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Bayesian Consistent Estimation in Deformable
Models using Stochastic Algorithms: Applications

to Medical Images

Stéphanie Allassonnière 1 , Estelle Kuhn 2 and Alain Trouvé 3

Titre: Estimation Bayésienne Consistante de Modèles Déformables via des Algorithmes Stochastiques :
Applications à l’Imagerie Médicale

Abstract: This paper aims at summarising and validating a methodology proposed in [2, 3, 4] for estimating a Bayesian
Mixed Effect (BME) atlas, i.e. coupled templates and geometrical metrics for estimated clusters, in a statistically
consistent way given a sample of images. We recall the generative statistical model applied to the observations which
enables the simultaneous estimation of the clusters, the templates and geometrical variabilities (related to the metric) in
the population. Following [2, 3, 4], we work in a Bayesian framework, use a Maximum A Posteriori estimator and
approach its value using a stochastic variant of the Expectation Maximisation (EM) algorithm. The method is validated
with two data set consisting of medical images of part of the human cortex and dendrite spines from a mouse model of
Parkinson’s disease. We present the performances of the method on the estimation of the template, the geometrical
variability and the clustering.

Résumé : Cet article vise à résumer et valider sur données réelles la méthode proposée dans (2,3,4) pour l’estimation
d’atlas appelé Bayesian Mixed Effect (BME) atlas. Un tel atlas est composé d’une image de référence et d’une métrique
pour chaque sous-groupe d’une population ainsi que du poids de ce sous-groupe. L’estimation est consistante sur un
échantillon d’images données non labellisées. Nous rappelons ici le modèle statistique génératif qui permet l’estimation
simultanée des sous-groupes, de leurs poids, des images de référence et des variabilités géométriques (liées aux
métriques). Comme proposé en (2,3,4), nous travaillons dans un cadre bayésien, utilisons l’estimateur de Maximum
A Posteriori et approchons sa valeur par une variante stochastique de l’algorithme EM (Expectation Maximisation).
Cette méthode est validée sur deux ensembles de données d’images médicales : une partie du cortex humain et des
excroissances de dendrites de souris liées à la maladies de Parkinson. Nous présentons les performances de cette
méthode sur l’estimation de l’image de référence, la variabilité géométrique et le label.
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2 Allassonière, Kuhn et Trouvé

1. Introduction

In the field of Computational Anatomy, one aims at segmenting images, detecting pathologies
and analysing the normal versus abnormal variability of segmented organs. The most widely used
techniques are based on the comparisons of images from subjects to a prototype image (usually
called template in the literature). Such a prototype is an image whose biological properties are
known and which - in a sense to be defined - characterises the population being studied. This
template contains common features of the population which would not be revealed by multiple
inter-subject comparisons.

Regarding the large variability of anatomical structures, one template only may be not enough
to summarise the diversity of a whole population. For example, two populations can have the same
template but can be distributed quite differently around (very like points clouds in a manifold can
be concentrated or spread in many different way around their means). Therefore, in addition to
the template, a parametrisation of the shape variability around a given template is of importance
in producing relevant statistical summary of a population. These two parameters will together be
considered as an atlas in the following.

One way to estimate an atlas in a population is to do statistical inference on statistical models.
Among all of them, generative statistical models make assumptions on how the observed images
are derived from the atlas. These models do not only explain data but enable also to randomly
generate new images. When simulating a large number of likely images (according to the model),
one can better interpret and even exhibit unexpected behaviours that would not be easily detectable
by a visual inspection of a small population (typical case in medical image analysis). Moreover,
these models provide a characterisation of the population through the probabilistic distributions,
in particular, they highlight the correlations between variables. Lastly, this setting provides a good
mathematical and computational framework to work with.

The large heterogeneity of the control subjects for example leads us to consider that the
population is composed of several sub-groups. We introduce a mixture of the previous models to
take this point into account. To summarise the information about the population, one need now
the weight of each cluster and an atlas for each of them. Since the clustering may not be known,
the corresponding model enables an estimation of both the distribution of the sub-groups in the
population and the cluster atlases at the same time.

Our special interest is the construction of an atlas, called Bayesian Mixed Effect (BME) atlas,
as the estimation of the templates and their global geometric variabilities in estimated cluster for a
given population in a statistically consistent way.

