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Abstract

Recent genome-wide studies on nucleosome positioning in model organisms have shown strong

evidence that nucleosome landscapes in the proximity of protein-coding genes exhibit regular

characteristic patterns. Here, we propose a computational framework to discover novel genes in

the human malaria parasite genome P. falciparum using nucleosome positioning inferred from

MAINE-seq data. We rely on a classifier trained on the nucleosome landscape profiles of

experimentally verified genes, and then used to discover new genes (without considering the

primary DNA sequence). Cross-validation experiments show that our classifier is very accurate.

About two thirds of the locations reported by the classifier match experimentally determined

expressed sequence tags in GenBank, for which no gene has been annotated in the human malaria

parasite.

1. INTRODUCTION

Gene Discovery

The first step after sequencing and assembling a new genome involves annotating the

genomic DNA with the predicted location of protein-coding genes. For this reason, gene

discovery has been intensively studied in computational biology (see, e.g., http://www.nslij-

genetics.org/gene/ for an extensive bibliography). Existing techniques are based on

probabilistic models (also called ab initio), homology with other species, or take advantage

of expressed sequence tags (ESTs).

Methods using probabilistic models allow one to distinguish between the genic and non-

genic regions using the structural features of genes based on the primary DNA sequence.

Hidden Markov models (HMMs)27 are perhaps the most widely used: several HMM-based

gene finding tools have been developed, including GENSCAN9, GlimmerHMM22, and

Genie17. Other probabilistic models such as Integrated Markov models10, Conditional

Random Fields7, and Dynamic Bayesian networks21, have also been employed. The key

strength of probabilistic model-based approaches is that they can be efficiently trained on
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relatively small labeled training sets to extract the relevant features that characterize genes.

Such techniques, however, often suffer from a high false positive rate because they have to

model the generative probability distribution for the genic regions. In addition, these

techniques perform poorly in identifying genes which are not well represented in the training

data. Gene predictors based on inter-species homology make use of aligned DNA sequence

from other genomes: alignments can increase predictive accuracy since protein-coding genes

exhibit distinctive patterns of conservation. Rosetta6 and Cem4 are among the earliest

methods for predicting human genes using alignments. The third category of techniques

exploits collections of previously sequenced ESTs, i.e., databases of portions of transcribed

sequences25. Several gene discovery techniques2, 31, 11 and tools such as ProCrustes12,

GeneWise and GenomWise8, align ESTs (allowing splicing) to the original genome to

locate expressed genes. The major drawback of EST-based techniques is that they can only

discover genes for which representative ESTs exist in the database, thus they miss genes

which are rarely expressed.

All previously described techniques use the primary DNA sequence to annotate the location

of the genes. In this paper we investigate whether nucleosome positioning data alone can be

used in genome annotation processes. To our knowledge, our study is the first one that takes

advantage of nucleosome positioning data for gene discovery.

Nucleosomes

In eukaryotic cells, genomic DNA organizes with various proteins in a complex structure

called chromatin. One of the main function of chromatin is to package DNA into a smaller

volume but it also regulates all DNA related processes e.g., DNA replication, DNA repair,

and transcription.

The fundamental unit of chromatin is the nucleosome, composed of 146±1 base pairs of

DNA wrapped 1.65 turns around a protein complex of eight histones (Figure 1). Chromatin

exists with different degrees of condensation, from euchromatin (relaxed) to

heterochromatin (packed). This degree of packaging directly depends on nucleosome

distribution and density. As a consequence, nucleosome occupancy directly affects a variety

of cellular and metabolic processes including transcription (gene expression). The more the

chromatin is condensed, the harder it is for transcription factors and other proteins to access

the DNA and carry out their tasks.

Most of eukaryotic genomic DNA is organized into nucleosomes. For example, it is

estimated that 75–90% of the human DNA is wrapped into nucleosomes 5, 28. Nucleosomes

tend to be regularly spaced along the genome, at a distance from each other that is organism-

specific: about 18 bp in yeast18, 23, 29, about 28 bp in drosophila24 and C. elegans32, and

about 38 bp in humans5, 28. Significantly longer spacers or nucleosome-free regions (NFRs)

tend to occur at the beginning and the end of protein-coding genes.

