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Abstract:

• Network motifs are at the core of modern studies on biological networks, trying to
encompass global features such as small-world or scale-free properties. Detection of
significant motifs may be based on two different approaches: either a comparison
with randomized networks (requiring the simulation of a large number of networks),
or the comparison with expected quantities in some well-chosen probabilistic model.
This second approach has been investigated here. We first provide a simple and effi-
cient probabilistic model for the distribution of the edges in undirected networks.
Then, we give exact formulas for the expectation and the variance of the number of occur-
rences of a motif. Generalization to directed networks is discussed in the conclusion.
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1. INTRODUCTION

A cellular system can be described by a web of relationships between pro-

teins, genes or more generally metabolites. Studying its basic structural elements,

also called motifs, is a first step in the understanding of these networks that goes

beyond global features (such as the small world or scale-free properties, see [2, 12]).

For instance, motifs that occur more frequently than expected in random net-

works may reveal particular structures corresponding to biological phenomena.

Several definitions exist for a network motif. Here we consider the most com-

monly used: a simple pattern of interconnection in a graph. Detection of signif-

icant motifs [7] may be based on two different approaches: either by comparing

the observed network with appropriately randomized networks (this requires the

simulation of a large number of networks), or by the comparison with expected

quantities in some well-chosen probabilistic model. Up to now, only the first

approach has been explored ([8], [11], [13]) because no satisfactory probabilistic

model has yet been proposed for an analytical approach. The simplest model

is the well-known Erdös model, where the probability of appearance of an edge

between two different vertices is equal to some fixed p ∈ (0, 1). This model only

concerns undirected networks. Its major drawback lies in the fact that the num-

bers of edges per vertex, so-called vertex degrees, are distributed according to a

Binomial distribution, generally approximated by a Poisson distribution, whereas

biological networks appear to be scale-free, meaning a power law for the number

of edges per vertex [1] (for more details on random graphs, we refer to [4, 6, 5]).

Randomized networks (obtained by simulation, see [10] for instance) rely on the

knowledge of the number of (incoming and outcoming, when dealing with directed

graphs) edges for each vertex. In the same spirit, we provide a probabilistic model

that fits these vertex degrees. Depending on the specified sequence of edges per

vertex, our model may describe scale-free networks. This probabilistic model

enables us to derive exact formulas for the mean and variance of the number of

occurrences of a motif, in a graph specified by a sequence of degrees. One of the

advantages of this approach is that we do not need computationally expensive

simulations of a large number of graphs, for each fixed sequence of numbers of

edges per vertex.

Let us mention another approach developped in [3] where “groups of mo-

tifs” are detected using an heuristic algorithm based on a probabilistic model.

The main difference between this approach and our work lies in the definition

of a motif. Berg and Lässig’s motifs are groups of vertices which are highly inter-

connected in a sparse graph, whereas we consider sets of inter-connected vertices

with a given topology.

Section 2 presents the definitions of motifs and their occurrences. To decide

whether a given motif m has an unexpected frequency in a given observed graph,

one has first to consider random graphs having some similar properties with the

observed graph (Section 3), and then to calculate the expected count of m in such



34 C. Matias, S. Schbath, E. Birmelé, J.-J. Daudin and S. Robin

random graphs, and eventually its variance (Section 4). Since the derivation of

the exact distribution of a motif count is still an open problem, its exact mean and

variance can be used to calculate a z-score directly. This avoids heavy simulations

used in the literature to evaluate the significance of motif counts [9]. Indeed, from

our knowledge, current methods to assess significance of motif counts are based on

a large number of simulations for each type of graph (namely, a fixed sequence of

degrees). Our approach is simple to implement and leads to a generic procedure

(valid for any type of graph).

2. MOTIFS AND OCCURRENCES

Recall that, in this paper, a motif m of size k is simply a connected sub-

graph with k vertices. We will essentially focus on undirected graphs and motifs,

but the generalization to a directed framework will be discussed in the conclusion.

Therefore, there are only two motifs of size 3 (triangle and “V”) and six motifs

of size 4 (see Figure 1).

m1 m2 m3 m4 m5 m6 m7 m8

Figure 1: Motifs of size 3 and 4.

Let us fix an undirected graph G with N vertices labelled by {1, 2, ..., N}.

Ik denotes the set of positions {i1, i2, ..., ik} in graph G where a motif of size k

may occur. Namely, Ik is the set of all subsets of {1, 2, ..., N} with cardinality k:

Ik =

{

{i1, i2, ..., ik} ⊂ {1, ..., N}k such that ij 6= iℓ, ∀ 16j 6=ℓ6k

}

.

In the same way, for any subset J ⊂ {1, ..., N}, define the sets of positions among

the restricted number of vertices {1, ..., N}\J ,

Ik(J) =

{

{i1, i2, ..., ik} ⊂
(

{1, ..., N}\J
)k

such that ij 6= iℓ, ∀ j 6=ℓ

}

.

We say that a given motif m occurs at position α = {i1, i2, ..., ik} ∈ Ik in G if

and only if the sub-graph with vertices {i1, i2, ..., ik} in G either has the same

topology as m, or contains a subgraph with the same topology as m. For instance,

the triangle (motif m2 from Figure 1) occurs once in the graph in Figure 2

(position {2, 3, 4}), and the “V” motif (m1 from Figure 1) occurs 5 times (3 times

at position {2, 3, 4}, once at position {1, 2, 3} and once at position {1, 2, 4}).