The usual way to measure the geometrical heterogeneity is to map the template to all the
observations (or the other way around) and do some statistics on these deformations (typically
PCA). Many registration methods have been developed for this purpose, for example in [21, 16, 7].
Based on this, several different approaches have been proposed recently to estimate templates.
Some are based on a minimisation of a penalised energy function describing the cost to match the
template to the observations [14, 19, 10]. Another view, closer to ours, is to propose a statistical
model whose parameters are the template and the mappings between this template and the
observations [5, 13, 18, 17] and the optimisation is done via maximum likelihood. Even if these
methods lead to interesting results and effective computation schemes, they suffer from different
limitations. First, in most cases, the deformation is applied to the observations instead of to the
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Consistent Atlas Estimation 3

template. However, these images are only noisy observations known on a discrete fixed grid
of voxels. Applying the deformation to these discretly supported images requires interpolating
between voxels and therefore creates errors which are difficult to control. Moreover, the modelling
implies inexact matching. One way to model this is to consider that the difference between the
deformed image and the template is an independent additive noise. This noise accounts for both
the acquisition noise and the fact that the model does not describe the reality (but is only an
approximation of the true distribution, providing that it exists). Assuming the deformation is
invertible, applying the mapping to the observations is equivalent to apply its inverse to both the
template and the noise. However, there is no suitable interpretation of this fact; there is no reason
for the noise to be affected by the mapping which is only a mathematical tool we introduce. The
last but not least drawback is that the deformations are considered as nuisance parameters which
have to be optimised. Knowledge of these elements only gives information subject by subject and
nothing about the global trend of the population. Moreover, the convergence of such procedures
has not been proved and one of them has even been shown to fail for a toy example [2].

For these reasons, we consider the model proposed in [2]. Indeed, the authors consider the
usual modelling called the Deformable Template model. This assumes that each observation is a
random deformation of the template which is then corrupted by an additive Gaussian noise. This
avoids the interpolation problem since the template is estimated on the whole domain as well as
the lack of meaning of the deformed noise mentioned below. The deformations are unobserved
random variables whose probabilistic distribution has to be estimated. This generative statistical
model defines a global information of the geometrical variability inside the population. This
distribution also characterises the metric on the deformation space. Thanks to this model, the
estimation of the template is correlated to this estimated metric and vice versa.

To take into account the heterogeneity of the whole population, we use the extended model
based on a mixture of the previous modelling [2, 4]: each observation belongs to one component of
the mixture governed by its parameters (template, noise and metric). The observation memberships
are specified through hidden random labels whose weights are estimated as well.

We summarise here this methodology, called Bayesian Mixed Effect (BME) template, to
construct a BME atlas, i.e. clusters distribution, templates and geometrical metrics, via a consistent
estimation, given a sample of images. We focus on its validation in the context of medical images
of the splenium and of dendrite spines which have a large geometrical variability (various shapes)
in order to show its performance in terms of estimation and generation of new plausible shapes.

In this paper, the model and the estimator are detailed in Section 2. We then present two
algorithms and their properties in Section 3. The method is then illustrated in Section 4. We end
this paper with some conclusions and a discussion in Section 5.

2. BME Template Model and MAP Estimation

2.1. BME Template Model

We consider a population of n gray level images which we aim to automaticaly cluster in a
linearised number of groups called components later. We assume that each observation y belongs
to an unknown component t picked among m possible ones. We work within the small deformation
framework [5]: the deformation moves each point of the domain in the direction of its own vector.
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4 Allassonière, Kuhn et Trouvé

Therefore, conditional on the image membership to component t, there exists an unobserved
deformation field z : Rd → Rd , d ∈ {2,3}, of a continuously defined template It : Rd → R and a
Gaussian centred white noise 1 ε of variance σ2

t such that

y(s) = It(xs− z(xs))+ ε(s) = zIt(s)+ ε(s) , (1)

where Λ is a discrete grid of pixels/voxels and the pixels/voxel location in Rd is denoted by
(xs)s∈Λ. To apply the inverse deformation to the template, we have made the usual approximation
(Id + z)−1 ' Id− z.

The inference will concern the templates and some characteristics of the deformation fields.
Thus we choose parametrical models for these two quantities. Given (pk)1≤k≤kp a fixed set
of uniformly distributed landmarks covering the image domain, the template functions It are
parameterised by coefficients αt ∈ Rkp through: It(x) = Kpαt(x), ∑

kp
k=1 Kp(x, pk)αt(k) , where

Kp is the kernel of the Reproducing Kernel Hilbert Space (RKHS) in which we search the
template. The kernel controls the smoothness of the interpolation between landmarks. It is also
nicely described as the covariance operator of a Gaussian random field globally defined on the
image domain and defining a natural prior for the template. The restriction of these Gaussian
fields on the pk’s is an easily tractable finite dimensional zero mean Gaussian vector with explicit
covariance matrix. This has the advantage of giving a prior that is essentially independent of
the number of landmarks kp, and that only depends on the global choice made for the RKHS.
In this context, the number of landmarks used determines a trade-off between accuracy of the
approximations of functions in the respective spaces and the amount of required computation.