A handful of experimental techniques have been developed for genome-wide mapping of

nucleosomes. One can isolate genomic regions that are bound to histones typically via

chromatin immunoprecipitation (chIP) or MNase-mediated purification of

mononucleosomes (MAINE) or can enrich for genomic regions that are free of nucleosomes
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typically via formaldehyde-assisted isolation of regulatory elements to extract protein-free

DNA (FAIRE). Then, tiling microarrays (chip) or high-throughput sequencing (seq) are used

to detect and identify the isolated DNA. Finally, software tools are used to process

information from the tiling array or sequencing data and generate a map of nucleosome

positioning. Previous chIP-chip experiments generated genome-wide maps of nucleosome

occupancy in S. cerevisiae19, 18, 30, 16, 35, C. elegans15, P. falciparum34 and human28 in

various cell types and under a variety of physiological perturbations. More recently high

throughput sequencing was used to produce nucleosome maps for S. cerevisiae3, 29, 23, C.

elegans32, P. falciparum26 and drosophila24 at single-base resolution.

Proposed approach

Recent nucleosome positioning data generated from the studies mentioned above strongly

suggest that nucleosome occupancy landscapes in the proximity of genes exhibit regular

patterns. Figure 2 illustrates the nucleosome occupancy landscape for typical genes in the

human malaria parasite. Two nucleosome-free regions (NFRs) are located immediately

upstream of the transcription start site (TSS) or the beginning of the gene and downstream of

the end of each gene. A definite pattern consisting of periodic and regularly spaced

nucleosome positioning is observed at the beginning of protein-coding genes in S.

cerevisiae23, 35, 14, C. elegans29, D. melanogaster24 and P. falciparum26.

Such a pattern of nucleosome distribution raises an interesting question: can we exploit the

correlation between the nucleosome profiles in the vicinity of protein-coding genes to detect

novel genes? More specifically, do nucleosome profiles contain enough information to allow

one to predict the boundaries of gene models? To study these questions, we propose to test a

binary classifier trained on the nucleosome profiles of experimentally verified genes. While

the focus of this paper is on the human malaria parasite P. falciparum our method can be

applied to any other organisms for which nucleosome positioning data with sufficient

resolution are available. First, we will show that our classifier is very accurate in cross-

validation experiments. Then, we will report that our classifier can discover putative novel

genes in P. falciparum without considering the primary DNA sequence. About two third of

the locations reported by the classifier as potential novel genes match ESTs in GenBank.

This suggests that we might have successfully identified new genes in the human malaria

parasite. A validation of these putative novel genes is currently under way.

2. DATA SOURCE, TRAINING SETS, AND LEARNING

Data source

Nucleosome positioning data at single-nucleotide resolution were previously generated by

micrococcal nuclease digestion of P. falciparum genomic DNA followed by high-

throughput sequencing (MAINE-seq)26. P. falciparum’s genome consists of 14

chromosomes for a total of about 24 Mb. We generated seven distinct time series by

counting the number of sequenced reads that were mapped at each position along each

chromosome throughout the P. falciparum intraerythrocytic infection cycle sampled at six

intervals (see Ref. 26 for more details). These time series (or occupancy profiles) vary over

time according to the nucleosomal rearrangements that occur in the malaria parasite. Since
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our purpose is gene discovery, regardless of any biologically relevant regulation process, we

created a general profile of nucleosome occupancy by averaging the seven profiles at every

position in the genome.

Training Sets

The average general profile of nucleosome occupancy was used as input data to our

classifier. The classifier was trained only on the high-confidence genes in the genome. In P.

falciparum, only about a third of the genes are confidently annotated (hereafter called

“confirmed”, whereas the non-confirmed will be called “others”). We also removed the

telomere regions from the training set because the occupancy profiles in these regions were

not reliable due to low sequencing depth. Out of the total of 5460 genes in P. falciparum,

1995 were classified as “confirmed”, and 3465 as “others”.

