
HAL Id: hal-02654059
https://hal.inrae.fr/hal-02654059

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multithreaded SQL service
Christophe Cérin, Michel Koskas, Jean-Luc Gaudiot

To cite this version:
Christophe Cérin, Michel Koskas, Jean-Luc Gaudiot. A multithreaded SQL service. Parallel Process-
ing Letters, 2006, 16 (2), pp.245-259. �hal-02654059�

https://hal.inrae.fr/hal-02654059
https://hal.archives-ouvertes.fr

A multithreaded SQL service

Christophe Cérin Michel Koskas
Université de Paris XIII Université de Picardie Jules Verne
LIPN/CNRS UMR 7030, LaMFA/CNRS UMR 6140,
99, Avenue J.B. Clément, 33 rue St Leu

F-93430 Villetanause- France F-80039 Amiens cedex 1- France
cerin@lipn.univ-paris13.fr koskas@laria.u-picardie.fr

Jean-Luc Gaudiot
The Henry Samueli School of Engineering

Electrical Engineering and Computer Science, zotcode 2625
University of California, Irvine

Irvine, CA 92697-2625
gaudiot@uci.edu

Parallel Processing Letters Vol. 9, No. 1 (2006) 000–000fc World Scientific Publishing Company

Abstract

In this paper, we detail a novel SQL service based on radix tree data struc-
tures and we show how to multithread the service in order to execute it on
distributed platforms. The SQL service is currently developed in the context
of SMP platforms but should be deployed in the future on grid platforms.
The development of the SQL service is part of the Grid Explorer project∗. The
project (French part) aims at building a grid emulator to study the behavior
of grids. One need in the project corresponds to a database software to store
experimental conditions and to analyze traces of execution (for instance to
find, in “real time,” frequent episodes for the CPU load metric in order to
predict the future state of the grid). We plan to use our SQL service on an
SMP platform for this purpose.
Keywords: multi-threading at user level, data structures for databases, con-
current and parallel algorithms, database components.

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

∗This work is supported by ACI Masse de Données and the Grid Explorer project funded by FSE
for the French ministry of education and research. It is also partly supported by the National
Science Foundation under Grants No. CSA-0073527 and INT-9815742. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF

1

Parallel Processing Letters

1. Introduction

A family of novel sequential algorithms and data structures designed to offer
the same services as any database product is introduced in [Kos04]. The services
run on any affordable computer, for instance PCs with AMD or Intel processors.
The novelty resides in the fact that the service does not use ’btree-like’ data struc-
tures hence, we have novel algorithms to create or to modify tables and to answer
queries. In short, we use an ’inverted’ table representation (also called denormalized
basis), and an efficient representation of sets of integers which help us in processing
arithmetic operations, such as intersection or union operations. This representation
employs sets of integers that have to be sorted in many ways (with several compar-
ison functions) and as fast as possible. The problems and solutions for sorting are
covered in [CKFJ04].

The paper describe our approach to intorduce parallelism to the Zêta-Data
project which is part of the Grid Explorer project†. The target architectures are
SMP machines and Grid infrastructures.

To evaluate the performance of database products, the accepted practice has
been to use the benchmark provided by the Transaction Processing Council (TPC)‡.
The TPC benchmark suite consists in eight tables (Lineitem: 6 million lines, Orders:
1.5 million lines, Customer: 150,000 lines, Partsupp: 800,000 lines, Part: 200,000
lines, Supplier: 10,000 lines, Nation: 25 lines and Region: 5 lines) so that the
database is at least 1GB in size.

The first and complete sequential implementation improved performance by at
least a factor of 8 compared with commercial products and notably for computa-
tionally demanding queries including a query with many answers (found 90% of the
time), a query of a very combinatoric type, a correlated sub-query, a query with
many computations on the data matching the query, insertion or deletion of 10%
of the database. The cardinality of a cartesian product of two tables (one with 6
million lines - the “lineitem” table in the TPC - and the other with 1.5 million lines
- “orders” table of the TPC) was the last query investigated.