The same kind of decomposition with a second set of landmarks (gk)1≤k≤kg and kernel Kg is
used to parametrize the deformation field z by the unobserved random vector β such that z = Kgβ .
This random vector is assumed to follow a Gaussian distribution with zero mean and covariance
matrix Γt

g depending on the component t (which could be the natural prior associated with Kg as a
first guess but will be learnt from the data during the estimation process).

The model parameters of each component t ∈ {1, . . . ,m} are denoted by θt = (αt ,σ
2
t ,Γ

t
g).

We assume that θ belongs to the open parameter space Θ , { θ = (αt ,σ
2
t ,Γ

t
g)1≤t≤m| ∀t ∈

{1, . . . ,m} , αt ∈ Rkp , σ2
t > 0, Γt

g ∈ Σ
+
dkg,∗(R) }. Here Σ

+
dkg,∗(R) is the set of strictly positive

symmetric matrices. The weights of the different mixtures are given by ρ = (ρt)1≤t≤m which

belongs to the open simplex R = {(ρt)1≤t≤m ∈ ] 0,1[m |
m
∑

t=1
ρt = 1}. Let η = (θ ,ρ), the

hierarchical Bayesian structure of our model is :

ρ ∼ νρ , θ = (αt ,σ
2
t ,Γ

t
g)1≤t≤m ∼⊗m

t=1(νp⊗νg)

τn
1 ∼⊗n

i=1

m
∑

t=1
ρtδt | ρ ,

β n
1 ∼⊗n

i=1N (0,Γτi
g )| τn

1 , η

yn
1 ∼⊗n

i=1N (zβiIαi ,σ
2
τi

IdΛ) | β n
1 , τn

1 , η

(2)

1 This model is relevant for grey level images. One could slightly modify it in order to better interpret binary images.
Instead of a Gaussian noise (usually used for image matching with a L2 penalty term), one can use a Bernoulli
distribution whose parameter would be a continuous map rt(x), analogous to our template It(x). However, this
model does not belong to the exponential family which make the coding more complicated. The convergence of the
algorithm has not been proved in this case either.

Journal de la Société Française de Statistique, Vol. 151 No. 1 1-16
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



Consistent Atlas Estimation 5

with

 νρ(ρ) ∝

(
m
∏

t=1
ρt

)aρ

, νg(dΓg)∝

(
exp(−〈Γ−1

g ,Σg〉/2) 1√
|Σg|

)ag

dΓg,

νp(dσ2,dα)∝
(

exp
(
− σ2

0
2σ2

)
1√
σ2

)ap · exp
(
− 1

2 α t(Σp)
−1α

)
dσ2dα,

where the hyper-parameters are fixed (their effects has been discussed in [2]). All priors are the
natural conjugate priors and are assumed independent to get easy calculations. This choice appears
relevant while considering the equations involved in the maximisation step [2].

The Gaussian distribution set on the observations whose mean is the deformed template is
the usual Deformable Template model used in image analysis and in particular image matching.
This model is quite natural saying that the observation is, up to an independent noise, close to
the deformed template. The Gaussian distribution used to model the deformation vector β is
assumed to have zero mean. This assumption corresponds to the intuitive fact that once we are
moving around the template -the “mean shape" of the population- the mean of all these movements
should be close to zero. Therefore, we only estimate its covariance matrix. The last probabilistic
distribution for τ is a common distribution on random variables on finite space, namely a finite
sum of weighted Dirac measures.

The system of equations (2) can be interpreted top to bottom, which corresponds to the
generation of some images. The generation process consists in first drawing the parameters from
their prior distributions. Given these parameters, pick a membership according to the weighted
distribution. This label points towards a component. For this particular component, draw a
deformation with respect to this Gaussian law and apply it to the pointed template. Adding a
random Gaussian noise whose variance is given by the membership to each voxel independently
gives you a new image. The estimation process takes the images as observed elements and attempts
to recover the parameters (giving that they follow some constrains given by the priors). This
scheme can be summarised in Figure 1.

For each component t :
– ρt : probability of the component
– αt : template parameter
– Γt

g : geometrical covariance matrix
– σ2

t : additive noise variance
For each observation yi :
– τi : component label
– βi : deformation parameters
– εi : additive noise

FIGURE 1. Latent structure of BME-Template model.