To define N(m) the number of occurrences of m in a graph G, we introduce

variables Yα(m), α∈Ik, defined as the number of occurrences of motif m in the sub-
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graph with vertices α. Thus, for any motif of size k, we have N(m)=
∑

α∈Ik
Yα(m).

If α = {i1, i2, ..., ik}, the variable Yα(m) can be reformulated as Yi1,i2,...,ik(m).

1 2

3 4

Figure 2: A graph containing 5 occurrences of motif m1

and 1 occurrence of motif m2.

3. RANDOM GRAPH MODEL

Undirected graphs are quite properly described by the sequence of the

number of edges per node. Let us consider a graph G with N vertices labelled

by {1, ..., N} and a sequence of integers (d1, ..., dN ) such that 0 6 di 6 N − 1.

In practice, when analyzing a given graph, di is chosen as the observed degree

of vertex i. We consider the following probabilistic model for graph G. Random

variables Zij indicating presence/absence of an edge between vertices i and j

(i 6= j) are independent Bernoulli variables with mean πij (they are not iden-

tically distributed). Moreover, this probability πij of appearance of an edge

between vertices i and j is related to the observed number of edges at node i and

the observed number of edges at node j:

πij = πji =
didj

C
and πii = 0 .

C is a normalizing constant such that πij ∈ [0, 1]. For instance, C = maxi6=j didj .

If the degrees are not too large with respect to the total number N of vertices,

one may use C0 =
∑N

j=1 dj(d+− dj)/d+ with d+ =
∑

i di. With such a choice,

the expected number of edges is equal to the observed total number of edges.

Moreover, the expected number of edges at node i is almost equal to di. Note that

we do not allow direct loops from an edge to itself (πii = 0).

The advantage of this model is that its parameters are easy to choose

from an observed graph, contrary to more general πij’s, and it almost fits the

observed sequence of degrees when choosing C0 as the normalizing constant.

It relies on the same idea of preserving the sequence degrees as the commonly

used simulation approach [8]. Our probabilistic model appears as a rigorous for-

malization of the simulation method. [8] suggest generating graphs that preserve

the number of occurrences of all (k−1)-node sub-graphs when studying motifs

of size k. Taking into account the counts of the (k−1)-node sub-graphs would

be better than only preserving the sequence of degrees but such a generalization

appears to be difficult at this stage.
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4. FIRST AND SECOND MOMENTS FOR THE COUNT

Motifs of size 1 or 2 are of no interest here because they are the vertices

and the edges, respectively, and their frequencies are set by the graph model.

Let m be a motif of size k > 3. Since the variance of N(m) is equal to

EN2(m) − (EN(m))2, we will calculate the first and second moments of the

count, i.e. EN(m) and EN2(m). As we will see, these moments depend on m,

both through its size and its topology. No general formula is provided but we

propose a general methodology that can be applied to any topological motifs

without theoretical difficulties. Because of technical reasons, we will restrict our-

selves to motifs of size 3 and 4. More precisely, for each motif m, we provide

a simple description of variable Yα(m) using indicator random variables (RVs).

This description enables us to derive explicit formulas for the moments EN(m)

and EN2(m). Before detailing the different cases, we state a common framework

that will point out the basic quantities to calculate systematically.

Getting the expected count just requires the calculation of EYα(m) for

α ∈ Ik since we have

EN(m) =
∑

α∈Ik

EYα(m) .

Getting the second moment is a little more involved. By definition,

EN2(m) = E

(

∑

α∈Ik

Yα(m) ×
∑

β∈Ik

Yβ(m)

)

=
∑

α∈Ik

∑

β∈Ik

E
(

Yα(m)Yβ(m)
)

.

Let us break down the sums over α and β into (k+1) sums depending on the

cardinality of the intersection α ∩ β, denoted by |α ∩ β|. Note that

(i) when |α ∩ β| = k, then α = β and E(Yα(m)Yβ(m)) = EY 2
α (m),

(ii) when |α∩ β|61 (disjoint occurrences or a unique vertex in common),

then Yα(m) and Yβ(m) are independent random variables, leading to

E(Yα(m)Yβ(m)) = EYα(m) EYβ(m).

It gives

EN2(m) =
∑

|α∩β|=0

E
(

Yα(m)
)

E
(

Yβ(m)
)

+
∑

|α∩β|=1

EYα(m) EYβ(m)(4.1)

+
∑

26n6k−1

∑

|α∩β|=n

E
(

Yα(m)Yβ(m)
)

+
∑

α∈Ik

EY 2
α (m) .

Additionally to quantities EYα(m), we have to calculate terms in the form

E(Yα(m)Yβ(m)) when α and β share between 2 and k elements. The next two

subsections provide explicit formulas for motifs of size 3 and 4. The generic

method is to write Yα(m) as a sum of Bernoulli RVs whose expectations are

straightforward to calculate.
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4.1. Motifs of size 3

When k = 3, Equation (4.1) reduces to

EN2(m) =
∑

{i,j,k}∈I3

∑

{ℓ,u,v}∈I3(ijk)

EYi,j,k(m) EYℓ,u,v(m)

+
∑

16i6N

∑

{j,k}∈I2(i)

∑

{ℓ,u}∈I2(ijk)

EYi,j,k(m) EYi,ℓ,u(m)(4.2)

+
∑

{i,j}∈I2

∑

k∈I1(ij)

∑

ℓ∈I1(ijk)

E
(

Yi,j,k(m)Yi,j,ℓ(m)
)

+
∑

{i,j,k}∈I3

EY 2
i,j,k(m) .