The organization of the paper is as follows. In Section 2 we recall briefly the
two needs motivating our work. Section 3 exposes the main data structures and
explains where parallelism could be introduce in the SQL service. We also introduce
the architecture, in terms of modules, of our SQL service. Section 4 introduces
our choices with multithreading tools (at the user level) and we give experimental
results. Section 5 concludes the paper.

2. Motivations

GRID and peer-to-peer systems store and exchange huge amounts of data: the
size is on the order of petabytes (1015 bytes) and the average aggregate throughput
is on the order of terabytes/s (1012 bytes/sec). The storage and analysis of data on
such large scale presents significant research challenges.

The goal of our Data Grid Explorer is to build an emulation environment to
study large scale configurations. Today, it is difficult to evaluate new models for
data placement and caching, network content distribution, peer to peer systems,
etc.

Recent research efforts have included writing simulation environments from
scratch, employing detailed packet-level simulation environments, local testing within
a controlled cluster setting, or deploying live code across the Internet or a Testbed.
Each approach has a number of limitations. Custom simulation environments typi-
cally simplify network and failure characteristics. Packet-level simulators add more

†See: http://www.lri.fr˜fci/GdX
‡http://www.tpc.org

A multithreaded SQL service

realism but limit system scalability to a few hundred simultaneous nodes. Cluster-
based deployment adds another level of realism by allowing the evaluation of real
code, but unfortunately the network is highly over-provisioned and uniform in its
performance characteristics. Finally, live Internet and Testbed deployments provide
the most realistic evaluation environment for wide-area distributed services. Un-
fortunately, there are significant challenges for deploying and evaluating real code
running at a significant number of Internet sites. The main interest of emulation is
the ability to reproduce experimental conditions and results.

The project Data Grid Explorer aims at implementing a large scale emulation
tool for the researcher communities of a) distributed operating systems, b) networks,
and the users of Grid or P2P systems. This large scale emulator consists of a
database of experimental conditions, a large cluster of 1000 PCs and tools to control
and analyze experiments.

The project includes 8 studies concerning the instrument itself and 16 others
that make use of the instrument. It is structured horizontally by working groups,
namely:

• Infrastructure

• Emulation

• Network

• Applications

The infrastructure task relates to the organization of the platform and the soft-
ware to allow experiments to be carried out. In particular, it will define the sys-
tem and hardware, establish access methods, and describe how resources are to be
shared. This task will place an emphasis on incorporating flexibility into measure-
ment techniques.

The emulation task aims at the creation of a tool that is half way between
simulation, which is purely software based, and experimentation that is carried out
in-situ. It will provide a facility for a wide range of studies of distributed systems,
and this at all architectural levels: large scale communication configuration, such as
the Internet, or distributed applications, such as the Web, P2P rings, etc. This topic
will define the hardware and software equipment required to emulate the behavior
of network components. It will also define how to configure the platform for the
particular context of a study, and how to place the monitoring equipment. Finally,
it will focus on the re-creation of realistic experimental conditions. The emulation
task is central and will be used by many others projects.

The network task concerns all projects related to the design, the development,
the evaluation, and the experimentation on new architectures and communication
protocols, aiming at improving communications on the grid or on the Internet.
These improvements concern performance, quality of service, availability, security,
flexibility, manageability, etc. The idea is to propose tailored solutions, adapted
to each of the various needs. Note that the network experiments will use scenarios
resulting from the application task and will rely on an infrastructure that emulates
the corresponding scenario.

The applications task will study the adaptation of application to the Grid and
P2P infrastructures. It will target applications from varied fields: scheduling, bio-
computing, databases (the Zêta-Data project), etc. The main goal is to anticipate
the performance problems that would be encountered in large scale configurations.
This task will allow those working on the other tasks to more precisely understand
the problems of adapting such applications, and should help them develop better
solutions as a result.

