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Microbiological Meteorology: investigating
atmospheric processes at the cross-roads of
biological and physical sciences
The abundance of micro-organisms in the
atmosphere has been known since the
insightful experiments of Spallanzani in the
18th century and Pasteur in the 19th century.
These first observations of atmospheric
microflora were crucial for refuting the
theory of spontaneous generation and in es-
tablishing microbiology as a veritable scien-
tific discipline. Today, studies of the microbi-
ology of the atmosphere are on the verge of
contributing to another paradigm shift: that
airborne micro-organisms contribute to
processes influencing atmospheric chemis-
try, planetary albedo, and precipitation in
similar and even more varied ways as aero-
sol particles.

These potential roles of micro-organisms
have been inferred from properties of their
cells that can take part in radiative forcing, in
the formation of cloud droplets and ice crys-
tals, or in metabolism of chemical compo-
nents of aerosols. During the past few years,
we have been working to bring together
different fields of scientific expertise—micro-

biology, atmospheric physics and chemistry,
environmental modelling, and agronomy—
to create a field that we have christened
“Microbiological Meteorology” [1].

The research contributing to this para-
digm shift has four main branches, analo-
gous to research on atmospheric aerosols:

1) identification of potential atmospheric
influence of micro-organisms based on
their behaviour in laboratory studies;

2) quantification of the abundance of these
micro-organisms in air, clouds, and pre-
cipitation;

3) estimation of the influence of airborne
micro-organisms on atmospheric proc-
esses based on laboratory and field ob-
servations coupled to modelling and

4) characterisation of the sources of micro-
bial aerosols and elucidation of proc-
esses involved in their formation; and
transport in the atmosphere.

The goals of these studies are particu-
larly pertinent to contemporary changes in

the environment of our planet. One of these
goals is to understand the effects of anthro-
pogenic sources of airborne micro-organ-
isms on atmospheric processes and to deter-
mine how they could buffer or mitigate cli-
mate change.

Classical microbiology is at the heart of
the idea that micro-organisms could have an
influence on the atmosphere. A century of
studies on microbial behaviour has revealed
properties that can be crucial in atmospheric
processes. The most striking example is that
certain bacteria and fungi can catalyse freez-
ing of super-cooled water at temperatures
near 0°C.

For bacteria, this property is conferred by
an unusual, highly folded protein produced
on the cell surface. This property was discov-
ered in the search for the cause of plant frost
damage and of ice crystal formation leading
to snow [2].

Lively speculation still takes place about
the ability of these biological ice nucleators
to influence precipitation [3, 4].
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The continuing discussion on this sub-
ject can be followed at:
http://bio-ice.forumotion.com/forum.htm.

Bacterial cells also seem capable of act-
ing as cloud condensation nuclei (particles
around which cloud droplets form by con-
densation of atmospheric water vapour) [5,
6], most probably because of the hygro-
scopic (moisture-absorbing) polysaccharides
on their cell surface. Some bacteria also pro-
duce strong surfactants (wetting agents that
lower the surface tension of a liquid allowing
easier spreading) (bio-surfactants). This can
be an advantage on waxy hydrophobic (wa-
ter-repellent) plant surfaces where they help
these bacteria to degrade plant tissue (and
hence to access food resources) [7].

Furthermore, by enhancing the conden-
sation of atmospheric water across a large
number of airborne particles that might oth-
erwise be hydrophobic, bio-surfactants of
airborne bacteria could favour the persist-
ence of fog. In other words, surfactants
would enhance the formation of numerous
very small water drops that could remain
suspended in air (fog) rather than formation
of large droplets apt to precipitate [8].

Studies of microbial metabolism for di-
verse purposes such as industrial processes,
bioremediation (detoxifying pollutants by
micro-organisms), and deciphering plant-
microbe interactions have revealed the
capacity of micro-organisms to metabolise
(break down organic material to obtain en-
ergy and form cell material), for example,
dicarboxylic acids, methane, isoprene, and
longer chained alkanes and phenols that
constitute the bulk of dissolved organic
carbon or major pollutants in atmospheric
aerosols. The significance of these capacities
for atmospheric chemistry is being explored
actively [9].

In addition to the direct roles that micro-
organisms could play in atmospheric proc-
esses, there are exciting questions to con-
sider about feedbacks. Micro-organisms are
metabolically active with dynamic biological
properties, many of which are likely main-
tained also in the atmosphere.

Hence, the microbial traits that lead to
their potential effects on the atmosphere are
due to capacities that vary with metabolism,
gene expression, the distribution of charges
across the cell wall, and with other cellular
characteristics. These capacities wax and
wane as a function of the local environment
and as cells mature and senesce.