Averaged occupancy profiles representing nucleosome distributions are real-valued time

series, denoted in the rest of the paper by S(i), where i is the chromosome number (i = 1, 2,

…, 14 for P. falciparum). We were also given a set of g annotated genes (“confirmed” and

“others”), which is represented by a set (i) = {(s1, e1), (s2, e2), …, (sg, eg)} containing start

and end positions of each gene on chromosome i. To simplify the notation, hereafter we will

drop the superscript i from S and .

To apply traditional classification schemes on these time series, we extracted fixed length

subsequences of length w by sliding a window along S with a sliding step of h ≥ 1 base. The

resulting number of windows is n = ⎾(|S| − w + 1)/h⏋. Each time series S was thus converted

into a set of windows  = D1, D2, …, Dn, where each window Di is a vector of length w. We

used ai = (i − 1)h + 1 and bi = (i − 1)h + w to denote the start and the end of window Di.

Inside each window [ai, bi] we identified the central region of length m called margin, which

has coordinates . Figure 3 illustrates a window of length 1000 bp,

centered at the transcription start site, with a margin of 50 bp. Specific choice for w and m

will be discussed later in the paper. The parameter h was set to one base.

After extracting windows from S, we assigned a label to each window depending on the

presence or absence of a gene in it. The labeling scheme described below is designed to train

a classifier to recognize the start of the genes. While the rest of the discussion focuses on the

start of the genes, a similar labeling scheme and training was used to detect the end of the

genes (see end of Section 3.2). The labeling differentiates between windows that correspond

to “confirmed” genes as opposed to “other” type of genes. Each window Di was assigned

one of the following labels:

• li = −1, if Di did not overlap any gene in  (either “confirmed” or “other”)

• li = 1, if there was a “confirmed” gene Gj ∈  such that the start of Gj was within

the margin of window Di

• li = 2, if there was a “confirmed” gene Gj ∈  such that the start of Gj was within

the window but not inside the margin of Di
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• li = 3, if there was a “confirmed” gene Gj ∈  such that the window overlapped Gj

(completely or partially) but it did not overlap the start of any gene

• li = 4, if there was an “other” gene Gj ∈  such that the window overlapped Gj

(completely or partially).

An example of windows labeling is illustrated in Figure 4.

Learning

We used labeled windows to train a binary classifier that discriminates between windows

with label 1 (positive windows) and windows with label −1 (negative windows). Windows

with labels 2, 3 and 4 were ignored for the training. A random sample of positive and

negative windows was used for training. The choice of the sample size is discussed later.

While in principle any binary classifier could be used to discriminate between the two types

of windows, the performance of different classifiers may vary due to the nature of the data.

We tested a variety of classifiers and focused on two, namely logistic regression and Radial

Basis Function networks. A logistic regression classifier models the posterior probabilities

of the two classes using linear functions in the input1. A Radial Basis Function (RBF) is an

artificial neural network that uses radial basis functions as activation functions13.

3. EXPERIMENTAL RESULTS

In order to discover novel genes in P. falciparum, we extracted a set  of test windows

from the time series S and assigned labels as discussed earlier. Each test window Ti was then

tested using the classifier. The predicted label lî and the associated confidence score λi was

used to assign a secondary label βi as follows:

where δ is a user defined threshold. If βi = 1, test window Ti was not known to contain a

gene but the classifier predicted that it did, with confidence δ or higher. Windows for which

βi = 1 are called candidate windows. The entire test set of windows  was thus processed

and the set of candidate windows was identified. Contiguous candidate windows were

merged, and any set that contained at least m windows (the same value used for the margin

width) became a candidate segment. Observe that all of these segments belong to the non-

genic regions of the chromosome and do not overlap with any genic region. However,

according to the classifier these segments are highly likely to contain the start of a “missing”

gene. The parameter δ controls the overall “quality” of the segments in terms of the

confidence of the classifier.

In order to evaluate the performance of our method, we employed first traditional metrics,

such as accuracy, precision and recall in a cross-validation framework. This initial

evaluation was essential to choose the classification algorithm and the critical parameters,
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such as window size, margin width, sample size, etc. Then, we validited the candidate

segments by searching them in EST databases stored in GenBank.

