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Abstract

When dealing with high dimensional and low sample size data, feature selection is
often needed to help reduce the dimension of the variable space while optimizing the clas-
sification task. Few tools exist for selecting variables in such data sets, especially when
classes are numerous (> 2). We have developed ofw, an R package that implements, in
the context of classification, the meta algorithm “optimal feature weighting”. We focus
on microarray data, although the method can be applied to any p � n problems with
continuous variables. The aim is to select relevant variables and to numerically evaluate
the resulting variable selection. Two versions are proposed with the application of super-
vised multiclass classifiers such as classification and regression trees and support vector
machines. Furthermore, a weighted approach can be chosen to deal with unbalanced
multiclasses, a common characteristic in microarray data sets.

Keywords: feature selection, stochastic algorithm, classification, unbalanced multiclass, mi-
croarray.

1. Introduction

Performing a feature selection algorithm has several important applications in high dimen-
sional data sets. For example with microarray data, it is sensible to use a dimensional reduc-
tion technique, either to identify genes that contribute the most for the biological outcome
(e.g., cancerous vs. normal cells) and to determine in which way they interact to determine
the outcome, or to predict the outcome when a new observation (or sample) is presented.
Such a method would provide practical aspects with machine learning methods: it avoids the
“curse of dimensionality” that leads to overfitting when the number of variables is too large.

http://www.jstatsoft.org/
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There are two ways of selecting features. Either explicitly (filter methods) or implicitly
(wrapper methods). The filter methods measure the relevance of a feature at a time by
performing statistical tests (e.g., t test, F test) and ordering the p values. This type of
approach is robust against overfitting and is fast to compute. However, it usually disregards
the interactions between the features as it tests one variable at a time. Chen et al. (2003)
compared four filter methods and also reached this conclusion.
The wrapper methods measure the usefulness of a feature subset by searching the space of
all possible feature subsets. The search can be performed either with heuristic or stochastic
search. The main disadvantages of these methods are their tendency to overfit and when deal-
ing with numerous variables, an exhaustive search is computationally impossible. However,
the resulting selection takes into account the interactions between variables and might high-
light useful information on the experiment. Despite this latter property, wrapper methods are
still not widely applied in microarray data. Comparisons of random forests (Breiman 2001),
recursive feature elimination (Guyon et al. 2002), l0 norm support vector machine (Weston
et al. 2003) and biological interpretation of the resulting gene selections is given in Lê Cao
et al. (2007b).
In the package ofw, we implement the wrapper method “optimal feature weighting” (OFW)
adapted from Gadat and Younes (2007) that numerically quantifies the classification efficiency
of each variable with a probability weight, by using stochastic approximations. This meta
algorithm can be applied to any classifier. Therefore, the classifiers SVM (support vector
machines, Vapnik 1999) and CART (classification and regression trees, Breiman et al. 1984)
have been implemented so as to select an optimal subset of dicriminative variables. Few
wrapper methods have been proposed yet to deal with multiclass data sets (Li et al. 2004;
Chen et al. 2003; Yeung and Burmgarner 2003), especially when the classes are unbalanced
(Chen et al. 2004). Our function ofw() proposes a weighting approach to deal with this
common characteristic in microarrays. The package ofw is freely available as an R package
(R Development Core Team 2008) under the GPL license. The package can be downloaded
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=ofw.
Furthermore, like any wrapper methods, ofw requires heavy computations, especially when
the number of variables is large. In this package, some of the computation time has been
reduced by implementing some C functions and by proposing parallel programming during
the learning step.
Finally, we propose to perform the e.632+ bootstrap method (Efron and Tibshirani 1997)
to estimate the classification error rate on bootstrap samples and to evaluate the different
variants of OFW and the resulting gene selections.
The general principle of the OFW algorithm is first presented. We then detail how to use ofw
by applying the main functions on one microarray data set that is available in the package.

2. Optimal feature weighting model

2.1. Principle

OFW (Gadat and Younes 2007) is a meta algorithm that can treat several classification
problems with a feature selection task. Any classifier can be applied, and Lê Cao et al. (2007a)
implemented OFW with CART and SVM for multiclass classification (see also Lê Cao et al.

http://CRAN.R-project.org/package=ofw
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2007b for binary case).

We assume that the n examples (or cases) are described by p attributes (or variables) and
labelled with their target class (e.g., {0, 1} in binary problems).

Given a probability weight vector P on all p variables, the key idea of OFW is to learn P
such that it fits the classification efficiency of each variable in the given problem. In short,
important weights will be given to variables with a high discriminative power, and low or zero
weights to non relevant variables in the classification task.