2.2. MAP estimator and its theoretical properties

In this context, in order to estimate the model parameters, we use a Maximum A Posteriori
estimator, i.e. a value of the parameters which maximises the posterior density on η conditional
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6 Allassonière, Kuhn et Trouvé

on yn
1:

η̂n = argmax
η

q(η |yn
1) . (3)

It has been proved in [2] that the MAP estimator corresponding to the model reduced to only
one component (m = 1) exists given a sample set. Moreover, this estimator is consistent i.e. as the
number of images increases in the training set, the sequence of estimated parameters converges
almost surely towards one maximiser of the expectation of the observed log-likelihood.

3. Algorithmic methods for estimation

Thanks to the Bayes’ rule, the focus is on the observed likelihood. Its computation involves an
integral over the hidden variables making the direct maximisation a difficult task. The natural
approach in this context is to use iterative algorithms such as EM (Expectation-Maximisation)
[12, 20] to maximise the penalised likelihood given the observations yn

1. However, the classical
EM algorithm cannot be directly applied here. Indeed, the E-step requires the computation of the
conditional expectation of the complete log-likelihood which does not have a closed form. As a
consequence, many "EM-like" procedures have been proposed.

We present in the next subsections two approaches to solve this issue: the first one is determin-
istic whereas the second one is stochastic.

3.1. Fast approximation with modes (FAM)

The expression in the E step requires the computation of the expectation with respect to the
posterior distribution of β n

1 ,τ
n
1 |yn

1, known up to the re-normalisation constant, the density of yn
1

which is not computable. To overcome this obstacle, given an observation yi and a label t, the
posterior distribution of the random deformation field is approximated at iteration l by a Dirac
law on its mode β ∗l,i,t . This yields the following computation :

β
∗
l,i,t = argmax

β

logq(β |αt,l,σ
2
t,l,Γ

t
g,l,yi)

= argmin
β

{
1
2

β
t(Γt

g,l)
−1

β +
1

2σ2
l,t
|yi−Kβ

p αt,l|2
}

,

which is a standard template matching problem with the current parameters. We then approximate
the joint posterior on (βi,τi) as a discrete distribution concentrated at the m points (β ∗l,i,t)1≤t≤m

with weights given by: wl,i(t) ∝ q(yi|β ∗l,i,t ,αt,l)q(β ∗l,i,t |Γt
g,l)ρt,l . The label τl,i is then sampled from

the distribution ∑
m
t=1 wl,i(t)δt and the deformation is the mode of the drawn label βl,i = β ∗l,i,τi

.
The maximisation is then done on this approximation of the likelihood.

3.2. Using a stochastic version of the EM algorithm : SAEM-MCMC

Another alternative to the computation of the E-step in a complex nonlinear context is to use the
stochastic approximation EM algorithm (SAEM) [11] coupled with an MCMC procedure [15]
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Consistent Atlas Estimation 7

and a truncation on random boundaries. The combination of these different methods enables to
overcome all the bottlenecks that are arising from the usual algorithms. In particular, the SAEM
algorithm requires a simulation of the hidden variables with respect to their posterior distribution
which in this context is not doable. Our model belongs to the exponential density family which
means that:

q(y,β ,τ,η) = exp [−ψ(η)+ 〈S(β ,τ),φ(η)〉] ,

where the sufficient statistic S is a Borel function on Rdkg×{1, . . . ,m} taking its values in an open
subset S of Rm and ψ , φ two Borel functions on Θ×ρ (the dependence on y is omitted for sake
of simplicity).

We introduce the following function: L : S ×Θ×ρ → R as L(s;η) = −ψ(η)+ 〈s,φ(η)〉 .
Direct generalisation of the proof in [2] to the multicomponent model gives the existence of a
critical function η̂ : S →Θ×ρ which satisfies: ∀η ∈Θ×ρ,∀s ∈S ,L(s; η̂(s))≥ L(s;η). Then,
iteration l of this algorithm consists of the following four steps.

Simulation step: The missing data are drawn using a transition probability of a convergent
Markov chain having the posterior distribution as stationary distribution:

(βl+1,τl+1)∼Πηl ((βl,τl), ·) .

Stochastic approximation step: Since the model is exponential, the stochastic approximation
is done on the sufficient statistics using the simulated values of the missing data:

sl+1 = sl +∆l+1(S(βl+1,τl+1)− sl) ,

where (∆l)l is a decreasing sequence of positive step-sizes.