The study of aerobiology, with regard to

micro-organisms, has overwhelmingly been
the realm of plant pathologists attempting
to follow the flight of drying, UV-stressed
propagules (bacterial cells or parts of fungi
or yeasts) of plant pathogens such as fungal
spores, single cells of bacteria, or yeasts on
their way to distant cropped fields. The deci-
sive work of Stackman [10] and of Gregory
[11] on aerial dissemination of spores that
spread rusts and other plant diseases set the
stage for decades of similar pursuit. This
research has nourished the literature with
data on the occurrence and abundance of
fungi, bacteria, yeasts, and viruses in the air.

In the early 1900’s, microbiologists ac-
companied Charles Lindberg on flights to
assess the abundance of micro-organisms in
the upper atmosphere [11].

In the late 1970’s scientists in the Soviet
Union used meteorological rockets to assess
the presence of micro-organisms at farther
reaches of Earth’s atmosphere to define the
limits of the biosphere [12].

But only recently has there been an at-
tempt to characterise the microflora of
clouds per se, where they are set to play im-
portant roles. Micro-organisms that can be
cultured are present at about 103–105

propagules ml-1 of cloud water [13–16] and
include dozens of species of bacteria and
fungi and several yeasts among which are
strains capable of metabolising atmospheric
organic compounds under laboratory condi-
tions [14].

Overall, data on names and numbers of
micro-organisms is accumulating. That oce-
anic sources – as well as plants – also con-
tribute to the microflora of clouds is also
becoming clear [17].

However, there is a great need for assess-
ing the in situ state of these micro-organisms
to better evaluate whether they are indeed
in a physiological condition necessary for in-
fluencing atmospheric processes.  A signifi-
cant step in this direction is the recently de-
veloped technique to quantify biological ice
nucleators directly from environmental sam-
ples without culturing the microbial compo-
nents of the sample [18, 19].

This has revealed that up to 69–100% of
the ice nuclei in fresh snowfall can be of
biological origin. In over 45% of these sam-
ples, biological ice nuclei were sensitive to
lysozyme (an enzyme that specifically de-
grades components of bacterial cell walls)
suggesting that they were associated with
bacteria [18].

Evidence that micro-organisms indeed

have effects on atmospheric processes is
currently circumstantial or indirect. The com-
ing decades will see great progress in ob-
taining more solid evidence. Biological ice
nucleators have been found in clouds
[14,20], and, compared to other substrates,
freshly fallen snow has been observed to
contain an enriched concentration of ice-nu-
cleation-active strains of certain bacteria [21].
Under simulated cloud conditions, these
bacteria can induce ice crystal formation
[22,23] and, under certain conditions in
simulated numerical models, they can have
an effect on precipitation [3,24].

Likewise, the roles of micro-organisms in
atmospheric chemistry have been studied
mostly in laboratory reactors [13,14] to esti-
mate potential kinetics for subsequent use
in atmospheric models.  Attempts have been
made to evaluate the overall metabolic ac-
tivity of the whole complex of micro-organ-
isms in cloud water directly in fresh samples
via incorporation of radioactive isotopes un-
der super-cooled conditions [16] or by as-
sessing growth without nutrient supplemen-
tation [25].

Similarly, by determining the concentra-
tion of adenosine triphosphate (ATP) in
cloud samples, we have revealed that the
vast majority of micro-organisms in these
samples has maintained metabolic activity
[26].

The major gap in knowledge about the
interaction of micro-organisms and atmos-
pheric processes concerns microbial emis-
sions. The few published measurements of
microbial flux into the atmosphere were re-
ported 15 to 20 years ago [27–30]. Plants are
considered to be one of the major sources
of micro-organisms in the atmosphere. Many
of the micro-organisms cited as potential
actors in atmospheric processes are typical
inhabitants of plant surfaces and some of
these are bona fide plant pathogens. As a
source, leaf surfaces represent over 109 km2

of microbial habitat and likely harbour 1024–
1026 total bacteria [31] and so far unesti-
mated numbers of fungi and yeasts.

At present, we do not know what frac-
tion of these micro-organisms take off into
the atmosphere and in what state – single
cells and spores, or clumps of micro-organ-
isms and debris. Factors determining the
source strength of plant canopies are likely
to be complicated by the plant species
involved – different species and cultivars
harbour widely different quantities of micro-
organisms that potentially can influence the
atmosphere [32, 33] – and by the local land
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scape through its influence on micro-climate.
Renewed efforts to install field platforms

for assessment of microbial flux into the at-
mosphere [34] are necessary to achieve the
long term goals of Microbiological Meteorol-
ogy. If in fact microbes are involved in at-
mospheric processes, there are exciting
questions to address about the leverage of
agronomy and land use practices – via, for
example, grazing, crop varietal selection, rota-
tions, and intercropping – on these proc-
esses.  ■
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