For that purpose, the algorithm adopts a wrapper technique, by drawing a small variable
subset ω at a time, by measuring the relevance of this subset with the computation of the
classification error rate of a given classifier, and then by updating the probability weights P
according to the discriminative power of the variable subset ω. As an exhaustive search of the
whole variable space is not tractable when p is large (in microarray data p > 5000), stochastic
approximations are proposed, see Gadat and Younes (2007); Lê Cao et al. (2007b) for the
detailed theory of the model. At iteration i in the algorithm, the probability weight vector is
updated with a gradient descent:

Pi+1 = ΠS [Pi − αidi]

where ΠS is the projection on the simplex of probability map on the set of variables, so that
Pi+1 remains a probability vector, αi is the step of the gradient, and di is the stochastic
approximation of the gradient (see below).

The whole process is repeated iter.max times and the final output is Piter.max, that indicates
the importance of each variable in the data set. To obtain a variable selection, the user only
needs to rank the variables according to their decreasing weights, and to choose the size of
the selection.

2.2. General algorithm

Input: a data matrix of size n× p and the class values vector of size n.

Parameters: iter.max, total number of iterations and mtry, size of the variable subset ω.

Output: Piter.max, the weight vector of length p.

Initialize P0 = [1/p, . . . , 1/p] (uniform distribution on all variables)

For i = 1 to iter.max

1. Variables: draw a subset ωi with respect to Pi

2. Cases: draw a bootstrap sample Bi in 1, . . . , n and define B̄i the out-of-bag cases

3. Train the classifier on variables in ωi and cases in Bi

4. Test the classifier on variables in ωi and cases in B̄i, compute the classification error
rate εi

5. Compute the drift vector di

6. Update Pi+1 = ΠS [Pi − αidi]

where for each iteration i:
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� di = C(ωi,.)εi
Pi(.)

is the approximated gradient, and C(ωi, k) is the number of occurrences
of variable k in the subset ωi, in case this variable is drawn more than one time in ωi.

� ΠS is the projection on the simplex, so that
∑p

j=1 Pij = 1 and ∀j Pij ≥ 0, j = 1, . . . , p.

� αi is the step of the gradient descent, and is set to 1
i+10 .

2.3. Application

We applied OFW to two supervised algorithms: SVM and CART.

Support vector machines

SVM (Vapnik 1999) is a binary classifier that attempts to separate the cases by defining an
optimal hyperplane between the 2 classes up to a consistency criterion. Linear kernel SVMs
are performed here because of their good generalization ability compared to more complex
kernels. For multiclass data, we applied OFW with the one-vs.-one SVM approach that is
implemented in the e1071 package (Meyer 2001; Dimitriadou et al. 2008). ofw hence depends
on e1071. The user only needs to set the total number of iterations to perform (nsvm) and
the size mtry of the subset ω to draw at each iteration (see Section 4.2 for tuning).

Classification and regression trees

OFW is applied with the multiclass classifier CART (Breiman et al. 1984) that is well adequate
for multiclass problems. Following the example of Breiman (1996), the trees were aggregated
(bagging) to overcome their unstable characteristic. Hence, several classification trees are
constructed on different bootstrap samples and with different subsets ω. The approximated
gradient is also slightly modified. The modified algorithm is as follows:

Input: data matrix of size n× p and the class values vector of size n.

Parameters: iter.max, total number of iterations, mtry, size of the variable subset ω and
ntree, number of trees to aggregate.

Output: Piter.max a weight vector of length p.

Initialize P0 = [1/p, . . . , 1/p] (uniform distribution on all variables)

For i = 1 to iter.max

1. For b = 1 to ntree

(a) Variables: draw a subset ωbi with respect to Pi
(b) Cases: draw a bootstrap sample Bb

i in 1, . . . , n and define B̄b
i the out-of-bag cases

(c) Train the classifier on variables in ωbi and cases in Bb
i

(d) Test the classifier on variables in ωbi and cases in B̄b
i , compute the classification

error rate εbi

2. Compute the drift vector Di

3. Update Pi+1 = ΠS [Pi − αiDi]
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where Di is an averaged time version of the gradient di (see Lê Cao et al. 2007b).

Hence, as in random forests (Breiman 2001), ntree trees are constructed on ntree bootstrap
samples. The only difference lies in the construction of the classification trees: instead of
randomly selecting a variable subset to split each node of each tree (random forests), the
variable subset is drawn with respect to the probability Pi to construct each tree.