3.1. Cross-validation experiments

As said in Section 2, two classifiers were trained, one for each strand of a chromosome. We

observed that the nucleosome occupancy profiles for genes located in the forward strand is

characteristically different from the profiles for the reverse strand. However, the

performances of the classifier for forward and negative strands are identical. A classifier

trained using the forward genes is more likely to discover genes that are located in the

forward strand and a classifier trained using the reverse genes is more likely to discover

genes located in the reverse strand. However, a classifier trained on forward genes can

discover some genes that are located in the reverse strand and vice versa. In general, both

classifiers should be used to discover the complete set of genes.

We constructed two datasets of windows that were used interchangeably as training set or

test set. One was obtained by extracting and labeling windows from the seven odd

chromosomes (i.e., chromosome number 1, 3, 5, … ), while the other was obtained from the

seven even chromosomes of P. falciparum. For each choice of the parameters, we ran ten

experiments. In five experiments we trained on random samples from the windows on the

odd chromosomes, and tested on random samples of the even chromosomes. In the other

five experiments, we switched training set and test set. For each choice of the parameters,

we computed mean and standard deviation for the metrics discussed later in this section.

Table 1 shows how the logistic regression classifier performed in terms of predicting labels

for all windows extracted from all fourteen chromosomes of the malaria parasite (window

size w = 1000, margin width m = 50 and sample size 6000). We will discuss the impact of

the parameters at the end of this section. Each subtable in Table 1 shows the results for each

chromosome, where each row corresponds to the labels predicted by the classifier and each

column corresponds to the actual labels. Cells in boldface correspond to predicted value of 1

and actual value of −1, which represent the percentage candidate windows, i.e., potential

new gene locations. Observe that this value is fairly constant across all chromosomes and

conforms to our intuition that only a small percentage of the chromosome should contain

new genes. The classifier was able to identify the negative windows (true label −1) correctly

over 90% of times for almost all of the chromosomes. The classifier was also accurate in

identifying the positive windows (true label 1) correctly (> 80% for majority of the

chromosomes). The performance is worse in identifying windows with true label 2 as

positive, but is still higher than 65% for most of the chromosomes. This is because these

windows contain the start of a “confirmed” gene, but not within the margin, and the

classifier is trained to identify only those windows that contain the start of the gene within

the margin. The classifier was not able to identify windows that belonged to a genic region

but did not contain the start of a gene (true label 3) or windows that belonged to the genic

region of “other” genes (true label 4). This indicates that windows that contained the start of

a “confirmed” gene were significantly different from the windows that corresponded to the

non-start portions of “confirmed” genes, as well “other” genes.
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Once the number of true positive (tp), true negative (tn), false positive (fp) and false

negative (fn) is computed, the following metrics can be defined:

•
Recall  indicates how many of the actually positive windows were

predicted as positive by the classifier. Alternatively, one can also measure the recall

for the negative class .

•
Precision  indicates how many of the positive labeled windows are

actually positive. Alternatively, one can also measure the precision for the negative

class .

•
Accuracy  indicates the total number of windows that were

correctly labeled by the classifier.

Often, there is an inverse relationship between these metrics, where it is possible to increase

one at the cost of reducing the other. In the context of the problem of finding missing genes,

we wanted to have the highest possible recall for both positive and negative class. For

instance, when the classifier is trained on a subset of the chromosomes and then tested on

remaining chromosomes, we expect all windows overlapping known genes to be detected as

positive. Similarly, we wanted the recall on the negative class to be as high as possible. We

wanted the smallest proportion of test windows which are negative to contain the start of an

undiscovered gene. Due to these considerations we focused on the recall on both positive

and the negative classes as the primary metric to evaluate the performance of the classifiers.

In the rest of this subsection, we report recall values on positive and negative classes for a

variety of parameter choices (type of classifier, window size, margin width, and training set

sample size).

Logistic Regression vs. RBF Networks—Figure 5 shows the performance of Logistic

Regression and Radial Basis Function Network for different window sizes (when the margin

was m = 50 and the sample size was 6000 windows). The relative performance of the two

classifiers is similar for other settings of the parameters. We also experimented with other

classifiers such as Support Vector Machines and k Nearest Neighbor classifier but their

recall was significantly worse. Logistic regression has an additional parameter for the

underlying ridge regression step: we experimentally determined that the recall peaked when

the value of this parameter was about 10−8.