Motif m1 (“V”)

Our approach is based on the split of variable Yi,j,k(m1) into the sum of

three Bernoulli RVs

Yi,j,k(m1) = Zij,ik + Zij,jk + Zik,jk , ∀ i, j, k ∈ {1, ..., N} ,

where Zij,ik = 1 if both edges ij and ik occur, and 0 otherwise. The expectation

EZij,ik is the probability πijπik. Thus we obtain

EYi,j,k(m1) = πijπik + πijπjk + πikπjk =
didjdk

C2
(di + dj + dk) ,

(4.3)

EN(m1) =
∑

{i,j,k}∈I3

didjdk

C2
(di + dj + dk) =

∑

16i6N

∑

{j,k}∈I2(i)

d2
i djdk

C2
.

Similarly, we denote by Zij,ik,jk the indicator RV of the presence of edges ij, jk

and ik (note that Zij,ik Zij,jk = Zij,ik,jk). To calculate E(Yi,j,k(m1)Yi,j,ℓ(m1)),

we write

E
(

Yi,j,k(m1)Yi,j,ℓ(m1)
)

=

= E

{

[

Zij,ik + Zij,jk + Zik,jk

] [

Zij,iℓ + Zij,jℓ + Ziℓ,jℓ

]

}

= πij(πik + πjk) (πiℓ + πjℓ + πiℓπjℓ) + πikπjk(πijπiℓ + πijπjℓ + πiℓπjℓ)(4.4)

=
didjdkdℓ

C3
(di + dj)

2 +
d2

i d
2
jdkdℓ

C4

{

(di + dj)(dk + dℓ) + dkdℓ

}

.
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Now, we focus on the term EY 2
i,j,k(m1). We get

EY 2
i,j,k(m1) = EZij,ik + EZij,jk + EZik,jk + 6 EZij,ik,jk

= EYi,j,k(m1) + 6πijπikπjk(4.5)

=
didjdk

C2
(di+dj +dk) + 6

d2
i d

2
jd

2
k

C3
.

Finally, by using Equations (4.2), (4.3), (4.4) and (4.5), we obtain

EN2(m1) =

=
∑

{i,j,k,ℓ,u,v}∈I6

didjdkdℓdudv

C4
(di+dj +dk) (dℓ+du+dv)

+
∑

16i6N

∑

{j,k}∈I2(i)

∑

{ℓ,u}∈I2(ijk)

d2
i djdkdℓdu

C4
(di+dj+dk) (di+dℓ+du)

+
∑

{i,j}∈I2

∑

k∈I1(ij)

∑

ℓ∈I1(ijk)

didjdkdℓ

C3
(di+dj)

2 +
d2

i d
2
jdkdℓ

C4

{

(di+dj)(dk+dℓ) + dkdℓ

}

+
∑

{i,j,k}∈I3

didjdk

C2
(di + dj + dk) + 6

d2
i d

2
jd

2
k

C3
.

Motif m2 (triangle)

Calculations are simpler for triangles. Motif m2 occurs at position {i, j, k}

if and only if the 3 edges ij, jk and ik are present, and Yi,j,k(m2) reduces to the

indicator RV Zij,ik,jk. Thus we have

EYi,j,k(m2) = πijπjkπik =
d2

i d
2
jd

2
k

C3
; EN(m2) =

∑

{i,j,k}∈I3

d2
i d

2
jd

2
k

C3
.(4.6)

Moreover, the product Yi,j,k(m2)Yi,j,ℓ(m2) is equal to the indicator RV

Zij,jk,ik,iℓ,jℓ of presence of the 5 edges ij, jk, ik, iℓ and jℓ. Therefore,

(4.7) E
(

Yi,j,k(m2)Yi,j,ℓ(m2)
)

= πijπjkπikπjℓπiℓ =
d3

i d
3
jd

2
kd

2
ℓ

C5
.

Since Yi,j,k(m2) is an indicator RV, we have Y 2
i,j,k(m2) = Yi,j,k(m2) and

∑

{i,j,k}∈I3
EY 2

i,j,k(m2) = EN(m2).

By plugging the formulas given by (4.6) and (4.7) in Equation (4.2),

we obtain the result.
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4.2. Motifs of size 4

When k = 4, Equation (4.1) reduces to

EN2(m) =
∑

{i,j,k,ℓ}∈I4

∑

{u,v,w,x}∈I4(ijkℓ)

EYi,j,k,ℓ(m) EYu,v,w,x(m)

+
∑

16i6N

∑

{j,k,ℓ}∈I3(i)

∑

{u,v,w}∈I3(ijkℓ)

EYi,j,k,ℓ(m) EYi,u,v,w(m)

+
∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

∑

{u,v}∈I2(ijkℓ)

E
(

Yi,j,k,ℓ(m)Yi,j,u,v(m)
)

(4.8)

+
∑

{i,j,k}∈I3

∑

ℓ∈I1(ijk)

∑

u∈I1(ijkℓ)

E
(

Yi,j,k,ℓ(m)Yi,j,k,u(m)
)

+
∑

{i,j,k,ℓ}∈I4

EY 2
i,j,k,ℓ(m) .

