sylvatici on PUUV viral replication
could thus be mediated by the potential induction of
IFN-g production following A. muris-sylvatici infection.
Our study also stressed the main importance of con-

sidering landscape configuration when analysing pat-
terns of coinfection, especially in the case of helminths
and PUUV.
First, we showed that the helminth community structure

of bank voles was strongly affected by landscape. Main dif-
ferences were observed between the Northern massif des
Ardennes and the Southern crêtes pré-ardennaises. S. pet-
rusewiczi was for example never recorded in the Northern
sites while H. horrida, M. muris and T. arvicolae were
extremely rare in the Southern sites. Helminths are known
to interact with the external environment. Climatic factors
or soil composition are examples of conditions that may
affect the development of their free-living stages or the
survival of their transmission stages outside their hosts [e.
g. [72-75]]. The distinction between the Northern massif
des Ardennes and the Southern crêtes pré-ardennaises
relies on geological and climatic differences that could in
turn explain geographical variations in the helminth com-
munity structure. Indeed, the Northern massif is charac-
terized by primary soils (shist, slate), cold winters and
higher precipitations whereas the crêtes pré-ardennaises
are composed of secondary soils (clay) and experience less
severe winter and rainfall. Besides, we found no differences
between the helminth communities observed in wooded
areas and hedgerows from the Southern area. This was
surprising because population genetic analyses have
revealed that bank vole populations from hedgerows
experienced strong genetic drift, leading to strong genetic
differentiation among them and between populations from
hedgerows and wooded areas [76]. It is possible that both
bank vole dispersal from wooded areas to hedgerows, as
well as the existence of survival stages in the external
environment, might counterbalance the impact of drift on
the helminth community structure of hedgerows.

This spatial differentiation of helminth communities
observed between the northern massif and the southern
cretes could lead to false associations mediated by the
distribution of particular species. The same observation
holds for PUUV as we showed that its distribution also
exhibited strong disparities between sites. Several studies
have stressed the influence of environmental factors,
including winter temperature and soil moisture, on
PUUV prevalence in bank vole populations [15,19]. Dee-
per insights into local factors mediating differences in
quality of forest patches could provide a better under-
standing of the spatial variations of PUUV prevalence
mediated by variations in bank vole abundance or
dynamics [31,77]. Particular attention could especially
be given to the differences in proportions of functional
groups (e.g. mature vs immature voles) mediated by
environmental and landscape variations, as PUUV and
helminth species structures strongly depend on these
proportions.
Finally, landscape configuration and environmental

conditions might enhance or deplete the possibility for
immune-mediated coinfection to occur. High population
densities, and low availability of resources, might consti-
tute stressful environmental factors that can in turn lead
to trade-offs between fitness components [78], and even
between immune pathways [79,80]. Immune responses
that are energetically costly (e.g. systemic inflammatory
response) are expected to be depleted at the expense of
less costly ones (e.g. antibody-mediated immunity).
Therefore, spatio-temporal variations in environmental
factors influencing the costs and benefits of resistance to
PUUV of gastro-intestinal helminths could promote geo-
graphic differences in the occurrence of coinfections.
This process might participate in explaining why PUUV -
H. mixtum coinfection are only detected in the Northern
massif des Ardennes despite the presence of H. mixtum
over the region sampled. The Southern crêtes pré-
ardennaises might experience less stressful climatic con-
ditions that do not lead to strong trade-offs between
immune responses. Temporal surveys of helminths and
PUUV in these two geographic areas and in other part of
Europe could help confirming this hypothesis. Such long-
itudinal studies, including different sampling seasons,
could also bring insight into the influence of population
age structure in the helminth-PUUV interactions
described here.

Conclusions
To our knowledge, this is the first study that analyses
hantavirus - helminth coinfection in natural populations
of reservoirs. Our research stressed the influence of the
environment in enhancing or depleting the occurrence
of these coinfections. PUUV and parasite species
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distributions, which strongly depend on soil and climatic
factors, and immune trade-offs mediated by stressful
environmental conditions may affect the incidence and
our capacities to detect coinfections of biological signifi-
cance. Longitudinal studies are now required to follow
the same marked bank voles through times and to dis-
entangle the host, pathogen and environmental factors
underlying the PUUV-helminth associations described
in this study.