Truncation step: A truncation is done on the stochastic approximation. Let (Kq)q≥0 be an
increasing sequence of compact subsets of S such as ∪q≥0Kq =S and Kq ⊂ int(Kq+1),∀q≥ 0.
If s̄l+1 wanders out of Kl+1 then the algorithm is reinitialized in a given compact set. Otherwise,
set sl+1 = s̄l+1.

Maximization step: The parameters are updated:

ηl+1 = η̂(sl+1) .

We now explain the choice of the transition kernel of the Markov chain Πη used in the
simulation step. As we aim to simulate (βi,τi) through a transition kernel whose stationary
distribution is q(β ,τ|yi,η), we first simulate τi with a kernel whose stationary distribution is
q(τ|yi,η) and then βi through a transition kernel that has q(β |τ,yi,η) as stationary distribution.
Given any initial deformation field ξ0 ∈ Rdkg , we run, for each component t, Jl iterations of a
hybrid Gibbs sampler (for each coordinate of the vector, a Hasting-Metropolis sampling is done
given the other coordinates) Πη ,t using the conditional prior distribution β j|β− j as the proposal
for the jth coordinate, β− j referring to β without its jth coordinate. So that we get Jl elements
ξt,i = (ξ

(k)
t,i )1≤k≤Jl of an ergodic homogeneous Markov chain whose stationary distribution is

Journal de la Société Française de Statistique, Vol. 151 No. 1 1-16
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



8 Allassonière, Kuhn et Trouvé

q(·|yi, t,η). Denoting ξi = (ξt,i)1≤t≤m, we simulate τi through the discrete density with weights
given by:

q̂ξi(t|yi,η) ∝

(
1
Jl

Jl

∑
k=1

[
ft(ξ

(k)
t,i )

q(yi,ξ
(k)
t,i , t|η)

])−1

,

where ft is the density of the Gaussian distribution N (0,Γg,t). Then, we update βi by re-running
Jl times the hybrid Gibbs sampler Πη ,τi starting from a random initial point β0.

Remark 1. Note that when only considering one component in the population (τm = 1), a simpler
algorithm can be implemented as presented in [3]. Indeed, because of the mixture model, we
face the trapping state problem which numerically freezes the labels. To overcome this issue, we
introduced the previous more complex algorithm involving parallel Markov Chains to allow more
ways out from the trapping states. The one component model only requires a single step of the
Markov chain (Jl = 1) at each iteration l. The same hybrid Gibbs Sampler is used as transition
kernel.

3.3. Theoretical properties of the stochastic algorithms

It has been proved in [4], that the sequence (ηl)l generated through this algorithm converges a.s.
towards a critical point of the penalised likelihood of the observations.

The combination of three different statistical tools -EM algorithm, stochastic approximation
and MCMC methods- in a single algorithm led us to assume three usual types of conditions. The
convergence assumptions due to the EM algorithm require some regularity of the model. The
hypothesis concerning the stochastic approximation focuses on the step-size sequence and on
the control of the random perturbation and the residual term. To ensure the convergence of the
MCMC method, assumptions similar to the usual Drift conditions are sufficient. We refer to [4]
for further details.

Remark 2. The proof of convergence of the one component algorithm mentioned in Remark 1
has been addressed in [3]. The authors propose a general convergence theorem for stochastic
approximations generalising Andrieu et al.’s theorem [6] which is then applied to the BME-
Template model.

3.4. Optimization on the representation, model and algorithms

Despite the fact that many parameters (e.g. the noise variance) are self-calibrated during the
estimation process, the algorithm depends on some tuning parameters (coming from the mod-
elling and the stochastic algorithm) and the prior hyper-parameters we would like to discuss briefly.

Data representation issues. The first point to be explained is the effect of the representation
of the data, in particular the spline representation of both the template and the deformations. We
have chosen Gaussian kernels Kp(x,x′) = exp(− 1

2σ2
p
‖x− x′‖2) with (x,x′) ∈ [−1.5,1.5]d and as

well as for Kg with respective scale σg and (x,x′) ∈ [−1,1]d . The influence of their two scales can
be seen on the template estimation. Indeed, choosing a too small geometric scale leads to very
localised deformations around control points and the resulting template is more blurry. On the
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Consistent Atlas Estimation 9

opposite side, a very large scale induces very smooth deformations which would no longer be
relevant for the kind of deformations required to explain the database. Concerning the photometric
scale which corresponds to the spreading of the control points through the kernel interpolation,
it is straightforward that a large scale will drive to blurry template. In addition, the effects of
increasing scale can also be noticed on the learnt covariance matrix. Given a fatty template (larger
shapes than expected), the deformations required to fit the database will be forced to contract the
template. This phenomena is thus important in the learnt covariance matrix. When we generate
new data thanks to the estimated parameters, we can see, that the template is contracted, which is
relevant, but also enlarged since the distribution on β is symmetric (this particular point is detailed
in the next paragraph). Those large images are not typical from the training set. We refer to [3] for
some illustration of this phenomenon on hand-written digit images.

