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Félix, Bernadette, André Jean, and Claude Roman. Leptin
inhibits swallowing in rats. Am J Physiol Regul Integr Comp
Physiol 291: R657-R663, 2006. First published March 30, 2006;
doi:10.1152/ajpregu.00560.2005.—Swallowing is under the control
of premotoneurons located in the medullary solitary tract nucleus.
Although rats with transected midbrain do not seek out food, they are
able to ingest food present near the mouth, and acute food deprivation
induces an increase in food intake. Leptin is a satiety signal that
regulates feeding behavior. Because leptin receptors are found within
the caudal brainstem, and because food intake is regulated in midbrain
transected rats, this study tested the hypothesis that leptin is able to
modify the activity of premotoneurons involved in swallowing. Leptin
was microinjected at the subpostremal level of the medullary solitary
tract nucleus in anesthetized Wistar rats. Electromyographic elec-
trodes in sublingual muscles allowed recording of swallowing induced
by stimulation of sensitive fibers of the superior laryngeal nerve.
Repeated stimulation induced rhythmic swallowing. Microinjection of
leptin (0.1 pg and 0.1 ng) in the swallowing center induced an
inhibition of rhythmic swallowing (latency of <30 s) as shown by the
reduced number and strength of electromyographic activities, which
could last several minutes. The threshold of the leptin-induced inhi-
bition was close to 0.1 pg. Interestingly, the inhibitory effect of leptin
was not observed in leptin receptor-deficient Zucker rats. Here we
show that, in Wistar rats, leptin already known to modulate the
discharge of medullary solitary tract nucleus-sensitive neurons in-
volved in satiety reflexes can also modify the activity of swallowing
premotoneurons, thereby inhibiting an essential motor component of
feeding behavior.

leptin; medullary solitary tract nucleus; swallowing; rat

SOLID OR LIQUID EDIBLE food may involve suckling, lapping,
mastication, and in all cases swallowing. All of these functions
are the motor components of ingestive behavior. The lower
brainstem contains all the motoneurons regulating this behav-
ior. During swallowing, the motoneurons are under the control
of premotoneurons mainly located within the interstitial and
intermediate subnuclei of the solitary tract nucleus (STN) that
constitute the so-called “swallowing center” or “central pattern
generator” (CPG) of swallowing (SwCPG; see Ref. 23). Al-
though rats with transected midbrain do not seek out food, they
will ingest food applied near the mouth, accepting or rejecting
food by the taste (16). When they can be kept alive by careful
tube feeding, acute food deprivation induces an increase in
food intake (17, 18). Ingestive behavior in response to hypo-
glycemia also occurs in midbrain-transected rats (14).
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The hindbrain contains: /) several CPGs, the SWCPG but
also mastication, suckling or lapping CPGs; 2) the correspond-
ing motoneurons and the preganglionic neurons that control the
gut movements, the pancreatic secretion, and the hepatic me-
tabolism; 3) STN neurons that receive, during feeding, positive
feedback from the mouth and negative feedback from the
stomach, liver, and small intestine. The hindbrain is involved
in what may be called the “direct control of eating” (39). In
addition, in the intact animal, there are many reciprocal connec-
tions between the lower brain and the forebrain, especially the
hypothalamus, limbic system, and frontal cortex, i.e., all the
structures that are the sources of “indirect control of eating” (39).

Various neurotransmitter systems are involved in swallow-
ing (8, 23). The main results concern induction and facilitation
of CPG activity by excitatory amino acids (27), inhibition of
the swallowing sequence by GABA (20, 44), and the modula-
tory influence of monoamines (24). By contrast, little is known
on the action of neuropeptides on the SWCPG, in particular on
the role of peptides and neurohormones involved in food intake
control.