The results show that logistic regression is superior to RBF in terms of recall for the positive

as well as the negative windows. The difference in performance is more significant for

negative windows, i.e., RBF identifies a higher proportion of candidate windows. This

becomes an issue when testing on all windows extracted from a genome, because a large

proportion of these windows will be declared candidate windows, and as a consequence a

large number of windows will have to be verified for the presence of new genes, possibly
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resulting in waste of resources. Since logistic regression maintains a low recall on negative

class, only a few but high quality candidate windows will be generated which can be

validated more efficiently. Hence we conclude that logistic regression is a better classifier

than RBF in the context of the proposed framework for P. falciparum.

Training Sample Size—As mentioned earlier, we chose a random sample from the set of

labeled windows as the training data. Figure 6 summarizes the relationship between the size

of the sample and the performance of the logistic regression classifier. The results indicate

that sample size does not have significant impact on the performance of the classifier. While

the variance is higher for smaller sample sizes, the computational cost of training the

classifier increases with the sample size. We determined that a good trade-off was a sample

size of 6000 (3000 samples of each positive and negative class).

Observe that we used a balanced training set, but the test set is very imbalanced because the

vast majority of the windows in a chromosome are not genes. The imbalance in the test set

should be reflected in the training set if the objective was to maximize the convex

combination of precision and recall with the same weight. However, here we are only

interested in maximizing the recall equally well for both positive and negative classes, and

we completely disregard precision. In fact, when we used an imbalanced training set, we

observed an increase in the recall for class with the majority of samples, but a decrease in

the minority class. In order to have high recall for both positive and negative classes we had

to employ a balanced training set.

Window Size—Observe that while short windows might not be able to fully capture the

context around the start of a gene in the nucleosome position data, long windows might

result in increased computational complexity in dealing with high dimensional spaces.

Figure 7 summarize the performance of logistic regression for different window sizes w,

when m = 50 and the sample size was 6000. The results indicate that the recall on the

positive class improves as the window size increases, but the recall on the negative class is

not as sensitive to the window size. For a window of 2000bp, the recall on both classes is

good but the space and time requirements for training are also high. For w = 1000 the

performance is reasonably good, and the space/time requirements are also manageable.

Hence, for further experiments we fixed the window size to 1000 base pairs.

Margin Width—Figure 8 summarizes the performance of logistic regression for different

choices of margin widths m, when the window size was 1000 base pairs and the sample size

was 6000. The results in Figure 8 indicate that the performance of the logistic regression

classifier does not change significantly when the margin width is changed.

3.2. Evaluating Candidate Segments

The traditional evaluation metrics are useful for quantitatively assessing the performance of

different classifiers as well as studying the effect of different parameter settings on the

overall performance. But such an evaluation does not fully answer the question: how

effective is the proposed framework in discovering “missing” genes in the genome of P.

falciparum? Recall that the final output is a set of candidate segments which are likely to

Pokhriyal et al. Page 8

Comput Syst Bioinformatics Conf. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contain the start of a novel gene. The true performance of the proposed framework could be

determined only if we knew how many of the candidate segments actually contain a gene.

To validate our findings, we used BLAST to compare these candidate segments with known

expressed sequence tags (ESTs) stored in GenBank. If the candidate segment matches

known ESTs, this gives an independent evidence that the segment might indeed contain a

new gene. At the time of writing, a subset of these segments are being validated in our wet

lab.

Results obtained from querying GenBank EST collection with the candidate segments are

summarized in Table 2. We considered only those candidate segments for which the

corresponding candidate windows were predicted as positive with at least δ=95%

confidence. The table shows that out of 223 segments identified by our method, 65% of the

segments matched one or more ESTs. Interestingly, the majority of such segments matched

ESTs for P. falciparum, but we also found several segments that matched ESTs for other

malaria parasite species, like P. berghei, P. yoelii, P. berghei, and P. vivax. We also found

several segments that matched ESTs from different organisms from unrelated genus such as

Neospora caninum (coccidian parasite), Vitis vinifera (common grape vine), Arachis

hypogaea (peanut), Aplysia californica (California sea slug), Citrullus lanatus (watermelon).