In summary, this platform should allow: researchers in computer science to
carry out simulation/emulation on large scale configurations (to study security,

Parallel Processing Letters

scheduling, performance evaluation, fault tolerance, etc.), researchers on the GRID
to test the interconnection of large clusters researchers in networks to carry out
experiments on a platform of significant size to study the impact of Internet topology
on communications, and researchers from other disciplines (physics, biology, etc.)
to test their applications on the GRID.

As seen previously, we need a database layer to store the experimental condi-
tions that could be played on the emulator. We propose to use our SQL service
to accomplish the task. For scheduling purposes, we also propose to explore the
performance of our tool when faced with tailored algorithms to mine results of ex-
periments. Since our sequential SQL service has greater performance than many
other similar tools, we surmise that it can also serve in mining data, for instance to
find the best CPU to place future tasks. This last topic is not explored in this paper.
We concentrate on the development of a multithreaded version running on an SMP
machine dedicated to store the experimental conditions, the activities (CPU loads,
network traffic. . .) of nodes, and the results of the experiments.

More precisely, the development plan of the Zêta-Data project is depicted in
Figure 1. The vertical branch on the left of Figure 1 corresponds to the introduc-
tion of multithreading, starting from coarse grain multithreading (parallelization
at the level of procedures) to fine grain multithreading (parallelization at the in-
struction level for the data structures construction). The right branch corresponds
to the introduction of specific solutions for disconnected operations, data accesses
via redundancy techniques. . . . It can also be seen on Figure 1 through the arrow
crossing from left to right that we plan to merge the two developments.

So, the Zêta-Data-M 1.1 software is now multithreaded with pthread and vari-
ants libraries (see Figure 1). Only the engine part (the module answering to a
query) is multithreaded. At the present time, we have multithreaded coarse grain
tasks. Future developments will include a fine multithreading of all the modules in
a sense we will introduce in sub-section .

3. Data structures and multithreading

We introduce now the core data structure of our sequential database manage-
ment system and we show potential parallelism in different treatments related to
fundamental algorithms, in particular for the intersection operation that appears in
the implementations of BETWEEN or AND clauses for instance.

3.1. Some algorithms in the Zêta-Data project
Our algorithms in the SQL service basically sort arrays and deal with heaps. We

need some terminology from database systems [UW02] to clarify some situations.
Usually, in hierarchical databases (databases “made” of several tables) the different
tables are linked by couples of primary keys – foreign keys.
Definition 1 (Superkey) A superkey is any column or set of columns that uniquely
identifies each record in a table. Not every superkey is a good candidate key.
Definition 2 (Candidate) A candidate key is a superkey containing the minimum
number of columns to uniquely identify each record in a table. Not every candidate
key is a good primary key.
Definition 3 (Primary key) A primary key is the candidate key used to uniquely
identify each record in a table.
Definition 4 (Foreign key) A foreign key is a column or set of columns in one
table that matches a candidate key in another table.

Any table must have a primary key even it is implicit: the index or address of
the physical record of a line is indeed a primary key. When tables are stored on
disks and if we have to sort the tables, is convenient to associate keys with the line
addresses and to sort the couple (keys, line address) instead of moving data which

A multithreaded SQL service

... Zeta Data sequential release (2002 - 2003) ...
|
|
v

New development plan announced
| (Sept 16 2003)
|
|
+-- Zeta-Data Grid branch created --------+
| (Jan 1 2004) \
| v
| Zeta-Data-G 1.0 release (March 2004)

New development plan announced \
Multithreading step (Sept 16 2003) v

| Zeta-Data-G 1.0.1 release (Sept 2004)
| \
v v

Zeta-Data-M 1.1 Stage 1 Zeta-Data-G 1.0.2 release (Oct 2004)
| (ended Nov 2003) \
v v

Zeta-Data-M 1.2 Stage 1 New development plan announced
| (ended Dec 2004) | (Dec 2004)
v |
+-- Zeta-Data-M 2.0 branch created ------+ |
| \ v
| v |
v Zeta-Data-M 2.1 release (Dec 2004)

Zeta-Data-M (ends Dec 2004) |
Final release v

Zeta-Data-MG 2.1.1 release (Jul 2004)
\
v

Figure 1: Development plan of the Zêta-Data project

Parallel Processing Letters

is too costly. Assume now that we have two “sorted lists” of (key, line address)
pairs corresponding to two tables.