Following the approach used for motifs of size 3, we detail how to calculate

terms in the form EYi,j,k,ℓ(m), E(Yi,j,k,ℓ(m)Yi,j,u,v(m)), E(Yi,j,k,ℓ(m)Yi,j,k,u(m))

and EY 2
i,j,k,ℓ(m), but only for motif m4. However, all final formulas are gathered

in Tables 1, 2, 3 and 4. Before, we give the split of variables Yα(mi) for 36 i68,

as sums of indicator RVs (see Equations (4.9) to (4.14)). These splits directly de-

rive from the topology of the motif under consideration. Combined with Equation

(4.8), they are the basis for obtaining the final formulas presented in the tables.

There are 12 different occurrences of motif m3 at position {i, j, k, ℓ}, which

correspond to different orders of the nodes:

Yi,j,k,ℓ(m3) = Zij,jk,kℓ + Zjk,kℓ,ℓi + Zkℓ,ℓi,ij + Zℓi,ij,jk + Zik,kℓ,ℓj + Zij,jℓ,ℓk(4.9)

+ Zℓj,ji,ik + Zℓk,ki,ij + Ziℓ,ℓj,jk + Zℓi,ik,kj + Zki,iℓ,ℓj + Zik,kj,jℓ .

Different occurrences of motif m4 appear depending on the central node (bottom

left node in Fig. 1, motif m4):

Yi,j,k,ℓ(m4) = Zij,ik,iℓ + Zji,jk,jℓ + Zki,kj,kℓ + Zℓi,ℓj,ℓk .(4.10)

There are only 3 different ways for motif m5 to occur:

Yi,j,k,ℓ(m5) = Zij,jk,kℓ,ℓi + Zij,jℓ,ℓk,ki + Zik,kj,jℓ,ℓi .(4.11)

Occurrences of motif m6 are obtained through occurrences of motif m4.

When motif m4 occurs, there are 3 different ways of adding a vertex in order

to obtain motif m6. This leads to a total of 12 different possible occurrences of

motif m6 at {i, j, k, ℓ}:

Yi,j,k,ℓ(m6) = Zij,ik,iℓ,jk + Zij,ik,iℓ,jℓ + Zij,ik,iℓ,kℓ + Zji,jk,jℓ,ik(4.12)

+ Zji,jk,jℓ,kℓ + Zji,jk,jℓ,iℓ + Zki,kj,kℓ,ij + Zki,kj,kℓ,iℓ

+ Zki,kj,kℓ,jℓ + Zℓi,ℓj,ℓk,ij + Zℓi,ℓj,ℓk,ik + Zℓi,ℓj,ℓk,jk .
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Motif m7 is obtained from motif m5 by adding a diagonal:

Yi,j,k,ℓ(m7) = Zij,jk,kℓ,ℓi,jℓ + Zij,jk,kℓ,ℓi,ik + Zij,jℓ,ℓk,ki,jk(4.13)

+ Zij,jℓ,ℓk,ki,iℓ + Zik,kj,jℓ,ℓi,ij + Zik,kj,jℓ,ℓi,kℓ .

Finally, motif m8 corresponds to a complete sub-graph on vertices {i, j, k, ℓ} and

is thus equal to an indicator RV:

Yi,j,k,ℓ(m8) = Zij,jk,kℓ,iℓ,ik,jℓ .(4.14)

Detailed calculations for motif m4 (star)

Let us start by calculating the expectation EYi,j,k,ℓ(m4). We use Equation

(4.10) and the fact that EZij,ik,iℓ equals πijπikπiℓ = d3
i djdkdℓ/C

3. Thus,

EYi,j,k,ℓ(m4) =
didjdkdℓ

C3
(d2

i + d2
j + d2

k + d2
ℓ )(4.15)

and EN(m4) =
∑

16i6N

∑

{j,k,ℓ}∈I3(i)

d3
i djdkdℓ

C3
.(4.16)

We now calculate E(Yi,j,k,ℓ(m4)Yi,j,u,v(m4)) by using the product of the

sums of indicator RVs:

E
(

Yi,j,k,ℓ(m4)Yi,j,u,v(m4)
)

=

= πij (πikπiℓ + πjkπjℓ) (πiuπiv + πjuπjv + πiuπjuπuv + πivπjvπuv)

+ πkℓ (πikπjk + πiℓπjℓ) (πijπiuπiv + πijπjuπjv + πiuπjuπuv + πivπjvπuv)(4.17)

=
didjdkdℓdudv

C5

×

{

(d2
i +d2

j )
2 +

didj

C

(

(d2
k+d2

ℓ) (d2
u+d2

v) + (d2
i +d2

j ) (d2
u+d2

v+d2
k+d2

ℓ)
)

}

.

In the same way, we have

E
(

Yi,j,k,ℓ(m4)Yi,j,k,u(m4)
)

=
didjdkdℓdu

C4

{

d2
i

(

di+
d2

jdk

C
+

djd
2
k

C

)

+ d2
j

(

d2
i dk

C
+dj+

did
2
k

C

)

+ d2
k

(

d2
i dj

C
+

did
2
j

C
+dk

)

}

(4.18)

+
d2

i d
2
jd

2
kdℓdu

C6

{

(d2
i +d2

j +d2
k) (d2

u+d2
ℓ) + d2

ℓd
2
u

}

.



Mean and Variance for Network Motif Counts 41

We finally compute expectation EY 2
i,j,k,ℓ(m4):

EY 2
i,j,k,ℓ(m4) = EYi,j,k,ℓ(m4)

+ 2
d2

i d
2
jd

2
kd

2
ℓ

C5

(

didj + didk + didℓ + djdk + djdℓ + dkdℓ

)

,(4.19)

∑

{i,j,k,ℓ}∈I4

EY 2
i,j,k,ℓ(m4) = EN(m4) + 2

∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

d3
i d

3
jd

2
kd

2
ℓ

C5
.