The fact that there are so many plants matching these segments is remarkable since like most

Apicomplexa, P. falciparum harbor a plastid similar to plant chloroplasts.

Identification of End of Genes—All the discussion so far has concentrated on the start

of genes in P. falciparum. The same methodology can be applied to identify other

characteristics associated with genes, such as end of genes and perhaps exon/intron

boundary, as long as the location of the target characteristic exhibits a distinct nucleosome

landscape. The proposed methodology can be easily extended to identify the end of genes.

The experiments for identifying the end of genes were conducted on averaged MAINE-seq

data sets, using logistic regression classifier with window size 1000, margin width 50, and

sample size 6000.

The results obtained from querying the candidate segments using BLAST are summarized in

Table 3. The table shows that out of 161 segments identified by our method, 70% of the

segments matched with one or more existing ESTs. We observed that for many

chromosomes if a segment identified as a potential start of a gene matched a known EST,

there was almost always a corresponding segment obtained for the end of genes.

4. CONCLUSIONS

We have proposed a machine learning framework that exploits the relationship between

nucleosome occupancy profiles and gene locations to discover missing genes, or to confirm

gene annotations of the existing ones. We have shown the applicability of the framework in

the context of the malaria parasite, and our method can be extended to any other eukaryotic

organism, including humans, for which high-resolution nucleosome positioning data is

available.
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We have shown that nucleosome positioning data alone can indeed be used to predict the

location of genes. Experimental results show that our technique is able to identify known

genes in P. falciparum more than 80% of the times. Furthermore, two-thirds of the high

quality segments reported by the classifier matched one or more existing ESTs. At the time

of writing, some of these segments are being validated in our wet lab.

The key challenge for our approach is how to set the various parameters. Through

experimental analysis we empirically estimated the best choices for parameters such as the

window size, margin width, training sample size and the classification algorithm. It is very

likely that these choices are specific to P. falciparum data.

We also attempted to extract informative features from the nucleosome occupancy profiles

instead of training on the original data. We used Principal Component Analysis and Haar

wavelet transform for feature reduction but the performance of the classifier did not

improve. We still believe that other feature extraction techniques might be beneficial. In

particular, more experimental evaluation needs to be done to correctly ascertain the effect of

Haar decomposition. Finally, since there is evidence that nucleosome occupancy profiles

exhibit periodicity in the proximity of the start of genes33, we also extracted auto-

correlation coefficients and used them as features to our classifiers. Again, preliminary

results were not promising.

The methodology proposed in this paper is relatively straightforward yet it has proved to be

successful in identifying potential new genes. Although only wet lab experiments will be

able fully validate our predictions, the fact that our segments match to sequenced ESTs

provides strong evidence. The next step would entail incorporating our classifier with a

sequence-based gene discovery tool that can accommodate additional evidence sources (e.g.,

Evigan20).
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Fig. 1.
Eight histones and 146 base pairs of DNA form the nucleosome. The length of the spacer is

organism specific.
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Fig. 2.
Nucleosome landscape of a typical P. falciparum gene. The ovals above the chromosome

represent nucleosomes. The time series represents the likelihood of observing a nucleosome

at that position.
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Fig. 3.
Illustrating a window, margin and the start of a gene in a nucleosomal landscape.
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Fig. 4.
Labels associated with the windows extracted from a chromosome.
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Fig. 5.
Recall for the positive and negative classes using logistic regression and RBF network

classifier for varying window sizes (in thousand base pairs) and margin width m = 50.
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Fig. 6.
Recall for the positive and negative classes using logistic regression with training sample

sizes for window size w = 1000 and margin width m = 50.
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Fig. 7.
Recall for the positive and negative classes using logistic regression with varying window

sizes and margin m = 50.
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Fig. 8.
Recall for the positive and negative classes using logistic regression with varying margin

widths and window size w = 1000.
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