As mentioned above, our algorithms use a denormalized representation of the
database. This means that each table of the database is expanded in only one table
of the database. Indeed, each table is “expanded” in different tables (because in
practice, tables cannot fit entirely in memory) in such a way that a foreign key
matches its primary key. Then each column is treated as if it were alone in the
table (see [Kos04] for full explanations).

3.2. An example

Let us consider the following database, composed of three tables, namely Acci-
dent, Customer, and Insurance tables. The Accident table has seven lines as one
can see on Figure 2. When considering Accident table, its primary key is “Acc-id”,”
which is the name of the last column of Accident Table. A foreign key is “Client
id.”

Figure 2: The root-table: the Accident table.

The Customer table has four lines: see Figure 3, while the Insurance table has
two lines: see Figure 4

Figure 3: An intermediate table: the Customer table.

In this case, one may consider that Insurance and Customer are sub-tables of
the Accident table because of the links made of the pair foreign key - primary key.

Now, consider the Insurance table. It has several columns, and each of them is
treated separately: for each of these columns, one builds its thesaurus and for each
word of the thesaurus we build the set of lines indexes at which it occurs.

A multithreaded SQL service

Figure 4: A leaf table: the Insurance table Compagny.

For instance, the column “Kind of Contract”’s thesaurus is House, Car, Family
and the sets of line indexes are: House occurs at indexes 1, 3, 4 and 7, Car occurs
at indexes 2 and 5 and Family occurs at index 6.

Now, let us expand the sub-tables. For instance, the column City of the table
customer has thesaurus Varsaw, Roma, Barcelona, and London. The line indexes
the word London occurs in the Accident table are hence 2 and 7.

Finally, we get a full description of the database by computing the thesaurus
of each column of each table and its sub-tables and the line indexes at which each
word occurs.

While computing these thesauruses and sets of integers, one has to sort couples
containing a word of the thesaurus and a line index at which this word occurs.
Hence, we need also a multi-criteria sorting program. This explains why we do not
use radix trees in [CKFJ04] to achieve this sorting. Indeed, the radix tree sorting
algorithms do not seem to run efficiently with pairs.

Now, let us return to the building of the indexes which is unusual comparing
to other methods (see [BM72,ASV99,KRVV93,HKP97] and even [CM96] where au-
thors consider secondary storage for suffix trees). While building or modifying the
table indexes, one has to sort the fields of each column of the expanded tables. This
means for instance that a table with 5 lines (for instance the “region” table of the
TPC) may be expanded in a table with 6 millions lines (for instance the “lineitem”
table of the TPC). Thus, one has to sort the fields of each column of the table
“region” expanded in the table “lineitem”. This means that one has to sort arrays
of 6 million items with only 5 different values. Special techniques have been devised
in [CKFJ04] for this purpose but they are out of the scope of this paper. material.

3.3. Set operations
The intersection operation of two sets of integers of size n, m is also of great

importance in our project.
If one intersects two sets of integers of size n, m by looking if each element of

the first set appears in the unsorted second set, the total cost will be O(nm).
Another way to intersect two sets of integers is to sort the two sets and read

simultaneously each of the sets. Hence the cost of sorting is O(n log n+m log m) and
reading them costs O(n + m). Therefore, the cost of this operation is O(n log n +
m log m).