In addition to choose the total number of iterations to perform (nforest) and the size mtry
of the subset ω to draw at each iteration, the user needs to choose the number of aggregated
trees ntree (see Section 4.2 for tuning).

2.4. Unbalanced multiclass

Challenge when data are unbalanced

Multiclass problems are often considered as an extension of 2-class problems. However this
extension is not always straightforward, especially in microarray data context. Indeed, the
data sets are often characterized by unbalanced classes with a small number of cases in at
least one of the classes. This imbalance is often due to rare classes (e.g., a rare disease
where patients are few) that are biologically of interest. Nevertheless, most algorithms do
not perform well for such problems as they aim to minimize the overall error rate instead of
focusing on the minority class.

Weighted procedure in OFW: wOFW

An efficient way to take into account the unbalanced characteristics of the data set is to weight
the error rate εi according to the number samples of each class in the bootstrap sample. This
allows for the penalization of a classification error made on the minority class and, therefore,
put more weight on the variables that help classify this latter class instead of the majority
one (Lê Cao et al. 2007a).

This weighted approach has been implemented in both versions of the algorithm, called ofw-
CART and ofwSVM, and also stands for the evaluation step (Step 2 in Figure 1 and see
Section 4.4).

3. Implementation issues

ofw is available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=ofw. The R version ≥ 2.5.0 is needed to load the package e1071 on which ofw
depends.

ofw is a set of R and C functions to perform either ofwCART or ofwSVM and to evaluate
the performances of both algorithms. Two classes of functions in R and C are implemented.
Figure 1 provides a schematic view of the analysis of a data set with ofw. Each step in
Figure 1 will be detailed in Section 4 on a small microarray data set.

The R environment is the only user interface. The R procedure calls a C subroutine, whose
results are returned to R. There is no formula interface and the predictors can be specified
as a matrix or a data frame via the x argument, with factor responses as a vector via the
y argument. Note that ofw only performs classification and does not handle categorical

http://CRAN.R-project.org/package=ofw
http://CRAN.R-project.org/package=ofw
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Result:
probability weight

learn ofw on B boostrap samples with tuned parameters

SVM

CART

Result:
error e632+

Step 1:

parameters tuning

Parameters:

mtry
ntree
nforest/nsvm

, 

Step 3:

variable selection on the whole
data set if n is smalland evaluate the performance of the variable selection

constructs classification tree

constructs a forest (aggregates trees)

Step 2: 

library("e1071")

library("ofw")

buildtree:

classAgregTree:

learn

evaluate

evaluateCARTparallel

ofwofwTune

Figure 1: Schematic view of the data set analysis with ofw. The user only needs to use the R
functions (in blue).

variables. Details of the components of each object from ofwTune, ofw, learn, evaluate and
evaluateCARTparallel are provided in the online documentation. Methods provided for the
classes ofwTune and ofw include print.

The C function buildtree that constructs classification trees has been borrowed from the
Breiman and Cutler’s Fortran programs and converted to C language. The function
classAgregTree that aggregates trees was then largely inspired by the randomForest package
(Liaw and Wiener 2002).

4. Using ofw

In the following, we detail the call to functions and R commands of ofw, that can be loaded
into R by library("ofw").

4.1. Illustrative data set

ofw was previously tested on several published microarray data sets (Lê Cao et al. 2007b,a)
by comparing it with several other wrapper algorithms. We comment on the present paper
the results obtained on one data set that is provided as an example in the package. SRBCT
(Khan et al. 2001) is a data set of small round blue cell tumors of childhood. The training set
consists of 63 training samples spanning 4 classes. The data set includes 2308 genes out of the
6567 after filtering for a minimal level of expression (performed by Khan et al. 2001). Further
details about this data set can be found in http://research.nhgri.nih.gov/microarray/

http://research.nhgri.nih.gov/microarray/Supplement
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Supplement. In order to minimize the computation time in this illustrative example, we have
reduced SRBCT to 200 genes in the package by simply randomly selecting these out of the
2308 in the initial data set. We also added a factor class that indicates the class of each
microarray sample. Note that normalization of the data, that is a crucial step in the analysis
of microarray data is not dealt with ofw and has to be performed first by the user.

4.2. Tuning parameters

In the algorithm OFW, there are mainly 2–3 parameters to tune according to the applied
classifier to ensure that OFW converges (Step 1 in Figure 1):

1. the size of the gene subset ω (called mtry).

