H. Akaike, Information theory as an extension of the maximum likelihood principle, Second International Symposium on Information Theory, pp.267-281, 1973.

A. , E. Gassiat, and C. Mercadier, Asymptotic distribution and power of the likelihood ratio test for mixtures : bounded and unbounded case, 2003.

G. Biernacki-c, G. Celeux, and . Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions, vol.22, issue.7, pp.719-725, 2000.

P. Birgé-l.-et and . Massart, Gaussian model selection, J. Eur. Math. Soc, vol.3, pp.203-268, 2001.

H. Bozdogan, Model selection and Akaike's information criterion (AIC) : the general theory and its analytical extensions, Psychometrika, vol.52, pp.345-370, 1987.

D. P. Burnham-k and . Anderson, Model selection and multi-model inference, 2002.

. Castellan-g, Modified Akaike's criterion for histogram density estimation, 1999.

G. Celeux-g.-et and . Soromenho, An entropy criterion for assessing the number of clusters in a mixture model, Classification Journal, vol.13, pp.195-212, 1996.

E. Chernoff-h.-et and . Lander, Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial, Journal of Statistical Planning and Inference, vol.43, issue.1, pp.19-40, 1995.

P. C. Csiszar-i.-et and . Shields, The consistency of the bic markov order estimator, Ann. Statist, vol.28, issue.6, pp.1601-1619, 2000.

E. Dacunha-castelle-d.-et and . Gassiat, The estimation of the order of a mixture model, Bernoulli Journal of Mathematical Statistics and Probability, vol.3, issue.3, pp.279-299, 1997.

D. M. Dudley-r and . Haughton, Information criteria for multiple data sets and restricted parameters, Statistica Sinica, pp.265-284, 1997.

D. M. Dudley-r and . Haughton, Asymptotic normality with small relative errors of posterior probabilities of half-spaces, Ann. Statist, vol.30, issue.5, pp.1311-1344, 2002.

A. E. Fraley-c.-et and . Raftery, How many clusters ? which clustering method ? answer via model-based cluster analysis, The Computer Journal, vol.41, pp.578-588, 1998.

. J. Hannan-e, The estimation of the order of an arma process, Ann. Statist, vol.8, pp.1071-1081, 1980.

J. Hartigan-;-neyman and . Kiefer, A failure of likelihood ratio asymptotics for normal mixtures, Proceedings of the Berkeley Conference in Honor of Jerzy, 1985.

. M. Haughton-d, On the choice of a model to fit data from an exponentiel family, Ann. Statist, vol.16, issue.1, pp.342-355, 1988.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging : A tutorial, Statist. Science, vol.14, issue.4, pp.382-417, 1999.

C. M. Hurvich-c and . Tsai, Regression and time series model selection in small samples, Biometrika, vol.76, pp.297-307, 1989.

L. E. Kass-r and . Wasserman, The selection of prior distributions by formal rules, J. Amer. Statist. Assoc, vol.90, pp.1343-1370, 1996.

A. E. Kass-r and . Raftery, Bayes factors, J. Amer. Statist. Assoc, vol.90, pp.773-795, 1995.

L. E. Kass-r and . Wasserman, A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion, J. Amer. Statist. Assoc, vol.90, issue.2, pp.928-934, 1995.

C. Keribin, Consistent estimate of the order of mixture models, Comptes Rendus de l'Académie des Sciences, vol.326, pp.243-248, 1998.

L. E. , Detecting multiple change-points in the mean of gaussian process by model selection, Signal processing, vol.85, pp.717-736, 2005.

A. E. Madigan-d.-et and . Raftery, Model selection and accounting for model uncertainty in graphical models using Occam's window, J. Amer. Statist. Assoc, vol.89, pp.1535-1546, 1994.

C. L. Mallows, Some comments on Cp. Technometrics, vol.15, pp.661-675, 1974.

D. Mclachlan-g.-et and . Peel, Finite Mixture Models. Wiley Series in Probability and Statistics, 2000.

D. S. Poskitt, Precision, complexity and bayesian model determination, J. R. Statist. Soc. B, vol.49, issue.2, pp.199-208, 1987.

. E. Raftery-a, Bayesian model selection in social research (with discussion), Sociological Methodology, pp.111-196, 1995.

R. E. , Prediction with vague prior knowledge, Comm. Statist, vol.25, pp.601-608, 1996.

. D. Ripley-b, Pattern Recognition and Neural Networks, 1995.

. Rissanen-j, Modelling by the shortest data description, Automatica, vol.14, pp.465-471, 1978.

J. Rissanen, Stochastic complexity, J. R. Statist. Soc. B, vol.49, pp.223-239, 1987.

. Ronchetti, Robust model selection in regression, Statis. Probab. Lett, vol.3, pp.21-23, 1985.

. Schwarz-g, Estimating the dimension of a model, Ann. Statist, vol.6, pp.461-464, 1978.

C. L. Shi-p.-et and . Tsai, A note on the unification of the Akaike information criterion, J. R. Statist. Soc. B, vol.60, pp.551-558, 1998.

. Sugiura, Further analysis of the data by akaike's information criterion and the finite corrections, Comm. Statist, vol.7, pp.13-26, 1978.

J. B. Tierney-l.-et and . Kadane, Accurate approximations for posterior moments and marginal densities, J. Amer. Statist. Assoc, vol.81, pp.33-59, 1986.

. W. Van-der-vaart-a, Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics, 1998.