Model distribution issues. One question is the relevance of the Gaussian distribution chosen for
the deformation field. It is natural to think that the mean of the deformations around an atlas is
close to zero whereas the symmetry of the distribution (the probability of a deformation field + β

equals its opposite one −β ) is much more arguable.
Another issue about the model is the choice of the prior hyper-parameters. In particular, the

effect of the inverse Wishart prior ag on the geometric covariance matrix is important. Indeed, if
we want to satisfy the theoretical requirements to the algorithms, we have to chose ag ≥ d2kg +1.
However, the update formula is a barycenter between the expectation of the empirical covariance
matrix and the prior with weights n and ag respectively (cf: [2]). Since we are working with
small sample sizes, this condition makes the update of Γg very constrained close to the prior
Σg. This does not enable the geometry to be well estimated and the effects can be seen directly
on the template but also on the classification rate [2]. The value of ag used in those particular
experiments is fixed to 0.5. Concerning the other weights (ap, aρ ), their effects are less significant
on the results and we fixed them to 200 and 2 respectively.

Stochastic algorithm issues. The FAM algorithm is deterministic and does not depend on any
choice. Unfortunately, the stochastic algorithm requires several choices to optimize.

To optimize the choice of the transition kernel Πη , we run the algorithm with different kernels
and compare the evolution of the simulated hidden variables as well as the results on the estimated
parameters. Some kernels, as an ordinary Hastings Metropolis algorithm using as proposal the
prior or a standard random walk added to the current value, do not allow to visit well the entire
support of the unobserved variable. From this point of view the hybrid Gibbs sampler we used
has better properties and gives nice estimation results.

To prove the convergence of the stochastic algorithms, we have to suppose that as soon as the
stochastic approximation wanders outside an increasing compact set, the unobserved variable
needs to be projected inside a given compact set (this is the truncation on random boundaries).
In practice however, this step is never required, the results presented were obtained without this
control.

Finally, the initialization of the parameters can lead to undesirable effects. For example, if the
first value of the photometric parameter α is set to 0, at the first iteration of the Gibbs sampler,
the proposal will be accepted with probability one. Since the candidate coordinates are simulated
according to the conditional a priori, the resulting vector β leads to a variation which does not
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(a) (b) (c) (d) (e)

FIGURE 2. First row : Ten images of the training set representing the splenium and a part of the cerebellum. Second
row : Results from the template estimation. (a) : gray level mean image of the 47 images. Templates estimated (b) :
with the FAM (c) : with the stochastic algorithms on the simple model (d,e) : on the two component model.

correspond to a relevant digit deformation. This implies some oscillations on the updated template.
The next simulated deformation variable will try to take these oscillations into account to get
closer and closer to the oscillating template, staying in its orbit.

4. Experiments

4.1. Corpus callosum

We have tested the algorithms on some medical images. The database we consider in this paragraph
has 47 2D images, each of them representing the splenium (back of the corpus callosum) and a
part of the cerebellum. Some of the training images are shown in Figure 2 first row.

The results of the estimation are presented in Figure 2 ( (a) to (e) ) where we can see the
improvement from the gray level mean (a) to our estimations. Image (b), corresponding to the
deterministic algorithm result, shows a well contrasted splenium whereas the cerebellum remains
a little bit blurry (note that it is still much better that the simple mean). Image (c), corresponding to
the stochastic EM algorithm result, presents some real improvement again. Indeed, the splenium is
still very contrasted, the background is not blurry and overall, the cerebellum is well reconstructed
with several branches. The two anatomical shapes are relevant representants of the ones observed
in the training set.

The estimation has been done while enabling the decomposition of the database into two
components. The two estimated templates (using the MCMC-SAEM algorithm) are presented in
Figure 2 (d) and (e). The differences can be seen in particular on the shape of the splenium, where
the fornix is more or less close to the boundary of the image and the thickness and convexity
of the splenium varies. The number of branches in the two cerebella also tends to be different
from one template to the other (4 in the first component and 5 in the second one). The estimation
suffers from the small number of images we have. To be able to explain the huge variability of the
two anatomical shapes, more components would be interesting but at the same time more images
required so that the components will not end up empty.
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Consistent Atlas Estimation 11

FIGURE 3. 3D view of eight samples of the data set of dendrite spines. Each image is a volume leading to a binary
image.