Acknowledgements
This work received the financial support from the Institut National de la
Recherche Agronomique and the GOCE-CT-2003-010284 EDEN. The
manuscript is catalogued by the EDEN Steering Committee as
EDEN0252 (http://www.eden-fp6project.net).

Author details
1Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia
Sanitaries, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
2INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus
international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex,
France. 32C2A-CERFE, 5 rue de la Héronnière, 08240 Boult-aux-Bois, France
and Université de Reims Champagne Ardenne, Laboratoire de Parasitologie,
EA 3800, 51092 Reims Cedex, France. 4Infection Biology Research Program,
Haartman institute, Department of Virology, PL 21, FI-00014 University of
Helsinki, Helsinki, Finland. 5Finnish Forest Research Institute, PL 18, FI-01301,
Vantaa, Finland.

Authors’ contributions
EG, JFC and NC conceived the study, participated in its design and carried
out its coordination. ARS prepared samples, collected and analysed helminth
data (identification and and counting). AX, YC, JFC, EG, ARS and MLP
participated in the field work. PC participated in analyzing the data. TS and
HH analysed PUUV viral load data. LV and HH analysed PUUV serological
data. NC drafted the manuscript. All authors read, criticized and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 11 October 2010 Accepted: 8 February 2011
Published: 8 February 2011

References
1. Lundkvist A, Niklasson B: Bank vole monoclonal antibodies against

Puumala virus envelope glycoproteins: identification of epitopes
involved in neutralization. Arch Virol 1992, 126:93-105.

2. Vapalahti O, Mustonen J, Lundkvist A, Henttonen H, Plyusnin A, Vaheri A:
Hantavirus infections in Europe. Lancet Infect Dis 2003, 3(10):653-661.

3. Gavrilovskaya IN, Apekina NS, Bernshtein AD, Demina VT, Okulova NM,
Myasnikov YA, Chumakov MP: Pathogenesis of hemorrhagic fever with
renal syndrome virus infection and mode of horizontal transmission of
hantavirus in bank voles. Arch Virol 1990, , Suppl 1: S57-S62.

4. Brummer-Korvenkontio M, Vaheri A, Hovi T, von Bonsdorff CH, Vuorimies J,
Manni T, Penttinen K, Oker-Blom N, Lahdevirta J: Nephropathia epidemica:
detection of antigen in bank voles and serologic diagnosis of human
infection. J Infect Dis 1980, 141:131-134.

5. Klingstrom J, Heyman P, Escutenaire S, Sjolander KB, De Jaegere F,
Henttonen H, Lundkvist A: Rodent host specificity of European
hantaviruses: evidence of Puumala virus interspecific spillover. J Med
Virol 2002, 68(4):581-588.

6. Heyman P, Cochez C, Ducoffre G, Mailles A, Zeller H, Abu Sin M, et al:
Haemorrhagic fever with renal syndrome: an analysis of the outbreaks
in Belgium, France, Germany, the Netherlands and Luxembourg in 2005.
Euro Surveillance 2007, 12:167-171.

7. Penalba C, Galempoix JM, Lanoux P: epidémiologie des infections à
hantavirus en France. Med Mal Infect 2001, 31(2):272-284.

8. Niklasson B, Hörnfeldt B, Lundkvist Å, Björsten S, Leduc J: Temporal
dynamics of Puumala virus antibody prevalence in voles and of
nephropathia epidemica incidence in humans. Am J Trop Med Hyg 1995,
53:134-140.

9. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G, Leirs H: Hantavirus
disease (nephropathia epidemica) in Belgium: effects of tree seed
production and climate. Epidemiol Infect 2009, 137(2):250-256.

10. Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM,
Vandamme AM, Maes P, Van Ranst M: Relating increasing hantavirus
incidences to the changing climate: the mast connection. Int J Health
Geogr 2009, 8:1.

11. Tersago K, Schreurs A, Linard C, Verhagen R, Van Dongen S, Leirs H:
Population, environmental, and community effects on local bank vole
(Myodes glareolus) Puumala virus infection in an area with low human
incidence. Vector Borne Zoonotic Dis 2008, 8(2):235-244.