If one sorts only one of the two sets and seeks for every element of the other
set in the sorted one, the cost is O(n log n) to sort, say, the first one, and the cost
of attempting to find every element of the second one is O(m log n). Hence the
total cost is O(n log n + m log n) = O((n + m) log n). If n � m this last method to
compute the intersection is cheaper than the two others. We implement intersection
in such a way in our sequential release, in memory, and by pipelining disk read/write
operations: it is obvious that in our case we need to deal with disks since the data
does not fit in memory.

Note also that the previous algorithm can be parallelized in a straightforward
way: one thread performs the sort on the smallest set, then p threads are activated

Parallel Processing Letters

(if we have p elements in the other set) to check if elements are present in the first
set.

We call such algorithm a fine grain multithreaded algorithm because it works at
the level of the data structures.

In fact, the problem is more difficult to handle because sets of integers are
implemented with suffix trees: we should implement the thread management in a
very careful way when updating the tree containing the result of the intersection.

Let us go back to the example to fix the main difficulties. Let S be a set of
integers written in basis b = 2 for instance (it is convenient to chose as basis a
power of 2). The integers may be represented in a radix tree.

A radix tree is a tree which allows to store a set of words over an alphabet A of
same length (here the alphabet is the set of digits 0 . . . b−1). Consider the Accident
Table depicted on Figure 2 and the “Kind of Cont” column. The thesaurus of the
column is {House, Car, Familly}. The lines where ’House’ appears are {1, 3, 4, 7},
the lines where ’Car’ appears are {2, 5} and the line where ’Family’ appears is {6.

A radix tree representation of set {1, 3, 4, 7} is simply:
^
/ \

0 / \ 1
/ \
/ \

o o
0 /\ 1 0 /\ 1
/ \ / \

o o o o
\ 1 \1 0/ \ 1
\ \ / \

1 3 4 7
Suppose that we have to check if 5 = 1012 key is present is the previous tree.

We descend along the tree until we encounter the prefix 10 after that, since the last
bit (1) is not present, we conclude that 5 does not belong to the intersection.

The previous scheme explains also how to answer a query with an AND clause,
for instance:
SELECT ALL
FROM Accident
WHERE

= Accident KindOfCont ’Car’
AND
>= Accident MaxAmount 12,000

GROUP {NULL}
The AND clause is not problematic for the multithreaded implementation since

we do not modify the tree. Problems occur with the OR clause or the union oper-
ation because we have to modify the tree.

According to our previous example, if we have to take the union of {1, 3, 4, 7}
with {5} we have to add a ’branch’ corresponding to the right 1 bit in 101. If concur-
rently we take the union (insert) of an integer with the 101 prefix, a “race condition”
problem occurs. We have not yet implemented such multithreaded operations. It
will be accomplished during the next months of development.

An AND SQL clause is computed thanks to an intersection of two radix trees.
The mean complexity is O(rh) where r is the result’s size and h is the height of the
tree (see [Kos]).

The worst case is obtained when for instance the first tree contains only odd
integers while the other contains only even integers. In this case, the computation

A multithreaded SQL service

time is O((n + m)h) where m and n are the number of leaves of the trees and h
their common height.

It is the dual case of the best case, when the most significant bit of any element
of the first tree is 0 while the most significant bit of any element of the second is 1.
In this last case, the computation time of the intersection is constant.

These two last cases are very seldom: their probability of occurrence converges
towards 0 very fast when the number of leaves of the trees increases. this probability
is bounded by (1

2)n where n is the total number of leaves of the two trees.