4.2. Murine dendrite spines

We run the stochastic algorithm on a set of murine dendrite spines [1, 8, 9]. The data set consists
of 50 binary images of microscopic structures, tiny protuberances found on many types of
neurons termed dendrite spines. The images are from control mice and knockout mice which
have been genetically modified to mimic human neurological pathologies like Parkinson’s disease.
The acquisition process consisted of electron microscopy after injection of Lucifer yellow and
subsequent photo-oxidation. The shapes were then manually segmented on the tomographic
reconstruction of the neurons. The images are labelled by experts as belonging to six different
categories: double, filopodia, long mushroom, mushroom, stubby and thin. Some of these images
are presented in Figure 3. This figure shows a 3D view of some examples among the training set.
Each image is a binary (background = 0, object = 2) cubic volume of size 563. We can notice
here the large geometrical variability of this population of images.

The study in [1] showed a correlation between the spine type and its shape. This study is
based on a template shape and a given metric to compare the spines through the computation of
deformations. The estimation here aims at proposing one or more templates with their correlated
metric in order to exhibit the common features of the population.

The computation of the Stochastic Approximation EM algorithm coupled with the MCMC
procedure is performed in Matlab. Experiments were performed on 64bit system with 16GB of
shared memory. Each run takes about a day with the whole data set. The main difficulty concerns
the resolution of the linear system in α involved in the maximisation step at each iteration l of
the algorithm. The matrix involved in this linear system is very ill-conditioned. The effects are
edge effects on the template, i.e. some non-zero values of the voxel grey level on the sides of
the template image. Therefore, incomplete LU factorisation as a pre-conditioner is performed to
stabilise the numerical inversion. If this is insufficient (in extreme cases), one solution would be
to use full or partial pivoting strategies as in Gaussian elimination. This leads to slightly longer
algorithm but without numerical issues.

One step further in the optimisation of the processing time is to parallelise the loop on the
observations. Indeed, given the current parameters, each observation is independent from the
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12 Allassonière, Kuhn et Trouvé

FIGURE 4. 3D view of eight synthetic data. The estimated template shown in Figure 5 is randomly deformation with
respect to the estimated covariance matrix. The results are then thresholded in order to get a binary volume.

others. The simulation step can therefore be run on separate processors. This divides the time of
processing by the number of images.

4.2.1. One Component Model

In this section we present the result of the estimation using the single component model. Since the
training set shows very different shapes for the six categories, a single template model might not
be able to capture this large variability. In order to have a little bit smaller variability, we focused
on 30 images of only three spine categoris to estimate our atlas with a single component model.
We choose thin, long mushroom and stubby.

The estimated template is presented in the left column of Figure 5. The estimated image is real
valued, in particular here in the segment [0,2]. We do not specify any criteria in order to impose a
binary template. This is why the estimated volume looks blurred. For 3D visualisation, one can
threshold the estimated image and binarise the values (most of the values are very close to the
extrema and it only creates really sharp boundaries). The resulting shape is presented in the right
column of Figure 5. As expected, the shape of this estimated spine is a relevant representation of
the data set. It is smoother than the observations (as expected for an “average") but it could be one
of them. The deformations that are allowed have a regularity which is given by the scale σg of
the spline kernel Kg. Below this scale, the deformation is considered as noise. This leads to quite
smooth simulated deformations which do not capture high frequency local deformations. Since
the training set has very different images, the resulting estimated template is a tradeoff between
this large variability and the fixed smoothness of the deformations.

One crucial improvement coming from our method is that we also get an estimation of the
geometrical variability through the covariance matrix Γg. In order to visualise the accuracy of this
coupled estimation and thanks to the generative model, we simulate new synthetic data using the
estimated values of the parameters. Figure 4 shows eight images obtained by applying random
deformations (sampled from N (0,Γg)) to the estimated template. The resulting shapes look like
potential dendrite spines. Indeed, we can see some similarities between these synthetic images
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FIGURE 5. Estimated template with the one component model: Left: 3D representation of the grey level volume. Right:
3D representation of the thresholded volume.

FIGURE 6. Estimated templates of the two components with the 50 image training set: 3D representation after
thresholding.

and some images of the data set presented in Figure 3. For example, the estimated geometrical
variability has taken into account shrinking the template to get a long and thin appearance. It
has also learnt to inflate one extremity and contract the other to get what is labelled as long
mushroom and to make the shape more or less curved. Considering the huge dimensionality of the
deformation space, this estimation is pretty good. In this model, the deformation is not constrained
to be a diffeomorphism. This can affect the estimation in a way that the estimated geometrical
variability could create holes or overlaps in the template. In these experiments, this problem did
not occur. One way however to correct this would either be to tune the hyper-parameters which
controls the deformation regularity or to use diffeomorphisms.