Finally, the second moment EN2(m4) is obtained by plugging the expressions

given by (4.15), (4.16), (4.17), (4.18) and (4.19) in Equation (4.8).

5. CONCLUSION

We provide a rigorous probabilistic model for undirected graphs which fits

the vertex degrees of an observed graph and thus partially describes real-world

networks. This model allows us to derive explicit formulas for the mean and

variance of the number of occurrences of the 2 motifs of length 3 and the 6 motifs

of length 4. Here, a motif is a simple pattern of interconnexion in a graph.

Our methodology can be extended to longer motifs through straightforward cal-

culations. Indeed, one just needs to describe the motif as a sum of indicator vari-

ables of Z-type (see decomposition (4.9)–(4.14) for instance). Then the second

moment EN2(m) given in equation (4.1) reduces to sums of products of expect-

ations of independent Binomial random variables (the Zij ’s for single edges (ij)),

easy to compute. Heavy simulations are usually done so far to study over-repre-

sentation of motifs. Thus, our formulas are of great interest in practice.

We think that no general formula depending only on the total numbers of

edges and vertices of the motif exists; additional topological information on the

motif is required (m3 and m4 both have 4 vertices and 3 edges, but they clearly

have different expected counts).

Our methodology can also be generalized to directed motifs and directed

graphs. This is an important issue when analyzing biological networks where

the orientation of the edges may be known (direction of a reaction in metabolic

networks or activation/regulation in gene interaction networks). This will be the

matter of a forthcoming paper. Briefly, the probability πij that an edge goes from

i toward j is proportional to the product ǫi ρj where ǫi is chosen as the observed

outcoming degree of vertex i and ρj is chosen as the observed incoming degree

of vertex j. Therefore, this model fits to the incoming and outcoming vertex

degrees. Note that this expression for πij has already been considered by [3] as

part of a more general model to detect groups of highly inter-connected vertices

which share some similarity.
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Finally, one may be interested in counting exact occurrences of a motif m

in graph G. For instance, no “V” motif is counted in a triangle. Our results

can be easily extended by defining new indicator RV Xi1,...,ik(m) which is equal

to 1 if the sub-graph with vertices {i1, ..., ik} has exactly the same topology

as m and 0 otherwise. We then write Xi1,...,ik(m) as a linear combination of

ad-hoc edge indicators Z. For instance, if m is the “V”motif, we just write

Xi,j,k(m1) = Zij,ik(1 − Zjk) + Zij,jk(1 − Zik) + Zik,jk(1 − Zij).

Table 1: Mean count EN(m)
for non oriented motifs of size 4.

m EN(m)

m3
EN(m3) = 2 C−3

∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

d2
i d

2
jdkdℓ

m4

EN(m4) = C−3
N
∑

i=1

∑

{j,k,ℓ}∈I3(i)

d3
i djdkdℓ

m5
EN(m5) = 3 C−4

∑

{i,j,k,ℓ}∈I4

d2
i d

2
jd

2
kd2

ℓ

m6
EN(m6) = C−4

∑

16i6N

∑

j 6=i

∑

{k,ℓ}∈I2(ij)

d3
i djd

2
kd2

ℓ

m7
EN(m7) = C−5

∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

d3
i d

3
jd

2
kd2

ℓ

m8
EN(m8) = C−6

∑

{i,j,k,ℓ}∈I4

d3
i d

3
jd

3
kd3

ℓ
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Table 2: Formulas giving E(Yijkℓ(m)Yijuv(m))
for non oriented motifs of size 4.

m E
(

Yijkℓ(m)Yijuv(m)
)

m3

C−5didjdkdℓdudv

[

(di+dj)
2 (dk+dℓ) (du+dv)

{

1 + 3 C−1didj

}

+ 2 didj(di+dj)
{

(du+dv)
(

2 + C−1(didj +2 dkdℓ)
)

+ (dk+dℓ)
(

2 + C−1(didj + 2 dudv)
)

}

+ 4 d2
i d

2
j

(

1 + C−1(dudv+dkdℓ)
)

+ 4 C−1didjdudvdkdℓ

]

m4

see formula (4.17)

m5

4 C−7d3
i d

3
jd

2
kd2

ℓd
2
ud2

v + 5 C−8d4
i d

4
jd

2
kd2

ℓd
2
ud2

v

m6

didjdkdℓdudv

C7

[

d2
i d

2
j(di+dj)

2 (dk+dℓ) (du+dv)

(

1+
dkdℓ

C
+

dudv

C

)

+ d2
i d

2
j (di+dj)

{

(d2
k+d2

ℓ) (du+dv)

(

1+
dudv

C

)

+ (d2
u+d2

v) (dk+dℓ)

(

1+
dkdℓ

C

)}

+ didj(di+dj) (d2
i +d2

j)

{

dkdℓ(du+dv)

(

1+
dudv

C

)

+ dudv(dk+dℓ)

(

1+
dkdℓ

C

)}

+ didj(d
2
i +d2

j)
{

dkdℓ(d
2
u+d2

v)+dudv(d2
k+d2

ℓ)
}

+d2
i d

2
j (d

2
k+d2

ℓ)(d
2
u+d2

v)

+ (d2
i +d2

j)
2dkdℓdudv + didj(di+dj)