Leptin, the product of the ob gene (46), was first identified
as a hormone, secreted by adipose tissue, that regulates feeding
behavior and energy balance. It was recognized as a satiety
signal that acts at the hypothalamic level (11, 21) and reduces
body fat by reducing feeding and increasing the catabolic
activity of the sympathetic system. It circulates in the blood at
levels correlated with body fat mass, which may explain the
term of lipostatic signal often employed. Circulating leptin
reaches the brain through the choroid plexus by a receptor-
mediated transport. Recent data reported that: /) leptin recep-
tors are found within the caudal brainstem, in the dorsal vagal
complex, an area that includes the STN, the area postrema, and
the dorsal motor nucleus of the vagus (10, 19); 2) microinjec-
tion of leptin (1 wg) in the dorsal vagal complex suppresses
food intake (19) measured at 2, 4, and 24 h; 3) leptin is also
secreted from gastric mucosa (3), and this gastric leptin is able
to increase the activity of STN neurons, the first relay station
for vagal afferents (45, 37); and 4) gastric vagal afferent
terminals (43) and vagal mechanosensitive fibers from the
gastrointestinal tract (15) are responsive to leptin. Therefore,
either gastric or adipocyte-derived leptin may act at the level of
the STN, directly or via vagal fibers, as a satiety signal
reducing food intake (2). Considering the above-mentioned
food intake capabilities of mid-brain-transected rats, the ques-
tion arises as to whether leptin acts uniquely as a signal
modulating the discharge of sensitive neurons within the STN
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or if it is, in addition, able to modify directly the activity of
STN premotoneurons involved in swallowing. The present
work demonstrates that leptin microinjected directly in the
interstitial and intermediate STN subnuclei inhibits swallow-
ing, an essential motor component of ingestive behavior, and
so participates in the control of food intake and body weight
homeostasis.

METHODS

The experimental procedures described here were carried out in
accordance with the European guidelines for the care and use of
laboratory animals (Council Directive 86/6009/EEC) and the French
law on the Protection of Animals (1987; revised 2001).

Surgical procedures. Experiments were performed on 35 adult
Wistar rats weighing from 200 to 350 g, and 12 Zucker rats (6 rats
falfa weighing from 500 to 560 g and 6 rats fa/+ weighing from 400
to 440 g; Charles River, I’Arbresle, France) anesthetized with a
mixture of ketamine (100 mg/ml) and xylazine (15 mg/ml; Centravet,
Dinan, France) in a proportion of 90% and 10%, respectively. The
anesthesia was then continued by perfusion of the same mixture
through a catheter inserted in the peritoneal cavity, at a rate of 0.5-1
ml/h. Each superior laryngeal nerve (SLN) was dissected free from
surrounding tissues and placed on miniature bipolar electrodes. Ani-
mals were then fixed in a stereotaxic frame (Horsley and Clarke
apparatus adapted for rats) in such a position that, after occipitopari-
etal craniotomy and removal of the posterior part of the cerebellum,
the floor of the fourth ventricle appeared to lie in a horizontal plane.
Its surface was covered with warm liquid paraffin.

Stimulations and recordings. Swallowing was triggered by stimu-
lation of the sensitive fibers contained in the SLN. Stimulation with a
short train of pulses induced a single swallowing, whereas stimulation
with a long train of pulses produced several swallows [or rhythmic
swallowing recorded by electromyography (EMG)], at a rhythm
depending on stimulation frequency (Fig. 1). In the present study, only
long trains of pulses (35 s duration; 10-30 Hz frequency) were used.
The pulse voltage and duration varied according to the animal (1-3
volts; 0.05-0.5 ms). During these stimulations, the respiration was
more or less completely blocked (Fig. 1).

To monitor swallowing, the EMG activity of sublingual muscles
(mainly the geniohyoid) was recorded by means of bipolar copper
wire electrodes, insulated except at the tip, and inserted in the muscles
(7). In a first series of experiments, the EMG signals, suitably
amplified, were displayed on an oscilloscope (Tektronix 5111) and
stored on a computer using pCLAMP 6.0.1 software (Axon Instru-

5 10 15 20 Sec

Fig. 1. Example of polygraphic recording. St, stimulation of SLN at 20
pulses/s during 5 s (pulse parameters, 1.5 volts and 0.2 ms); EMG, electro-
myogram from genioglossus muscle. Note the rhythmic swallowing triggered
by superior laryngeal nerve (SLN) stimulation; T, rectal temperature in °C;
ECG, electrocardiogram; R, respiration. Note the respiration blockade during
the stimulation inducing rhythmic swallowing.