3.4. Radix trees on disks

Another source for multithreading is related to the way we store radix trees (in-
dexes of tables) on disks. Assume we have to store on a disk the set {0, 1, 3, 4, 7, 11}.
The tree corresponding to the set is depicted in Figure 5. On this figure, we draw a
dashed line when a node has no left or right children. We store on disk the sequence
of bits 1111110111101011101010 obtained according to the following principle:

• We start from the root of the tree. We write 1 if the node has a left child (or
0 if not - this case is depicted by a dashed arrow on Figure 5) and then we
write the representation of the left child (if any, else we have a 0) followed by
the representation of the right child (if any, else we have a 0)

Figure 5: Vector of bits construction and storage on disk

Currently we use a tree hierarchy with tree height set to 20 and two levels in
the hierarchy. On Figure 5 we observe that each tree corresponds to a bit vector
of about 256Kb in size if the tree is complete, i.e., it contains 256K integers. Note
also that with two levels in the hierarchy we handle integers coded on 40 bits, i.e.,
we can potentially deal with 1099511627776 different items in the tables.

In order to parallelize the construction in memory of the bit vector, we can apply
a divide and conquer strategy that follows the previous inductive definition: at each
node, we start two new threads to compute the result for the left and right children.
Once the vector has been built in memory, we flush it to the disk. We note that
since the tree is not necessary balanced, the time duration of computing the bit
representation for the left child and for the right child is not necessary equals. So
we have here a supplementary problem about how to balance the work evenly.

The construction of the tree starting from the disk representation can also be
multithreaded in a similar way. Only one sequential reading of the representation

Parallel Processing Letters

on disk serves to allocate the minimal number of memory to store the entire tree
nodes.

Operation on Radix Trees can also be multithreaded. Let us consider the AND
operation that is useful to determine the common line indexes between two tables
for instance.

First of all we start a thread to ’make’ the AND operation on the two root-trees
of the hierarchy. We denotes by A,B the root-trees. This produces a new tree
that we call C. Second we consider only leaves in C and we determine the pairs
(p, q) such that p is a leaf of A, q a leaf of B and p, q correspond to a leaf r in C
denoting the same integer. Then we start new thread on each (p, q) pairs in order
to accomplish the AND operation in parallel.

The problems we have presented in this subsection motivate and give a flavor
of the basic data structures and algorithms embedded in the Zêta-Data project.
We have also shown sources for parallelism at the level of construction of the basic
underlying data structures. It is also remarkable to note that the SQL service does
not employ btree-like (Btree+, Rtree. . .) data structures but only radix trees stored
on disks. For that reason, we consider that our project is innovative.

3.5. Multithreading coarse grain tasks of the engine

In the previous section, we have seen that it is possible to multithread our
program according to a fine grain strategy, we mean that we can multithread the
building of an internal data structure. In this section, we introduce a coarse grain
strategy for multithreading our sequential program. This work corresponds to the
present status (Apr 2004) of our project.

3.5.1. Overall architecture of the SQL service

The architecture of the SQL service is depicted in Figure 6. We have 4 modules.
The Engine module is responsible for answering to a query corresponding to the
requete.pol input file. The Engine module needs also the tables (.dat files), the
indexes and offsets §files. The Engine module writes the answer to the reponse.txt
file.

The roles of “Create Indexes” and “Create Decalages” modules are implicit. At
least, the “Insert, Delete, Modify” module allow the creation, the delete or modify
of ASCII tables, indexes and offset files.

In the remainder of the section, we introduce the work done for the paralleliza-
tion of the engine module.

3.5.2. Parallelized tasks for the engine module

Two main tasks have been multithreaded. The first one corresponds to the
computation of line indexes that answer to a WHERE clause. In fact, we activate
a thread for every packet of 220 = 1048576 of lines in the input table. For instance,
the exploration of the LINEITEM table in the TPC will generate 6 threads because
the LINEITEM table has 6001215 lines (6 ∗ 1048576 > 600121 > 5 ∗ 104857) for a
total size of 759861366MB.

The second task that we have multithreaded is the computation of the final
result; more precisely it is a matter of evaluation of the partial results corresponding
to AND, OR. . . clauses. We have also multithreaded by packets of 1M of lines
because the previous steps returns as much intermediate results as the number of
packets of size 1M. For the LINEITEM table, the number of active threads is also
7.