2dkdℓdudv(dk+dℓ)(du+dv) / C

]

m7

C−7d3
i d

3
jd

2
kd2

ℓd
2
ud2

v

{

C−2(di+dj)
2 (du+dv) (dk+dℓ)

+ C−2didj(di+dj)

[(

1+
dudv

C

)

(dk+dℓ)+

(

1+
dkdℓ

C

)

(du+dv)

]

+ C−3d2
i d

2
j (dudv+dkdℓ) + C−3didjdkdℓdudv

}

m8

C−11d5
i d

5
jd

3
kd3

ℓd
3
ud3

v
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Table 3: Formulas giving E(Yijkℓ(m)Yijku(m))
for non oriented motifs of size 4.

m E
(

Yijkℓ(m)Yijku(m)
)

m3

didjdkdℓdu

C4

[

6 didjdk

{

1 + (di+dj+dk) (dℓ+du) / C

+ (didj+didk+djdk+dℓdu) / C +
didjdk

C2
(dℓ+du)

}

+ (d2
i dj +did

2
j +d2

i dk+did
2
k+djd

2
k+d2

jdk)

(

1+
dℓdu

C
+

didjdk

C2
(dℓ+du)

)

+ 2
d2

i d
2
j +d2

i d
2
k+d2

jd
2
k

C
(du+dℓ) + 2(d2

i +d2
j +d2

k)
didjdk

C

(

1+
dℓdu

C

)

+ 6 didjdkdℓdu/C2(didk+didj+djdk)

]

m4

see formula (4.18)

m5

C−6d2
i d

2
jd

2
kd2

ℓd
2
u

{

didj + didk + djdk + 2 C−1didjdk(di+dj+dk)
}

m6

d2
i d

2
jd

2
kdℓdu

C5

[

(di+dj+dk)2 + 2
dudℓ

C2
(d2

i d
2
j +d2

i d
2
k+d2

jd
2
k)

+ 2(di+dj+dk) (didj +didk+djdk)
(du+dℓ)

C

+ 2
dudℓ

C2
(du + dℓ)

{

d2
i (dj +dk) + d2

j(di+dk) + d2
k(di+dj)

}

]

+
d3

i d
3
jd

3
kdℓdu

C7

[

3(di+dj+dk) (du+dℓ)
2

+ 2
dℓdu

C
(du+dℓ) (didj +djdk+didk)

]

+
didjdkd2

ℓd
2
u

C6

[

d3
i (dj +dk)2 + d3

j (di+dk)2 + d3
k(di+dj)

2
]

m7

C−6d2
i d

2
jd

2
kd2

ℓd
2
u

{

3C−2(didj +didk+djdk) didjdk (dℓ+du)

+ C−2(di+dj+dk) didjdkdudℓ + 6 C−3d2
i d

2
jd

2
kdℓdu

+ C−1(didj +didk+djdk)2
}

m8

C−9d4
i d

4
jd

4
kd3

ℓd
3
u
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Table 4: Formulas giving EY 2
ijkℓ(m)

for non oriented motifs of size 4.

m EY 2
ijkℓ(m)

m3

EYi,j,k,ℓ(m3) + C−4d2
i d

2
jd

2
kd2

ℓ

[

12 (3 + C−2didjdkdℓ)

+ 10 C−1
(

didj + didk + didℓ + djdk + djdℓ + dkdℓ

)

]

+ 2 didjdkdℓC
−4

{

didjdk(di+dj+dk) + didjdℓ(di+dj+dℓ)

+ didkdℓ(di+dk+dℓ) + djdkdℓ(dj +dk+dℓ)

}

m4

see formula (4.19)

m5

EYi,j,k,ℓ(m5) + 6 C−6d3
i d

3
jd

3
kd3

ℓ

m6 EYi,j,k,ℓ(m6) + 12 C−5d2
i d

2
jd

2
kd2

ℓ

{

5 C−1didjdkdℓ

+ didj +didk+didℓ+djdk+djdℓ+dkdℓ

}

m7

EYi,j,k,ℓ(m7) + 30 EYi,j,k,ℓ(m8)

m8

C−6d3
i d

3
jd

3
kd3

ℓ
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APPENDIX

This appendix contains some indications in order to prove the formulas put

in Tables 1, 2, 3 and 4 for the motifs m3, m5, m6, m7 and m8 of length 4.

Motif m3

We use the split of Yi,j,k,ℓ(m3) into the sum of 12 different terms. Some

symmetrical terms appear and we obtain

EYi,j,k,ℓ(m3) = 2
didjdkdℓ

C3

(

didj + didk + didℓ + djdk + djdℓ + dkdℓ

)

and EN(m3) = 2
∑

{i,j}∈I2

∑

{k,ℓ}∈I2(i,j)

d2
i d

2
jdkdℓ

C3
.

Let us now compute E(Yi,j,k,ℓ(m3)Yi,j,u,v(m3)). This is a big product but a large

number of terms may be grouped together and we have

E
(

Yi,j,k,ℓ(m3)Yi,j,u,v(m3)
)

=

=
didjdkdℓdudv

C5

{

(di+dj) (du+dv)

(

1+
didj

C

)

+ 2 didj

(

1+
dudv

C

)}

×
{

(di+dj)(dk+dℓ) + 2 didj

}

+ 2
d2

i d
2
jdkdℓdudv

C6

{

(di+dj) (du+dv) + dudv + didj

}

×
{

(di+dj)(dk+dℓ) + 2 dkdℓ

}

.