LEPTIN AND SWALLOWING

ments, Foster City, CA). In a second series, we had at our disposal a
PowerLab data acquisition system with eight input channels con-
nected to a personal computer, with chart software for Windows
(record, display, store, analyze). Body temperature was recorded
continuously by a rectal thermal probe and was maintained at 36—
37°C by means of a warming device. Electrocardiogram (ECG)
picked up by subcutaneous electrodes on each side of the thorax, and
respiratory activity recorded by a mechanotransducer (or a ther-
mistance in front of the nose) allowed heart rate (ECG) and respiration
monitoring, respectively (see Fig. 1). Electrocardiogram and swallow-
ing EMG fed loud speakers for auditory control.

Microinjections. Pressure ejections of drug solutions were per-
formed, either directly through a Hamilton syringe allowing the
injection of 50—100 nl or via glass pipettes (70—100 wm OD at the tip)
using a pneumatic pressure system (Neurophore BH2; Medical Sys-
tem, Great Neck, NY). The following agents, obtained from Sigma,
were used: 6 X 1072 to 6 X 107'> M leptin, 1073 to 107° M
L-glutamic acid, and 1073 M +y-aminobutyric acid (GABA). All of
these drugs were dissolved in a 0.9% NaCl solution. In a first series of
experiments, high doses of leptin were used to search for a possible
effect of the drug. Next, lower doses were used to determine the
threshold of leptin-induced action.

Recombinant rat leptin was first dissolved in 1 ml distilled water.
The solution was diluted in PBS, separated into aliquots, and stored at
—70°C. One aliquot (1 pl) was used for each experiment.

The maximum volume ejected through the micropipette was 50 or
more frequently 100 nl (amount measured with the Hamilton syringe
used to inject the drug in the glass pipette). For pressure ejection, the
volume was checked under a microscope, and the parameters (be-
tween 80 and 150 kPa for pulses of 1-5 s duration) were adjusted to
obtain 100 nl of leptin colored by addition of pontamine blue in a
droplet of paraffin oil. Therefore, the maximum amount injected in the
structure was 0.1 pg or 0.1 ng.

Histological controls. In 20 experiments, pontamine blue (4%) was
added to the drug solution injected. It had previously been checked that
this dye alone produced no effect on swallowing. At the end of these
experiments, the brainstem was removed and placed in a solution of 4%
formaldehyde. Frontal frozen sections (30—50 wm thick) were cut and
examined for histological localization of the injection site.

Experimental procedures. We studied how various agents [leptin,
glutamate (swallowing agonist), GABA (swallowing antagonist), and
vehicle of drugs alone (0.9% NaCl)] affect the rhythmic swallowing
elicited by long repetitive stimulations of the SLN. The drugs were
microinjected stereotaxically in the SWCPG, located in the region of
STN extending between 0.5 and 0.7 mm rostral to the caudal edge of
the area postrema (taken as the 0), 0.6—0.8 mm laterally, and 0.6—0.8
mm in depth. These coordinates correspond to those given by Kessler
et al. (25-27) for rats of similar weight. In addition, glutamate was
also tested in the absence of SLN stimulation to check whether the
drug triggered swallowing when the micropipette was positioned
according to the above-mentioned coordinates.

After the positioning of the micropipette in the injection site,
stimulation trains of pulses were delivered to the ipsilateral SLN every
30 s. A control episode including at least five trains of stimulations
was performed before drug injection. Next, stimulation and recording
were maintained until recovery.

Statistical analysis. Cardiac and respiration frequencies were ex-
pressed as means = SE. Data were analyzed using ANOVA, followed
by Fischer’s protected least-significant difference test. Statistical anal-
ysis software (StatView for windows 5.0.1; SAS Institute) was used.
The criterion for significance was P < 0.05.