§It is a meta representation for dates not introduced here for the sake of simplicity

A multithreaded SQL service

Figure 6: Overall architecture of the SQL service

Then the partial results are combined and we can write the final result into the
reponse.txt file.

4. Tools and experimental results

The sequential results are presented in Figure 7 and for the TPC benchmark.
The results are obtained for an Athlon 1800 processor with 1GB of memory. The
first and complete sequential implementation provides performance improved by
a factor at least 8 (see column DBA) compared with commercial products (see
columns DBM1 to DBM3) and for queries including a query having a lot of answers
(query Q1 - found 90% of the time), a query of a very combinatoric type (Q6), a
correlated sub-query (Q17), a query with a lot of computations on the data matching
the query (Q19), and insertion or deletion of 10% of the database (see the RF1 and
RF2 lines). A cartesian product of the two tables (one of 6 million lines - the
“LINEITEM” table in the TPC - and the other one of 1.5 million lines - namely
the “ORDERS” table in the TPC) was the last query investigated. Note that in
this last case, no commercial product can respond in less than one day!

Two multithreaded releases have also been implemented. The first one is coded
with the Pthread library, the other one with PM2¶(Parallel Multithreaded Machine).

PM2 [NM95b,Nam01] is developed at LABRI (Laboratoire Bordelais de Recherche
en Informatique), a research laboratory located at Bordeaux, France, jointly sup-
ported by the INRIA and CNRS institutions. PM2 was originally designed at LIFL,
University of Lille, France.

PM2 is a distributed multithreaded programming environment designed to effi-
ciently support irregular parallel applications on distributed architectures of SMP
nodes.

The thread management subsystem of PM2 is called Marcel [NM95a], the com-
munication management subsystem is called Madeleine but we do not use it in our
implementation yet. Marcel is designed to manage several hundreds of threads on
each available physical processor. The PM2 programming interface provides func-
tionalities for the management of this high degree of parallelism and for dynamic
load balancing. Interesting features of PM2 include its priority driven scheduling
policy, its thread migration mechanism and its ability to support various load bal-
ancing policies. PM2 has been designed to provide threads as light as possible:
the switching time is well under the micro-second. Marcel is completely written in

¶See http://www.pm2.org

Parallel Processing Letters

Figure 7: Performance of the sequential implementation for the TPC-H benchmark.
The computation of the cardinality of the cartesian product is done in 7s.

portable C, but a dozen of lines of assembly code, which makes it portable across
most processors and flavors of Unix systems, including Solaris and Linux. However,
significant improvements have been made for Linux by introducing specific support
into the operating system.

Our PM2 code is currently running on a single processor PC (linux Mandrake
9.1) motherboard. We have noticed similar execution times between our sequential
implementation and our PM2 implementation with an overhead of few percent
(under 5%) in favor of the sequential execution time. We have also made the
same observations with our Pthread implementation. Theses results show that our
application can not be used to determine the best thread library to use.

We have noticed that about 80% of the execution is passed in the query evalu-
ation that is to say in the second portion of code that we have multithreaded.

We are currently porting PM2 on the dual-processor Sun Fire V20z server based
on AMD Opteron at 2GHz. With a single architecture, the Sun Fire V20z server
supports both 32-bit and 64-bit computing, allowing the user to support any existing
x86 infrastructure.

We have experimented with Pthreads and with a Sun Fire V20Z with two 36
GB Ultra320 SCSI disk drives, a total of 4GB of memory and a ReadHat 9 (with
-m 32 flag because our 64 bit code is not yet enough stable). We have noticed
execution times higher by a factor of 5 for the sequential executions of the TPC
and comparing with the Athlon results.

The query which involves the greatest number of threads during its evaluation
is Q6 because it considers the LINEITEM table which is the largest table (760MB
and about 6 million lines). Six threads are launched for this query because we deal
with chunks of one million lines. We have noticed a performance increase of 40%
in favor of the multithreaded code against the sequential code but this number is
to be used carefully.