12. Dizney LJ, Ruedas LA: Increased host species diversity and decreased
prevalence of Sin Nombre virus. Emerg Infect Dis 2009, 15(7):1012-1018.

13. Clay CA, Lehmer EM, St Jeor S, Dearing MD: Testing mechanisms of the
dilution effect: deer mice encounter rates, Sin Nombre virus prevalence
and species diversity. Ecohealth 2009, 6(2):250-259.

14. Clay CA, Lehmer EM, Jeor SS, Dearing MD: Sin Nombre virus and rodent
species diversity: a test of the dilution and amplification hypotheses.
PLoS One 2009, 4(7):e6467.

15. Linard C, Tersago K, Leirs H, Lambin EF: Environmental conditions
and Puumala virus transmission in Belgium. Int J Health Geogr 2007,
6:55.

16. Linard C, Lamarque P, Heyman P, Ducoffre G, Luyasu V, Tersago K,
Vanwambeke SO, Lambin EF: Determinants of the geographic distribution
of Puumala virus and Lyme borreliosis infections in Belgium. Int J Health
Geogr 2007, 6:15.

17. Escutenaire S, Chalon P, De Jaegere F, Karelle-Bui L, Mees G, Brochier B,
Rozenfeld F, Pastoret PP: Behavioral, physiologic, and habitat influences
on the dynamics of Puumala virus infection in bank voles (Clethrionomys
glareolus). Emerg Infect Dis 2002, 8(9):930-936.

18. Sauvage F, Langlais M, Yoccoz NG, Pontier D: Modelling hantavirus in
fluctuating populations of bank voles: the role of indirect transmission
on virus persistence. J Anim Ecol 2003, 72(1):1-13.

19. Kallio ER, Klingstrom J, Gustafsson E, Manni T, Vaheri A, Henttonen H,
Vapalahti O, Lundkvist A: Prolonged survival of Puumala hantavirus
outside the host: evidence for indirect transmission via the
environment. J Gen Virol 2006, 87(8):2127-2134.

20. Cattadori IM, Haukisalmi V, Henttonen H, Hudson P: Transmission ecology
and the structure of parasite communities in small mammals. In
Micromammals and macroparasites: from evolutionary ecology to
management. Edited by: Morand S, Krasnov B, Poulin R. Tokyo: Springer;
2006:349-369.

21. Graham AL: Ecological rules governing helminth-microparasite
coinfection. Proc Natl Acad Sci USA 2008, 105(2):566-570.

22. Supali T, Verweij JJ, Wiria AE, Djuardi Y, Hamid F, Kaisar MM, Wammes LJ,
van Lieshout L, Luty AJ, Sartono E, et al: Polyparasitism and its impact on
the immune system. Int J Parasitol 2010, 40(10):1171-1176.

23. Cox FE: Concomitant infections, parasites and immune responses.
Parasitology 2001, 122(Suppl):S23-38.

24. Maizels RM, Yazdanbakhsh M: Immune regulation by helminth parasites:
cellular and molecular mechanisms. Nat Rev Immunol 2003, 3(9):733-744.

25. Kamal SM, El Sayed Khalifa K: Immune modulation by helminthic
infections: worms and viral infections. Parasite Immunol 2006,
28(10):483-496.

26. Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD: Can
eradication of helminthic infections change the face of AIDS and
tuberculosis? Immunol Today 1999, 20(11):485-487.

27. Edwards MJ, Buchatska E, Ashton M, Montoya M, Bickle QD, Borrow P:
Reciprocal immunomodulation in a schistosome and hepatotropic virus
coinfection model. J Immunol 2005, 175(10):6275-6285.

28. Borkow G, Teicher C, Bentwich Z: Helminth-HIV Coinfection: Should We
Deworm? Plos Neglect Trop Dis 2007, 1(3).

29. Haukisalmi V, Henttonen H, Tenora F: Population dynamics of common
and rare helminths in cyclic vole populations. J Anim Ecol 1988,
57:807-826.