2. the total number of iterations (called nsvm for ofwSVM and nforest for ofwCART).

3. the number of trees ntree to agregate for ofwCART.

The package ofw provides the function ofwTune to tune these parameters. Here is the com-
mand to launch ofwTune with ofwCART for different mtry values:

R> data("srbct")
R> attach(srbct)
R> tune.cart <- ofwTune(srbct, as.factor(class), type = "CART",
+ ntree = 150, nforest = 3000, mtry.test = seq(5, 25, length = 5),
+ do.trace = 100, nstable = 25)
R> detach(srbct)

Note that the only arbitrary parameter that is not tuned and has to be provided by the user
is the number of variables nstable one wants to select (see below).

Tuning mtry

The function ofwTune consists in testing OFW (with CART or SVM) with several sizes of the
subset ω (mtry.test). Then, for each mtry.test, OFW is performed twice, called ofw1 and
ofw2. The first nstable variables with the highest weights in Pofw1

nforest and Pofw2
nforest are extracted.

The ofwTune function then outputs the intersection length of these two variable selections.
For example, to tune the parameters with ofwCART, the command

R> tune.cart$param
1 2 3 4 5

mtry 5 10 15 20 25
length 11 8 7 9 9

outputs the intersection length of the first nstable variables for each tested mtry.test. The
value mtry= 5 gets the best stable result and should be chosen for Steps 2 and 3 in Figure 1
(evaluation and variable selection steps).

Early stopping

Instead of running OFW for all iterations in Step 1, the user can choose instead to set the
number of variables (nstable) to select in the final variable selection step (Step 3). This halts

http://research.nhgri.nih.gov/microarray/Supplement
http://research.nhgri.nih.gov/microarray/Supplement
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the algorithm once it becomes “stable”, that is, when the nstable features of highest weights
in Pi and Pi+do.trace are the same for iterations i and i+ do.trace.

Finally, to choose the total number of iterations in Step 3, we simply suggest to take 2–3 times
the number of iterations that were performed using the early stopping criterion, to ensure the
convergence of the algorithm. This command outputs the number of iterations which were
performed:

R> tune.cart$itermax
1 2 3 4 5

ofwCART1 500 700 800 600 1000
ofwCART2 100 400 100 700 1100

Here the two algorithms ofwCART1 and ofwCART2 stopped at 500 and 100 iterations for
mtry = 5. During the final learning step (Step 3), the user should hence set nforest= 3 ·500.

Tuning ntree (ofwCART)

The best way to tune ntree would be then to run ofwTune with different values of ntree
and choose the one that gets the largest intersection length of the first nstable variables. In
our experience, the more numerous the trees, the more stable the results, usually for ntree
= 100 to 150. The same stands for the weighted (weight = TRUE) or non-weighted (weight
= FALSE) versions of OFW.

An example with ofwSVM

With the SVM classifier, the user has to specify type = "SVM" and use nsvm instead of
nforest to indicate the number of chosen iterations. As SVMs are not aggregated, the user
should set nsvm � nforest.

R> tune.svm <- ofwTune(srbct, as.factor(class), type ="SVM",

+ nsvm = 200000, mtry = 5, mtry.test = seq(5, 25, length = 5),

+ do.trace = 2000, nstable = 25)

R> tune.svm$param

1 2 3 4 5
mtry 5 10 15 20 25
length 5 9 3 5 5

R> tune.svm$itermax

1 2 3 4 5
ofwSVM1 6000 4000 8000 8000 4000
ofwSVM2 14000 8000 8000 8000 6000

In this case, with ofwSVM, the user should set mtry = 10 and nsvm = 24000 for the learning
step if nstable = 25.

For both classifiers, we strongly advise to choose the smallest mtry that gives the more stable
results. Our experience shows that for ofwCART, mtry will be rather small (5 to 15), as the
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#genes #class. #obs. ofwCART w-ofwCART ofwSVM w-ofwSVM
Lymphoma 4026 3 62 51 101 5 5
Leukemia 3000 3 72 51 51 15 10
SRBCT 2308 4 63 51 101 20 20
Brain 1963 5 42 51 251 10 10
Follicle 1564 3 42 102 102 25 25

Table 1: Values of the size of the subset ω. The number of trees aggregated is ntree = 150
(1) and ntree = 100 (2), respectively.

trees are aggregated. For ofwSVM, mtry can be larger (> 15). In both cases, mtry should
not be greater than nstable, and, therefore, mtryTest ≤ nstable.