Indeed, the time of Q6 execution is now under 0.2 seconds on Sun V20z and we
could not precisely ascertain whether the processes were forked on distinct nodes
or not of the two CPUs board. We also need a tool and much greater problem
sizes in order to appreciate the ’quality’ of linux task scheduler and its impact on
performance.

A multithreaded SQL service

5. Conclusions

In this paper we have shown how to introduce threads management in the Zêta-
Data project which is part of the Grid Explorer project. The current development
of our SQL service focus on multithreading tasks at the procedure level. Promising
experimental results have been demonstrated presented.

Future implementations will consider a fine grain approach in order to multi-
thread the construction of radix trees. The particularity of our SQL service is that
it does not use Btrees like data structures but radix trees stored on disks and a flat
expansion of tables.

The next step in the project will be to consider that ASCII tables and indexes
are distributed across a Grid Platform and we should offer the service despite some
overloaded processors, unreliable links between sites that obtain dynamically their
IP addresses and some sites may disconnect at any time.

6. Acknowledgment

We would like to thank Pascal Bonnau, Sun Microsystems France S.A, for his
effort in making possible the availability of a Sun V20z server.

[ASV99] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexa-
bility and optimal range search indexing. In ACM, editor, Proceedings of the Eigh-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems: PODS 1999: Philadelphia, Pennsylvania, May 31–June 2, 1999, pages
346–357, New York, NY 10036, USA, 1999. ACM Press.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large
ordered indices. Acta Informatica, 1:173–189, 1972.

[CKFJ04] Christophe Cérin, Michel Koskas, Hazem Fkaier, and Mohamed Jemni. Sequential
in-core sorting performance for a sql data service and for parallel sorting on heteroge-
neous clusters, revision version for special issue of future generation computer systems
(published by elsevier) on system performance analysis and evaluation, 2004.

[CM96] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage (ex-
tended abstract). In Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 383–391, Atlanta, Georgia, 28–30 January 1996.

[HKP97] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On the anal-
ysis of indexing schemes. In ACM, editor, PODS ’97. Proceedings of the Sixteenth
ACM SIG-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 12–14, 1997, Tucson, Arizona, pages 249–256, New York, NY 10036, USA,
1997. ACM Press.

[Kos] Michel Koskas. Thse d’habilitation diriger des recheches.
[Kos04] Michel Koskas. A hierarchical database management algorithm. In Annales du Lam-

sade, Volume 2, pages 277–317, 2004.
[KRVV93] Paris C. Kanellakis, Sridhar Ramaswamy, Darren E. Vengroff, and Jeffrey S. Vitter.

Indexing for data models with constraints and classes (extended abstract). In ACM,
editor, PODS ’93. Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems: May 25–28, 1993, Washington,
DC, volume 12 of Proceedings of the ACM SIGACT SIGMOD SIGART Sym-
posium on Principles of Database Systems, pages 233–243, New York, NY 10036,
USA, 1993. ACM Press.

[Nam01] Raymond Namyst. Contribution à la conception de supports exécutifs multithreads
performants. Habilitation à diriger des recherches, Université Claude Bernard de Lyon,
pour des travaux effectués à l’école normale supérieure de Lyon, December 2001.

Parallel Processing Letters

[NM95a] Raymond Namyst and Jean-François Méhaut. Marcel : Une bibliothèque de processus
légers. LIFL, Univ. Sciences et Techn. Lille, 1995.

[NM95b] Raymond Namyst and Jean-François Méhaut. PM2: Parallel multithreaded machine. a
multithreaded environment on top of PVM. In Proc. 2nd Euro PVM Users’ Group
Meeting, pages 179–184, Lyon, September 1995.

[UW02] Jeffrey D. Ullman and Jennifer D. Widom. First Course in Database Systems, A,
2/e. Prentice Hall, 2002.

