C. Ambroise and G. J. Mclachlan, Selection Bias in Gene Extraction in Tumour Classification on Basis of Microarray Gene Expression Data, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.6562-6566, 2002.

L. Breiman, Bagging Predictors, Machine Learning, vol.24, pp.123-140, 1996.

L. Breiman, Random Forests, Machine Learning, vol.45, pp.5-32, 2001.

L. Breiman, J. H. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1984.

C. Chen, A. Liaw, and L. Breiman, Using Random Forest to Learn Imbalanced Data, 2004.

D. Chen, D. Hua, J. Reifman, and X. Cheng, Gene Selection for Multi-Class Prediction of Microarray Data, CSB '03: Proceedings of the IEEE Computer Society Conference on Bioinformatics, p.492, 2003.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A. Weingessel et al., e1071: Misc Functions of the Department of Statistics (e1071), 2008.

B. Efron and R. Tibshirani, Improvements on Cross-Validation: The e.632+ Bootstrap Method, Journal of the American Statistical Association, vol.92, pp.548-560, 1997.

S. Gadat and L. Younes, A Stochastic Algorithm for Feature Selection in Pattern Recognition, Journal of Machine Learning Research, vol.8, pp.509-547, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00714862

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene Selection for Cancer Classification Using Support Vector Machines, Machine Learning, vol.46, pp.389-422, 2002.

J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi et al., Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks, Nature Medicine, vol.7, issue.6, pp.673-679, 2001.

L. Cao, K. A. Bonnet, A. Gadat, and S. , Multiclass Classification and Gene Selection with a Stochastic Algorithm, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00323848

L. Cao, K. A. Gonçalves, O. Besse, P. Gadat, and S. , Selection of Biologically Relevant Genes with a Wrapper Stochastic Algorithm, Statistical Applications in Genetics and Molecular Biology, vol.6, issue.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00463891

T. Li, C. Zhang, and M. Ogihara, A Comparative Study of Feature Selection and Multiclass Classification Methods for Tissue Classification Based on Gene Expression, Bioinformatics, vol.20, issue.15, pp.2429-2437, 2004.

A. Liaw and M. Wiener, Classification and Regression by randomForest, R News, vol.2, issue.3, pp.18-22, 2002.

D. Meyer, Support Vector Machines, R News, vol.1, issue.3, pp.23-26, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00446791

A. Peters, T. Hothorn, and B. Lausen, ipred: Improved Predictors, News, vol.2, issue.2, pp.33-36, 2002.

, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2008.

V. N. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics), 1999.

J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, Use of the Zero Norm with Linear Models and Kernel Methods, Journal of Machine Learning Research, vol.3, pp.1439-1461, 2003.

K. Y. Yeung and R. E. Burmgarner, Multi-Class Classification of Microarray Data with Repeated Measurements: Application to Cancer, Genome Biology, issue.R83, p.4, 2003.

H. Yu, Rmpi: Parallel Statistical Computing in R, R News, vol.2, issue.2, pp.10-14, 2002.

, Affiliation: Kim-Anh Lê Cao Station d'Amélioration Génétique des Animaux (UR 631) Institut National de la Recherche Agronomique F-31326 Castanet

, CNRS INSA, UT1, UT2) F-31062, vol.3

, Patrick Chabrier Biométrie et Intelligence Artificielle (UR875) Institut National de la Recherche Agronomique F-31326 Castanet