RESULTS

Checking the localization of the SwCPG. To check that the
stereotaxic coordinates used in these experiments corresponded
to those of the SWCPG, we have shown that, in accordance
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with previous demonstration (26), microinjection of glutamate
within this site can initiate swallowing (Fig. 2A4), as does SLN
stimulation. The effects of microinjections of leptin were tested
at the same site. In addition, we controlled that GABA injected
at this site (Fig. 2B) induced an inhibition of swallowing (8,
44). In some experiments (n = 12), we injected, at the same
site, glutamate and then leptin. The coronal section of Fig. 2C
indicates the area within which all injections of drugs were
made.

Effects of leptin microinjections in the SwCPG. In 51 trials
performed on 31 Wistar rats, microinjections of leptin, either at
low (13 rats) or high doses (18 rats), always resulted in an
inhibition of rhythmic swallowing (Fig. 3). The effect occurred
with a very brief latency (Fig. 3A). Indeed, the number of
swallows usually decreased as soon as the first train of stimu-
lating pulses after microinjection. Considering that stimula-
tions were repeated every 30 s, and that injection was made
between two of them, it can be deduced that the latency was
<30 s. The duration and intensity of this inhibition varied
according to the doses of leptin injected. At the lowest doses
(0.1 pg or 6 X 10~ '2 M), inhibition lasted 57 min at the most
and only occasionally resulted in a total suppression of rhyth-
mic swallowing (Fig. 3A7). At higher doses (0.1 ng or 6 X
1072 M), the effects were more pronounced; not only did
rhythmic swallowing usually disappear, but also, the duration
of the inhibition ranged from <15 min up to 1 h and more.
Partial recovery was only obtained in a few experiments when
higher doses were used. One example is shown in Fig. 3B. The
intensity of inhibition could be evaluated according to the
following two criteria: number of swallows per pulse train and
strength of individual swallowing contractions before the total
disappearance (when occurring). As indicated above, we al-
ways observed a decrease in the number of swallows (Fig. 4),
and very frequently their disappearance. The decrease in the
number of swallows was accompanied by a reduction in the
intensity of the global swallowing EMG, more especially

R659

visible when the inhibition was powerful (Fig. 3B). The inhib-
itory effect of leptin was similar to that obtained with GABA
microinjection. It is worth noting, however, that recovery was
more rapid after GABA injection than after leptin application
(Fig. 4).

During the inhibitory action of leptin, and particularly when
rhythmic swallowing disappeared, a further increase in stimu-
lation parameters allowed the swallows to reappear or to
increase in number (Fig. 3B), indicating that the SwCPG
excitability had been reduced, with an increase of its triggering
threshold. This result was not because of lesions of afferent
fibers or changes in electrode impedance, since, after recovery,
the stimulation parameters for obtaining control rhythmic swal-
lowing returned to initial values.

As for cardiac and respiratory rhythms, no changes were
observed under the action of leptin (Fig. 4). The well-known
inhibition of respiration (9) during swallowing afferent stimu-
lation also persisted (Fig. 1).

Control experiments. Intramedullary microinjections of
0.9% NaCl or pontamine blue solutions (trials on 3 different
rats) caused no effect on rhythmic swallowing, even after
several applications. It was also worth noting that the inhibi-
tory effect of leptin was observed only when the ipsilateral
SLN was stimulated. Stimulation of the contralateral SLN still
induced swallowing (data not shown).

To evaluate the specificity of the effect of leptin, a series of
microinjections was performed on genetically obese Zucker
rats, with the lowest doses of leptin (0.1 pg) that range within
the physiological concentrations (see pDiscussioN). No modifi-
cation of swallowing activity was observed when leptin was
microinjected in STN of homozygous rats (fa/fa; Fig. 5, A and
O). Interestingly, within the same sites, GABA microinjection
(1073 M) still induced clear-cut inhibition of swallowing (Fig.
5B). A slight but not significant decrease of swallowing num-
ber was obtained when leptin microinjections were performed
in heterozygous (fa/+) Zucker rats (Fig. 5C).