30. Bernshtein AD, Apekina NS, Mikhailova TV, Myasnikov YA, Khlyap LA,
Korotkov YS, Gavrilovskaya IN: Dynamics of Puumala hantavirus infection

Salvador et al. BMC Microbiology 2011, 11:30
http://www.biomedcentral.com/1471-2180/11/30

Page 11 of 13

http://www.eden-fp6project.net
http://www.ncbi.nlm.nih.gov/pubmed/1381914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1381914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1381914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14522264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6102587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6102587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6102587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7677213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7677213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7677213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19149870?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19149870?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18370592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18370592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18370592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19495881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19495881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19495881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19649283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19649283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18078526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18078526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17474974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17474974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18182496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18182496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20580905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20580905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11442193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12949497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12949497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16965284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16965284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10529774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10529774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10529774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16272278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16272278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10664394?dopt=Abstract


in naturally infected bank voles (Clethrionomys glareolus). Arch Virol 1999,
144(12):2415-2428.

31. Gliwicz J, Ims RA: Dispersal in the bank vole. Polish Journal of Ecology
2000, 51-61.

32. Mills JN, Childs J, Ksiazek TG, Peters CJ, Velleca WM: Methods for trapping
and sampling small mammals for virologic testing. Atlanta: Centers for
Disease Control and Prevention; 1995.

33. Willett WC: Nutritional epidemiology. New York: Oxford University Press;
1998.

34. Lundkvist AI, Fatouros A, Niklasson B: Antigenic variation of European
haemorrhagic fever with renal syndrome virus strains characterized
using bank vole monoclonal antibodies. J Gen Virol 1991, 72:2097-2103.

35. Korva M, Duh D, Saksida A, Trilar T, Avsic-Zupanc T: The hantaviral load in
tissues of naturally infected rodents. Microbes Infect 2009, 11:344-351.

36. Burnham KP, Anderson DR: Model selection and inference. A practical
information-theoretic approach. New York: Heidelberg; 1998.

37. Johnson JB, Omland KS: Model selection in ecology and evolution. Trends
Ecol Evol 2004, 19:101-108.

38. McCullagh P, Nelder JA: Generalized linear models. Chapman and Hall,
London; 1989.

39. Crawley MJ: Glim for ecologists. Blackwell, Oxford, U.K; 1993.
40. Thioulouse J, Chessel D, Dolédec S, Olivier JM: ADE-4: a multivariate

analysis and graphical display software. Stat Comput 1997, 7:75-83.
41. Jombart T, Pontier D, Dufour AB: Genetic markers in the playground of

multivariate analysis. Heredity 2009, 102(4):330-341.
42. Haldane JBS: The estimation and significance of the logarithm of a ratio

of frequencies. Ann Hum Genet 1956, 20:309-311.
43. Fenton A, Viney ME, Lello J: Detecting interspecific macroparasite

interactions from ecological data: patterns and process. Ecol Lett 2010,
13(5):606-615.

44. Furze RC, Hussell T, Selkirk ME: Amelioration of influenza-induced
pathology in mice by coinfection with Trichinella spiralis. Infect Immun
2006, 74(3):1924-1932.

45. Liesenfeld O, Dunay IR, Erb KJ: Infection with Toxoplasma gondii reduces
established and developing Th2 responses induced by Nippostrongylus
brasiliensis infection. Infect Immun 2004, 72(7):3812-3822.

46. Graham AL, Cattadori IM, Lloyd-Smith JO, Ferrari MJ, Bjornstad ON:
Transmission consequences of coinfection: cytokines writ large? Trends
Parasitol 2007, 23(6):284-291.

47. Behnke JM: Structure in parasite component communities in wild
rodents: predictability, stability, associations and interactions .. or pure
randomness? Parasitology 2008, 135(7):751-766.

48. Behnke JM, Bajer A, Harris PD, Newington L, Pidgeon E, Rowlands G,
Sheriff C, Kulis-Malkowska K, Sinski E, Gilbert FS, et al: Temporal and
between-site variation in helminth communities of bank voles (Myodes
glareolus) from NE Poland. 1. Regional fauna and component
community levels. Parasitology 2008, 135(8):985-997.

49. Haukisalmi V, Henttonen H: Co-existence in helminths of the bank vole
Clethrionomys glareolus. I. Patterns of co-occurrence. J Anim Ecol 1993,
62:221-229.

50. Haukisalmi V, Henttonen H: Co-existence in helminths of the bank vole
Clethrionomys glareolus. II. Intestinal distributions and interspecific
interactions. J Anim Ecol 1993, 62:230-238.