After some simplifications, we obtain,

E
(

Yi,j,k,ℓ(m3)Yi,j,u,v(m3)
)

=

=
didjdkdℓdudv

C5

[

(di+dj)
2 (dk+dℓ) (du+dv)

{

1+3
didj

C

}

+ 2didj(di+dj)

×

{

(du+dv)

(

2+
didj

C
+2

dkdℓ

C

)

+ (dk+dℓ)

(

2+
didj

C
+2

dudv

C

)}

+ 4 d2
i d

2
j

(

1+
dudv

C
+

dkdℓ

C

)

+ 4
didjdudvdkdℓ

C

]

.
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To get EY 2
i,j,k,ℓ(m3), we write

Y 2
i,j,k,ℓ(m3) = Yi,j,k,ℓ(m3)

+ 2

{

6Zij,jk,kℓ,ℓi + 6Yi,j,k,ℓ(m8) + 6Zij,jℓ,ℓk,ki + 6Ziℓ,ℓj,jk,ki

+ 5Zik,iℓ,jk,jℓ,kℓ + 5Zij,iℓ,jk,jℓ,kℓ + 5Zij,ik,jk,jℓ,kℓ + 5Zij,ik,iℓ,jℓ,kℓ

+ 5Zij,ik,iℓ,jk,kℓ + 5Zij,ik,iℓ,jk,jℓ + Ziℓ,jk,jℓ,kℓ + Zik,iℓ,jk,kℓ

+ Zij,iℓ,jk,jℓ + Zij,ik,iℓ,jk + Zij,ik,iℓ,kℓ + Zij,ik,jk,kℓ + Zij,iℓ,jℓ,kℓ

+ Zij,ik,jk,kℓ + Zik,iℓ,jℓ,kℓ + Zik,jk,jℓ,kℓ + Zij,ik,iℓ,jℓ + Zij,ik,jk,jℓ

}

.

This leads to

EY 2
i,j,k,ℓ(m3) = EYi,j,k,ℓ(m3)

+
d2

i d
2
jd

2
kd

2
ℓ

C4

[

12

(

3+
didjdkdℓ

C2

)

+
10

C

(

didj + didk + didℓ + djdk + djdℓ + dkdℓ

)

]

+ 2
didjdkdℓ

C4

{

didjdk(di+dj+dk) + didjdℓ(di+dj +dℓ)

+ didkdℓ(di+dk+dℓ) + djdkdℓ(dj +dk+dℓ)

}

.

Motif m5 (square)

First, let us calculate the probability EYi,j,k,ℓ(m5) that the motif m5 occurs

at position {i, j, k, ℓ}. Write Yi,j,k,ℓ(m5) = Zij,jk,kℓ,ℓi+Zij,jℓ,ℓk,ki+Zik,kj,jℓ,ℓi. Each

one of these indicator RVs has same expectation equal to d2
i d

2
jd

2
kd

2
ℓ/C

4. Therefore,

we have

EYi,j,k,ℓ(m5) = 3
d2

i d
2
jd

2
kd

2
ℓ

C4
and EN(m5) = 3

∑

{i,j,k,ℓ}∈I4

d2
i d

2
jd

2
kd

2
ℓ

C4
.

We now calculate E(Yi,j,k,ℓ(m5)Yi,j,u,v(m5)) like E{(Zij,jk,kℓ,ℓi+Zij,jℓ,ℓk,ki+

Zik,kj,jℓ,ℓi) (Zij,ju,uv,vi + Zij,jv,vu,ui + Ziu,uj,jv,vi)}. We get

(5.1) E
(

Yi,j,k,ℓ(m5)Yi,j,u,v(m5)
)

= 4
d3

i d
3
jd

2
kd

2
ℓd

2
ud2

v

C7
+ 5

d4
i d

4
jd

2
kd

2
ℓd

2
ud2

v

C8
.
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Now we provide the calculation of E(Yi,j,k,ℓ(m5)Yi,j,k,u(m5)).

E
(

Yi,j,k,ℓ(m5)Yi,j,k,u(m5)
)

=

= πijπjkπkℓπiℓ

{

πkuπiu + πjuπkuπik + πikπjuπiu

}

+ πijπjℓπkℓπik

{

πjkπkuπiu + πjuπku + πjkπjuπiu

}

(5.2)

+ πikπjkπjℓπiℓ

{

πijπkuπiu + πijπjuπku + πjuπiu

}

=
d2

i d
2
jd

2
kd

2
ℓd

2
u

C6

{

didj + didk + djdk + 2
didjdk

C
(di+dj+dk)

}

.

Easy computation of EY 2
i,j,k,ℓ(m5) is allowed since all 3 products of

two different indicator RVs appearing in Yi,j,k,ℓ(m5) are equal to Zij,jk,kℓ,ℓi,jℓ,ik

(indicator RV of the complete graph with vertices {i, j, k, ℓ}), whose expectation

equals d3
i d

3
jd

3
kd

3
ℓ/C

6

(5.3) EY 2
i,j,k,ℓ(m5) = EYi,j,k,ℓ(m5) + 6

d3
i d

3
jd

3
kd

3
ℓ

C6
.

Motif m6

According to the split of Yi,j,k,ℓ(m6) into the sum of 12 terms with

symetrical expectations in the form d3
i djd

2
kd

2
ℓ/C

4, we have,

∑

{i,j,k,ℓ}∈I4

EYi,j,k,ℓ(m6) = C−4
N
∑

i=1

∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

d3
i djd

2
kd

2
ℓ .