Fig. 2. Localization of the central pattern
generator of swallowing (SwCPG). The 2
experiments in A and B were carried out on 2
different rats. The coronal diagram of the
medulla in C, drawn from the atlas of Paxi-
nos and Watson (35a), corresponds to the
level of the injection sites of glutamate,
y-aminobutyric acid (GABA), and leptin
St (between 0.5 and 0.7 mm in front of the

Control

A B
j mV

1. 1

] 0

1] GLU -1

0

caudal edge of the area postrema). Although
microinjections were made on both sides of
the medulla, all sites of injections have been
reported to the left side and are gathered in
the hatched area corresponding to the region
of the interstitial and intermediate solitary
St tract nucleus (STN) subnuclei. Amb, am-
biguus nucleus; AP, area postrema; SpT5,
spinal trigeminal tract; ST, solitary tract; 10,
dorsal motor nucleus of the vagus; 12, hypo-
glossal nucleus; 12n, roots of hypoglossal
nerve. A: microinjection of glutamate (GLU,
107 M; 1 pressure pulse); 2 swallows were
triggered. B: effect of microinjection of GABA
(1073 M; 1 pressure pulse) on rhythmic swal-
lowing. SLN repetitive stimulation (St, 5 volts,

30s after GABA

3min30s after GABA

St ms

T
0 2500

5000 7500 0.06 ms, 15 Hz during 4 s). Note the inhibition

of thythmic swallowing after GABA injection
and the recovery with a rebound effect.
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Fig. 3. Leptin microinjections in the medullary STN inhibit
rhythmic swallowing triggered by SLN stimulation; effects of
the doses. Tracings in A and B, obtained from 2 different
animals, should be read from rop to bottom. The leptin con-
centration was 0.1 pg for A/ and A2 and 0.1 ng for B.
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Hz during 5 s. Note in A/ the complete and very short
inhibition of rhythmic swallowing and, in A2, the less impor- A2
tant inhibition and the slightly longer recovery. In B, the
stimulation voltage was different, as shown on the tracings.

For the first (control) and the last (recovery) tracings, the
parameters were as follows: 1.5 volts, 0.08 ms, 30 Hz during

3 s. For all tracings, the voltage is indicated under the trace,

with the other parameters remaining identical. Note /) that the
inhibition of rhythmic swallowing was powerful (disappear-

ance of the response) and long-lasting (recovery after 125 min)

and 2) that, during maximum inhibition, between 40 and 60

min, the increase in voltage stimulation was allowed to obtain

a rhythmic swallowing very similar to that of control, indicat-

ing that during this period the swallowing CPG was less
excitable but nevertheless able to function. L 30 sec to L 125

min indicates the time after leptin injection.
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DISCUSSION

This study showed that leptin inhibits swallowing, a funda-
mental component of food intake. This result is congruent with
the well-documented action of leptin on ingestion (2, 5, 6, 12,
13). What was new, however, is the fact that this adiposity
signal, strongly involved in satiety, was able to act not only on
the afferent and integrative system of feeding but also on the
motor component of this system. This is probably one expla-
nation for the capacity for food intake regulation in the mid-
brain-transected animals (18).

Within the brainstem site studies, the leptin-induced effect
on swallowing appears to be specific, since inhibition was

never observed with 0.9% NaCl or pontamine blue solutions,
and leptin had no effect on heart rate and respiratory rhythm. In
addition, in the leptin receptor-deficient rat Zucker, leptin did
not modify swallowing activity, whereas GABA still induced
an inhibitory effect.

The fact that leptin was injected within the SWCPG area
could be attested by the following evidence: /) microinjec-
tions of transmitters (glutamate and GABA) known to be
involved in swallowing activation or inhibition, respectively
(23, 25, 20), gave the expected responses; 2) in the exper-
iments where injections of glutamate and leptin were made
successively at the same point, the results were those ex-
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pected (excitation and inhibition, respectively); and 3) the
latency of leptin effect was very short (<30 s), indicating
that the drug must have been injected very close to the neurons

of the SWCPG.
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Variations in leptin effects could be explained by the quan-
tity of drug injected (0.1 pg or 0.1 ng). The major difference
between the two doses concerned the duration of the effects