51. Haukisalmi V, Henttonen H: Helminth dynamics and community
structure in the bank vole Clethrionomys glareolus. Polish J Ecol 2000,
48:S219-S230.

52. Deter J, Chaval Y, Galan M, Henttonen H, Laakkonen J, Voutilainen L, Ribas
Salvador A, Bryja J, Morand S, Cosson JF, et al: Association between the
DQA MHC class II gene and Puumala virus infection in the specific
reservoir Myodes glareolus. Infect Genet Evol 2008, 8:450-458.

53. Soveri T, Henttonen H, Rudback E, Schildt R, Tanskanen R, Husu-Kallio J,
Haukisalmi V, Sukura A, Laakkonen J: Disease patterns in field and bank
vole populations during a cyclic decline in central Finland. Comp
Immunol Microbiol Infect Dis 2000, 23(2):73-89.

54. Olsson GE, White N, Hjalten J, Ahlm C: Habitat factors associated with
bank voles (Clethrionomys glareolus) and concomitant hantavirus in
northern Sweden. Vector Borne Zoonotic Dis 2005, 5(4):315-323.

55. Hardestam J, Karlsson M, Falk KI, Olsson G, Klingstrom J, Lundkvist A:
Puumala hantavirus excretion kinetics in bank voles. Emerg Infect Dis
2008, 14(8):1209-1215.

56. Kallio ER, Begon M, Henttonen H, Koskela E, Mappes T, Vaheri A,
Vapalahti O: Hantavirus infections in fluctuating host populations: the
role of maternal antibodies. Proc Roy Soc Lond, B 2010, 277:3783-3791.

57. Kuenzi AJ, Douglass RJ, Bond CW, Calisher CH, Mills JN: Long-term
dynamics of Sin Nombre viral RNA and antibody in deer mice in
Montana. J Wildl dis 2005, 41(3):473-481.

58. Kallio ER, Poikonen A, Vaheri A, Vapalahti O, Henttonen H, Koskela E,
Mappes T: Maternal antibodies postpone hantavirus infection and
enhance individual breeding success. Proc Biol Sci 2006,
273(1602):2771-2776.

59. McSorley HJ, Loukas A: The immunology of human hookworm infections.
Parasite Immunol 2010, 32(8):549-559.

60. Schoenrich G, Rang A, Lütteke N, Raftery MJ, Charbonnel N, Ulrich RG:
Hantavirus-induced immunity in rodent reservoirs and humans. Immunol
Rev 2008, 225:163-189.

61. Morimoto M, Zhao AP, Sun R, Stiltz J, Madden KB, Mentink-Kane M,
Ramalingam T, Wynn TA, Urban JF, Shea-Donohue T: IL-13 Receptor alpha
2 Regulates the Immune and Functional Response to Nippostrongylus
brasiliensis Infection. J Immunol 2009, 183(3):1934-1939.

62. Reece JJ, Siracusa MC, Southard TL, Brayton CF, Urban JF, Scott AL:
Hookworm-induced persistent changes to the immunological
environment of the lung. Infect Immun 2008, 76(8):3511-3524.

63. Erb KJ, Trujillo C, Fugate M, Moll H: Infection with the helminth
Nippostrongylus brasiliensis does not interfere with efficient elimination
of Mycobacterium bovis BCG from the lungs of mice. Clinic Diagn Lab
Immunol 2002, 9(3):727-730.

64. Guivier E, Galan M, Male PJ, Kallio ER, Voutilainen L, Henttonen H, Olsson G,
Lundkvist A, Tersago K, Augot D, et al: Associations between Major
Histocompatibility Complex genes and PUUV infection in Myodes
glareolus are detected in wild populations but not from experimental
infection data. J Gen Virol 2010, 91:2507-2512.

65. Kloch A, Babik W, Bajer A, Sinski E, Radwan J: Effects of an MHC-DRB
genotype and allele number on the load of gut parasites in the bank
vole Myodes glareolus. Mol Ecol 2010, 19:255-265.

66. Guivier E, Galan M, Ribas Salvador A, Xuéreb A, Chaval Y, Olsson G,
Essbauer S, Henttonen H, Voutilainen L, Cosson JF, et al: Tnf-α expression
and promoter sequences reflect the balance of tolerance/resistance to
Puumala virus infection in European bank vole populations. Infect Genet
Evol 2010, 10(8):1208-1217.