Concerning EY 2
i,j,k,ℓ(m6), we have

Y 2
i,j,k,ℓ(m6) = Yi,j,k,ℓ(m6) + 2

{

30Yijkℓ(m8) + 6
(

Zik,iℓ,jk,jℓ,kℓ + Zij,iℓ,jk,jℓ,kℓ

+ Zij,ik,jk,jℓ,kℓ + Zij,ik,iℓ,jℓ,kℓ + Zij,ik,iℓ,jk,kℓ + Zij,ik,iℓ,jk,jℓ

)

}

.

Finally,

EY 2
i,j,k,ℓ(m6) = EYi,j,k,ℓ(m6) + 12

d2
i d

2
jd

2
kd

2
ℓ

C5

{

5
didjdkdℓ

C

+ didj + didk + didℓ + djdk + djdℓ + dkdℓ

}

.
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Motif m7

Using the split Yi,j,k,ℓ(m7) = Zij,ik,iℓ,jk,jℓ + Zij,ik,iℓ,kj,kℓ + Zij,ik,iℓ,ℓj,ℓk +

Zji,jk,jℓ,ik,iℓ, we obtain

EYi,j,k,ℓ(m7) =
d2

i d
2
jd

2
kd

2
ℓ

C5

(

didj + didk + didℓ + djdk + djdℓ + dkdℓ

)

,

EN(m7) =
∑

{i,j}∈I2

∑

{k,ℓ}∈I2(ij)

d3
i d

3
jd

2
kd

2
ℓ

C6
.

E
(

Yi,j,k,ℓ(m7)Yi,j,u,v(m7)
)

=

=
d2

i d
2
jd

2
kd

2
ℓ

C4

(

djdℓ

C
+

didk

C
+

djdk

C
+

didℓ

C
+

didj

C

)

×
didjd

2
ud2

v

C3

(

djdv

C
+

didu

C
+

djdu

C
+

didv

C
+

didj

C
+

didjdudv

C2

)

+
d2

i d
2
jd

2
kd

2
ℓ

C4
×

dkdℓ

C
×

d2
i d

2
jd

2
ud2

v

C4

(

djdv

C
+

didu

C
+

djdu

C
+

didv

C
+

didj

C
+

dudv

C

)

.

After simplifications, we have

E
(

Yi,j,k,ℓ(m7)Yi,j,u,v(m7)
)

=

=
d3

i d
3
jd

2
kd

2
ℓd

2
ud2

v

C7

{

(di+dj)
2 (du+dv) (dk+dℓ)

C2

+
didj

C2
(di+dj)

[(

1+
dudv

C

)

(dk+dℓ) +

(

1+
dkdℓ

C

)

(du+dv)

]

+
d2

i d
2
j

C3
(dudv+dkdℓ) +

didjdkdℓdudv

C3

}

.

Now we focus on E(Yi,j,k,ℓ(m7)Yi,j,k,u(m7)).

E
(

Yi,j,k,ℓ(m7)Yi,j,k,u(m7)
)

=

=
d2

i d
2
jd

2
kd

2
ℓ

C5

{

djdℓdidkd
2
u

C3

[

djdu+ didk+ djdk+
didjdkdu

C
+ didj +

didjdkdu

C

]

+
didℓdjdkd

2
u

C3

[

didjdkdu

C
+ didk + djdk + didu+ didj +

didjdkdu

C

]

+
dkdℓdidjd

2
u

C3

[

didjdkdu

C
+ didk + djdk +

didjdkdu

C
+ didj + dkdu

]

+
(

didk+ djdk+ didj

) d2
u

C2

×

[

didjdkdu

C
+ didk + djdk +

didjdkdu

C
+ didj +

didjdkdu

C

]

}

.
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After simplifications, we have

E
(

Yi,j,k,ℓ(m7)Yi,j,k,u(m7)
)

=

=
d2

i d
2
jd

2
kd

2
ℓd

2
u

C6

{

3 (didj + didk+ djdk)
didjdk

C2
(dℓ + du)

+ (di+dj+dk)
didjdkdudℓ

C2
+ 6

d2
i d

2
jd

2
kdℓdu

C3
+

(didj + didk+ djdk)
2

C

}

.

Now, we compute EY 2
i,j,k,ℓ(m7). Any product of two different indicator RVns

appearing in m7 is equal to indicator RV of the complete graph on {i, j, k, ℓ}.

Thus,

EY 2
i,j,k,ℓ(m7) = EYi,j,k,ℓ(m7) + 30 EYi,j,k,ℓ(m8) ,

where EYi,j,k,ℓ(m8) is given below.

Motif m8

Motif m8 corresponds to a totally connected subgraph. In particular,

Yi,j,k,ℓ(m8) is an indicator RV, which simplifies calculations. We have

EYi,j,k,ℓ(m8) =
d3

i d
3
jd

3
kd

3
ℓ

C6
,

E
(

Yi,j,k,ℓ(m8)Yi,j,u,v(m8)
)

=
d5

i d
5
jd

3
kd

3
ℓd

3
ud3

v

C11
,

E
(

Yi,j,k,ℓ(m8)Yi,j,k,u(m8)
)

=
d4

i d
4
jd

4
kd

3
ℓd

3
u

C9
,

EY 2
i,j,k,ℓ(m8) = EYi,j,k,ℓ(m8) .