The last parameter which is estimated is the variance of the additive Gaussian noise. This
parameter is quite interesting since it helps to see how close the model managed to fit the data.
In our experiments, the estimated standard deviation of the noise in the one component case is
0.1387. Since the data set is very heterogeneous, it is very low. Indeed, as a comparison, one can
look at the 2D experiments on hand written digits in [3]. The standard deviations of the digits
were between 0.1 and 0.3. This suggests that the estimation in this 3D case of dendrite spine is
relevant.

4.2.2. Two Component Model

The large geometrical variability of the spine shapes leads to consider several different sub-
populations in the data set. However, since the data set is of small size (at most 50 images),
the estimated parameters would not be accurate in a mixture model involving more than two
sub-groups called components. Indeed, we have to estimate one template and one covariance
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14 Allassonière, Kuhn et Trouvé

FIGURE 7. Estimated templates of the two components with the 30 image training set: 3D representation after
thresholding.

matrix for each component. This leads to parameters of large dimension. The small number of
images in each component would not give enough information to perform the computation of the
corresponding atlas accurately. For this reason, we restrict the estimation to two components.

We ran the algorithm on the previous data set of 30 images of the three categories used for the
single component estimation. We also use the whole data set of 50 images from the six dendrite
spines. The estimated templates are shown in Figure 6 for the three categories and in Figure 7
for the whole training set. We only show the thresholded shapes for illustrating the differences
between the two component templates.

The two estimated components show very different shapes. Indeed, we can see that the second
template has a curved shape with a thin extremity and a larger one on the other side. The other
template size is more isotropic. The curvature of the two shapes is also distinct. These two shapes
are quite relevant representatives of the spine population. The first component looks to contain the
stubby group which corresponds to plumper shapes. Whereas the second component gathers the
thin and long mushroom groups. The estimated weights of the components in the population are
respectively 0.32 and 0.68 which actually match the number of such shapes in the data set.

To see the impact of the different spine categories on the estimation, we ran the same algorithm
with the whole data base of the 50 images with the six different categories. This training set
has a larger geometrical variability than the previous one since we increase the number of spine
categories considered. But the estimation may be sharper since more images are available for
each component parameters to be estimated.

The two sub-groups are expected to be quite different from the previous ones and so their
respective templates. These templates are shown in Figure 7. The estimated shapes are again good
representations of the whole population. The subdivision is made between more isotropic shapes
(similar to the previous stubby type) and longer ones, curved and with irregular boundaries. This
summarises the differences which appear in the training set.

Concerning the experiment with a data set of 30 images, the estimated standard deviations are
0.1780 and 0.1659 respectively. One would expect a lower value compared to the one component.
However, the small number of images leads to less precise parameters and therefore a slightly
higher value of the standard deviation. For the last experiment with the whole data set, the values
are 0.1521 and 0.1800. These values are quite good again compared to the 2D example of hand
written digits. The slightly larger values (compared to the single component) may come from the
fact that even if the training set is bigger, the variability increases as well.

It would be interesting to run the algorithm with a larger data base of only these six categories
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and six possible components. It would also be interesting to either repeat the kind of study
presented in [1] or to use the model as a classifier. Concerning this application of the model to
classify new observations, this model may reach good performances in particular looking at the
classification results obtained in [2] on some hand written digits where the huge geometrical
variability is even higher due to some change of topology.

5. Discussion and Conclusion

We considered a generative statistical model and a stochastic algorithm to estimate mixtures
of deformable templates to construct a BME Atlas. The theoretical statistical properties of the
estimator and of the algorithm were proved. We validated them by numerical results. Indeed,
we ran this estimation on highly variable 2D images of the splenium and 3D shapes of murine
dendrite spines. The results in the one component model are relevant on both the estimation
of the template image and of the geometrical variability around its template. Using the two
component model, we capture more precisely the variability. This leads to two different templates
representing characteristic shapes of the data set. This method can be used to estimate different
population atlases such as healthy controls and Parkinson’s disease populations and then compute
likelihood ratios in order to classify new un-labelled images. Another possibility is to compute
atlases at different stages of the disease in order to characterise its evolution. These applications
may increase the knowledge and understanding of diseases. However, this modelling suffers from
the fact that the deformations are not constrained to keep the topology of the shapes. Including a
diffeomorphism constrain may help for clustering highlighting the topological differences within
the populations.
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