Table 1 illustrates the tuned parameters for several public data sets that were tested in
Lê Cao et al. (2007a) for the weighted (ofwCART, ofwSVM) and non-weighted (w-ofwCART,
w-ofwSVM) versions of OFW.

4.3. Variable selection and visualization plots

Once the parameters mtry, and ntree for ofwCART, have been chosen, the variable selection
step (Step 3, Figure 1) can be performed, preferably on the whole data set if the sample size
is too small, i.e., if n is roughly less than 80, or if the number of observations per class is
too small. We advise to use the total number of iterations nforest or nsvm, rather than the
nstable early stopping criterion to halt the algorithm, as suggested in Section 4.2.

The classifier to be applied has to be specified by the user. Here is the command for the
variable selection step (Step 3) for ofwCART and ofwSVM.

R> learn.cart <- ofw(srbct, as.factor(class), type = "CART",
+ ntree = 150, nforest = 2500, mtry = 5)
R> learn.svm <- ofw(srbct, as.factor(class), type = "SVM",
+ nsvm = 30000, mtry = 5)

In the case of ofwCART, the evolution of the internal mean error rate ε̄i = 1
ntree

∑
ntree

b=1 ε
b
i can

be plotted for each iteration i, as shown in Figure 2, for i = 1, . . . , nforest:

R> plot(learn.cart$mean.error, type = "l")

The monotonic decreasing trend of ε̄i indicates if the parameters have been tuned correctly
and thus if ofwCART converges. In the case of ofwSVM, the SVM are not aggregated, and
the error variance is consequently very large: no decreasing trend can be observed and εi is
not provided. Note that the internal error ε̄i does not evaluate the performance of OFW (see
below Section 4.4) and is simply a way to assess the quality of the tuning.

One can also visualize the probability weights Pnforest or Pnsvm for each variable on Figures 3
(a) and (b):

R> plot(learn.cart$prob, type = "h")
R> plot(learn.svm$prob, type = "h")
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Figure 2: Internal mean error in ofwCART.

The selected variables can then be extracted by sorting the heaviest weights in P, here for
example for the 10 most discriminative variables with ofwCART:

R> names(learn.cart$list[1:10])

As P is a weight probability, the more numerous the variables, the smallest the weights on
the variables. Hence, these weights are a qualitative rather than a quantitative importance
measure of the variables, and the choice of a threshold is not advised. The different compu-
tations of the approximated gradient in ofwSVM (di) and in ofwCART (Di), where Di � di,
actually lead to an important number of weights in P close to zero in ofwCART. Remark that
some of the very discriminative variables get important weights in both methods. Usually,
however, as the classifiers SVM and CART are differently constructed, the resulting variable
selections will not be the same (see Lê Cao et al. 2007b,a).

4.4. Evaluation step

Method and implementation

To assess the performance of the variable selection performed by OFW (Step 2 in Figure 1),
we propose to perform the e.632+ bootstrap error estimate from Efron and Tibshirani (1997)
that is adequate for small sample size data sets (Ambroise and McLachlan 2002). Note that
e.632+ does not dictate the optimal number of features to select. The error rate estimates that
are computed with respect to the number of selected variables are only a way to compare the
performances of different variable selection methods. Step 2 consists in two functions called
learn and evaluate. The learn function simply learns OFW on a fixed number of bootstrap
samples (Bsample) with the same tuned parameters defined in Step 1. The evaluate function
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Figure 3: Variable weights that are computed with ofwCART (a) and ofwSVM (b).

that was inspired by the ipred package (Peters et al. 2002), computes and outputs the e.632+
error rate.

The learn and evaluate functions

R> learn.error.cart <- learn(srbct, as.factor(class), type = "CART",
+ ntree = 150, nforest = 2500, mtry = 5, Bsample = 10, do.trace = 100,
+ nstable = 25)
R> learn.error.svm <- learn(srbct, as.factor(class), type = "SVM",
+ nsvm = 30000, mtry = 5, Bsample = 10, do.trace = 2000, nstable = 25)

As the evaluation will be performed for a small selection size, we strongly advise to reduce the
number of total iterations, using for example the early stopping criterion. In the literature,
Bsample often equals to 10–50. On a 1.6 GHz 960 Mo RAM AMD Turion 64 X2 PC, the
learning step of one bootstrap sample on a typical microarray data set (p ' 5000 and n ' 50)
can take approximatively 2.5 hours. Hence, depending on the chosen value of Bsample, this
evaluation step might be time consuming (see Section 5) and one can rather choose to perform
parallel computing using the Rmpi package (Yu 2002, see supplementary file v28i09-mpi.R).