67. Olsson GE, White N, Ahlm C, Elgh F, Verlemyr AC, Juto P, Palo RT:
Demographic factors associated with hantavirus infection in bank voles
(Clethrionomys glareolus). Emerg Infect Dis 2002, 8(9):924-929.

68. Augot D, Muller D, Demerson JM, Boue F, Caillot C, Cliquet F: Dynamics of
Puumala virus infection in bank voles in Ardennes department (France).
Pathol Biol 2006, 54(10):572-577.

69. Kim D-K, Joo K-H, Chung M-S: Changes of cytokine mRNA expression and
IgG responses in rats infected with Capillaria hepatica. Korean J Parasitol
2007, 45(2):95-102.

70. Stetson DB, Medzhitov R: Type I interferons in host defense. Immunity
2006, 25:373-381.

71. Raftery MJ, Winau F, Giese T, Kaufmann SH, Schaible UE, Schonrich G: Viral
danger signals control CD1d de novo synthesis and NKT cell activation.
Eur J Immunol 2008, 38:668-679.

72. Haukisalmi V, Henttonen H: The impact of climatic factors and host
density on the long-term population-dynamics of vole helminths.
Oecologia 1990, 83(3):309-315.

73. Guernier V, Hochberg ME, Guegan JF: Ecology drives the worldwide
distribution of human diseases. PLoS Biol 2004, 2(6):e141.

74. Hudson PJ, Cattadori IM, Boag B, Dobson AP: Climate disruption and
parasite-host dynamics: patterns and processes associated with warming
and the frequency of extreme climatic events. J Helminthol 2006,
80(2):175-182.

75. Behnke JM, Bajer A, Harris PD, Newington L, Pidgeon E, Rowlands G,
Sheriff C, Kulis-Malkowska K, Sinski E, Gilbert FS, et al: Temporal and
between-site variation in helminth communities of bank voles (Myodes
glareolus) from N.E. Poland. 1. Regional fauna and component
community levels. Parasitology 2008, 135(8):985-997.

76. Guivier E: Variabilité de la résistance.tolérance des campagnols
roussâtres à l’hantavirus Puumala et conséquences épidemiologiques.
PhD thesis Université Montpellier 2, Montpellier, France;161.

Salvador et al. BMC Microbiology 2011, 11:30
http://www.biomedcentral.com/1471-2180/11/30

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/10664394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16701236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19156164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19156164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13314400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13314400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16495568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16495568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15213122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15213122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15213122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17693139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17693139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17693139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10670697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10670697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16417427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16417427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16417427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17015326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17015326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20626810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18837782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20573856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20573856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20573856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20573856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20331784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20331784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20331784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20691810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20691810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20691810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12194768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17027178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17027178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18253929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18253929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15208708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15208708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16768860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16768860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16768860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18598578?dopt=Abstract


77. van Apeldoorn RC, Oostenbrink WT, van Winden A, van der Zee FF: Effects
of habitat fragmentation on the bank vole, Clethrionomys glareolus, in
an agricultural landscape. Oikos 1992, 65:265-274.

78. Stearns SC: The evolution of life-histories. Oxford: Oxford University press;
1992.

79. Lee KA, Klasing KC: A role for immunology in invasion biology. Trends Ecol
Evol 2004, 19(10):523-529.

80. Martin LB, Weil ZM, Kuhlman JR, Nelson RJ: Trade-offs within the immune
systems of female white-footed mice, Peromyscus leucopus. Funct Ecol
2006, 20:630-636.

doi:10.1186/1471-2180-11-30
Cite this article as: Salvador et al.: Concomitant influence of helminth
infection and landscape on the distribution of Puumala hantavirus in its
reservoir, Myodes glareolus. BMC Microbiology 2011 11:30.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Salvador et al. BMC Microbiology 2011, 11:30
http://www.biomedcentral.com/1471-2180/11/30

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16701317?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Bank vole sampling and parasitological screenings
	PUUV serological screening and viral load quantification
	Statistical analyses

	Results
	Helminth and PUUV data
	PUUV infection risk factors
	Helminth community structure and coinfection with PUUV

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