obtained, which is easy to understand since it was with the
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Fig. 5. Effect of leptin and GABA microinjections within the
medullary STN of genetically obese Zucker rats. Effect of leptin
(A) and GABA (B) microinjections performed within the same site
of homozygous (fa/fa) Zucker rats. Note the typical inhibitory
effect of GABA (1073 M), whereas leptin administration induced
no modification in rhythmic swallowing. C: effect of leptin micro-
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higher dosage that the duration of the inhibition showed greater
variability. Blood leptin concentrations in normal rats are in the
range of 2-10 ng/ml (0.1-0.6 nM; see Refs. 1 and 41), with an
increase of ~2 ng/ml (0.1 nM) after feeding. Leptin can readily
cross the blood-brain and blood-cerebrospinal fluid (CSF)
barriers to reach the central nervous system (4, 29), but the
mechanisms of this transfer are still a matter of debate, al-
though it seems to be acknowledged that high-affinity transport
systems, some being saturable, are involved (4, 29). Some
reports in humans (28, 31) and sheep (42) mention that the
amount of leptin in the CSF is lower than that in the blood,
with the CSF-to-plasma leptin ratio being near 0.025. If this
ratio is of same magnitude in the rat, the maximum CSF leptin
concentration should be in the range of 0.05-0.25 ng/ml (2.5 X
107" to 1.5 X 107'2 M). The lowest doses employed in our
experiments (6 X 107!2 M) are very close to these values and
so fall within the physiological range. On the contrary, the
highest doses (6 X 10~° M) used in the initial experiments for
detecting a possible action of leptin belong to the pharmaco-
logical domain. It must be emphasized that, in works using the
patch-clamp technique on hypothalamic slices, leptin is cur-
rently perfused at 107° to 10~ ' M (30, 36, 38, 40).

Leptin receptors are abundant in the lower brain, and par-
ticularly in the dorsal vagal complex, which includes the STN
(18, 22). Numerous data gathered over 30 years in the labora-
tory have demonstrated that the interstitial and intermediate
STN subnuclei are an essential part of the SWCPG, i.e., the one
that programs the entire motor sequence of swallowing (23,
27). It is thus tempting to assume that leptin decreases the
excitability of this programming system, which is able to
function rhythmically when solicited by repetitive afferent
stimulations (rhythmic swallowing). Our study does not allow
us to demonstrate the mechanism of leptin action that might
consist in postsynaptic inhibition of the neurons themselves or
presynaptic inhibition of excitatory afferent fibers. However, in
the medial part of the arcuate nucleus of the hypothalamus
slices from Wistar rats, it was shown that leptin inhibited
~60% of neurons through a direct postsynaptic action (32). In
addition, some works indicate that the inhibitory action of
leptin may involve GABA (35).

The inhibitory action of leptin on the STN premotoneurons
reported in this study is not in accordance with that described
by other authors who worked on the sensitive neurons of the
STN, relaying the vagal fibers issued from the stomach (37).
Those authors observed a facilitation of neuronal discharge
evoked by stomach loading, which is in keeping with the
satiating role of stomach distension and of leptin injection. Yet,
it cannot be taken for granted that all of the STN neurons
behave in the same way. Some visceral afferent fibers of the
vagus nerve, having a role in satiation, decrease firing when
satiety occurs. It is the case, for example, of the glucosensitive
fibers coming from the liver, which stop firing when glucose is
infused in the portal vein (33, 34). It has been shown that the
resting discharge of such glucose-sensitive fibers was inhibited
by peripherally acting leptin (38). It is reasonable to envisage
that the STN neurons connected to these fibers should also be
inhibited by circulating leptin. In fact, the mode of action of
leptin, like that of many other transmitters, probably varies
according to the functional context or purpose.

In conclusion, our results show that leptin at physiological
doses inhibits the SWCPG in anesthetized rats and conse-

LEPTIN AND SWALLOWING

quently the activity of the motoneurons involved in swallow-
ing. Because this motor activity has a major role in ingestion,
it can therefore be inferred that leptin inhibits ingestion by
acting not only on the afferent and integrative components of
the feeding nervous system but also on its motor outputs.
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