If the SVM classifier is applied, each SVM is evaluated with the heaviest variables in Pbnsvm,
which is learnt in the learn function, b = 1, . . . , Bsample. If the CART classifier is applied,
the evaluate function aggregates ntreeTest trees. Each tree is constructed on a small
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Figure 4: e.632+ error rate of ofwCART and ofwSVM.

variable subset that is randomly selected from the heaviest variables in Pbnforest, to avoid a too
optimistic evaluation (see Lê Cao et al. 2007a). Both functions evaluate the variable selection
of size maxvar:

R> eval.error.cart <- evaluate(learn.error.cart, ntreeTest = 100,
+ maxvar = 25)
R> eval.error.svm <- evaluate(learn.error.svm, maxvar = 25)

The evalCARTparallelfunction has also been implemented for parallel computing (refer to
supplemental data). The aim of the evaluate function is to compare the performance of
several algorithms (e.g., ofwCART and ofwSVM):

R> matplot(cbind(eval.error.cart$error, eval.error.svm$error),
+ type = "l", col = c(1, 4), lty = c(1, 4), lwd = 2, cex.lab = 1.3)
R> legend(18, 0.40, c("ofwCART", "ofwSVM"), col = c(1, 4),
+ lty = c(1, 4), cex = 1.2, lwd = 2)

Figure 4 displays the e.632+ bootstrap error rate of the selections resulting either from ofw-
CART or from ofwSVM with respect to the number of selected genes. In this example, where
we compare the non-weighted versions of OFW, ofwCART seems to perform the best.

4.5. Further analysis: Comparing weighted and non-weighted OFW

The weighting procedure presented in Section 4.4 has also been included in the error evaluation
function evaluate. To compare the two approaches, weighted (OFW) and non-weighted
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Figure 5: e.632+ error rate of ofwCART with e.632 not weighted (ofwCART1) and weighted
(ofwCART2) .

(wOFW), we strongly advise to launch the evaluate function with the argument weight =
TRUE in both cases to evaluate if the minority classes were misclassified or not. Otherwise, the
e.632+ bootstrap error rate will always be lower for OFW than wOFW. This is illustrated
in Figure 5 where the same gene selection resulting from ofwCART is evaluated either with
the non-weighted version of e.632+ (ofwCART1) or with the weighted version of e.632+
(ofwCART2). Even though the same two gene selections are evaluated, the error rate is lower
in ofwCART1 as this overall error rate only takes into account the microarrays that are rightly
classified in the majoritary classes. In ofwCART2 where misclassified minoritary classes are
taken into account, the error rate is consequently higher:

R> eval.error.cart1 = evaluate(learn.error.cart, ntreeTest = 100,
+ maxvar = 25)
R> eval.error.cart2 = evaluate(learn.error.cart, ntreeTest = 100,
+ maxvar = 25, weight = TRUE)
R> matplot(cbind(eval.error.cart1$error, eval.error.cart2$error),
+ type = "l", col = c(1, 1), lty = c(1, 2), lwd = 2, cex.lab = 1.3)
R> legend(18, 0.12, c("ofwCART1", "ofwCART2"), col = c(1, 1),
+ lty = c(1, 2), cex = 1.2, lwd = 2)

5. Computation time

Optimal feature weighting is a stochastic method that might be computationally time con-
suming if the variable dimension is very high. As the algorithm gets stabler for a large number
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of iterations, the variable selection step (Step 3) might take 1–2 hours. Therefore, using paral-
lel computing with the Rmpi package during the evaluation step (Step 2) might be advisable.
If the dimension is considerable, we strongly advise to pre-filter the data set so as to remove
uninformative variables that slow down the computation.

In this paper, on a very small microarray data set (200 genes), the tuning step (Step 1) took
approximatively 20 minutes, the evaluation step (Step 2) 1.5 hours and the variable selection
step (Step 3) 7 minutes.

6. Conclusion

We have implemented the stochastic algorithm OFW to select discriminative features. Al-
though we illustrated this method on microarray data, OFW can be applied on any continuous
data set for classification and prediction purposes.

Wrapper methods usually require heavy computation, and so does OFW. Efforts have thus
been made to reduce some of the computation time by implementing C functions when ap-
plying CART and by proposing parallel programming during the learning step.

With this package, we hope to provide the user a method with a strong theoretical background
that is easy to apply and that can bring interesting results in a feature selection framework.
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