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Abstract
Background: In the human pathogen Bacillus cereus, the expression of most extracellular virulence
factors is controlled by the transcriptional activator PlcR. Among these virulence factors, cereolysin
O (Clo) is an haemolysin belonging to the cholesterol-dependant cytolysins, a protein family
extensively studied in Gram-positive bacteria.

Results: In the genomes of bacteria belonging to the B. cereus group, including Bacillus anthracis and
Bacillus thuringiensis, a small gene encoding a 26-amino acid peptide was present in multicopy. One
copy was always found upstream from the gene encoding Clo. In B. cereus ATCC 14579, the small
gene and the clo gene are co-transcribed. Transcriptional fusions showed that the three paralogues
identified in this strain were expressed in a PlcR-dependent manner. We propose to name these
peptides Spp for small PlcR-regulated peptides. We show that a synthetic peptide corresponding
to the deduced product of the spp genes displayed antibacterial activity.

Conclusion: The co-expression of spp, a small PlcR-regulated multicopy gene with clo suggests a
yet unidentified relationship between Spp and the cholesterol-dependent cytolysin in bacteria
belonging to the B.cereus group.

Background
Bacillus cereus is an opportunistic pathogen of humans,
causing local and systemic infections, and is a frequent
cause of food poisoning. This species belongs to the B.
cereus group, which includes the closely related species
Bacillus anthracis, Bacillus thuringiensis, Bacillus weihen-
stephanensis,Bacillus mycoides and Bacillus pseudomycoides
[1,2]. B. cereus produces several secreted proteins, includ-
ing enterotoxins, cytolysins, phospholipases and pro-
teases that may contribute to B. cereus pathogenicity. The
expression of most of these virulence factors is controlled
by the pleiotropic transcriptional activator PlcR [3,4]. This
global regulator has been shown to contribute to B. cereus

virulence in mice and insects [5] and in rabbit endoph-
thalmitis [6]. Expression of the PlcR regulon is activated at
the onset of the stationary phase of growth [7]. This acti-
vation results from cell-cell communication under the
control of PapR, a small peptide that is exported, proc-
essed, and re-imported into bacterial cells in its mature
form, presumably a pentapeptide, by the oligopeptide
permease [8,9].

Haemolysins of the cholesterol-dependent cytolysins
(CDC) family (also known as thiol-activated cytolysins)
have been identified in several genera of Gram-positive
bacteria [10]. These pore-forming toxins appear to play a
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significant role in the pathogenesis of the organisms pro-
ducing them [11,12]. Listeriolysin O has been extensively
studied, and this CDC has been shown to be an important
virulence factor, essential for the cellulosome escape and
intracellular multiplication of Listeria monocytogenes [13].
In Streptococcus pyogenes, the spn gene, which encodes an
effector protein, is located upstream from the gene encod-
ing Streptolysin (Slo). Cytolysin-mediated translocation
involving these two proteins has been described in this
bacterium [14]. In this process, Slo acts as a gate when
anchored in the target-cell membrane. SPN is thus trans-
located into the cytoplasm of the target cell, increasing
cytotoxicity [14,15]. The study of genes present in the
same operons as CDC-encoding genes may therefore
increase our understanding of virulence mechanisms in
these bacterial pathogens.

CDC have been identified in bacteria of the B. cereus
group. These proteins are named cereolysin O (Clo) in B.
cereus, thuringiolysin O (Tlo) in B.thuringiensis and
anthrolysin O (Alo) in B. anthracis [16-18]. We show here
that three paralogous copies of an unannotated gene
encoding a 26-amino acid peptide are present in the B.
cereus ATCC 14579 genome [19]. One of these paralogues
was co-transcribed with the gene encoding cereolysin O,
and all three paralogues were expressed in a PlcR-depend-
ent manner.

Results and discussion
Identification of a small gene, co-transcribed with clo
Small peptides often remain unannotated at the time of
bacterial sequencing projects [20,21]. However, many
such peptides have been shown to play a major role in
bacterial physiology. Analysis of the clo chromosomal
region of B. cereus ATCC 14579 revealed the presence of a
78 bp ORF between a putative PlcR box and the clo gene
(Fig. 1a). This ORF, starting with an ATG codon, was pre-
dicted to encode a 26-amino acid peptide and was called
pep1. It was preceded by a typical ribosome binding site at
an appropriate distance.

Primer extension was carried out in order to map the tran-
scription start site of the clo gene, using B. cereus total RNA
extracted after various culture times. The 5'-end of the
mRNA corresponding to clo was located downstream from
the PlcR box, and upstream from the pep1 gene, indicating
that a bicistronic transcript consisting of pep1-clo had been
produced (Fig. 1b). This result suggests that pep1 and clo
were co-transcribed from a single transcription start point
in the conditions tested. The -10 and -35 regions of this
promoter are highly similar to the -35 region (TTGACA)
and -10 region (TATAAT) of vegetative promoters recog-
nised by the σA RNA polymerase of B. subtilis (Fig. 1a).
Similar experiments were performed with RNA extracted
from the B. cereus Δ plcR strain. No signal was detected at

T0, T2 and T4 in such conditions (data not shown), indi-
cating that expression of the pep1-clo operon was PlcR-
dependent. This result is consistent with the lack of detec-
tion of the Clo protein in the extracellular fraction of the
B. cereus ΔplcR strain [4].

Identification of pep paralogues and orthologues in the B. 
cereus group
The deduced amino-acid sequence of the peptide encoded
by pep1 (Pep1) was used to screen the complete genome
of B. cereus ATCC 14579 by TBLASTN. This search led to
the identification of another two paralogues elsewhere on
the chromosome, not located close to any particular gene.
These paralogues were called pep2 and pep3. The NCBI NR
database was also screened by TBLASTN. This analysis
showed that ORFs presenting strong sequence similarity
with pep1 were identified in all the members of the B.
cereus group (Fig. 2). In most of the completed genomic
sequences, pep1 orthologues were found in multiple cop-
ies, up to three copies, depending on the strain. In all of
the genomes in which pep1 orthologues were identified,
one copy was located upstream from a CDC-encoding
gene (clo, alo or tlo). Recently, the 5'-end of the alo tran-
script was mapped [22]. Despite a slightly diverging
sequence between alo and clo promoter regions, the 5'-end
of the alo transcript was positioned downstream from the
PlcR box and upstream from the pep1 orthologue, reveal-
ing that in B. anthracis, a pep1-alo bicistronic transcript was
detected, as in B. cereus (pep1-clo). Thus, the structural

Map of the B. cereus ATCC 14579 pep-clo locusFigure 1
Map of the B. cereus ATCC 14579 pep-clo locus. (A) 
The PlcR recognition site (bold underlined), -10 and -35 
boxes (underlined) and the putative RBS binding site (bold 
italic) are indicated. The transcription initiation site (+1) is 
indicated by the arrow. (B) Total RNA (20 μg) extracted 
from B. cereus at the onset of stationary phase (T0), two 
hours (T2) and four hours (T4) after T0 was subjected to 
primer extension analysis, using an oligonucleotide binding 65 
nucleotides downstream from the Clo start codon. The same 
oligonucleotide was used to prime dideoxy sequencing reac-
tions from the corresponding region obtained by PCR ampli-
fication (lanes C, T, A, G).
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organisation of the operon constituted of pep1 and a
CDC-encoding gene seems to be conserved between spe-
cies of the B. cereus group.

No sequence displaying significant similarity to Pep1 was
identified in bacteria outside the B. cereus group, or in
other sequences in the databases, indicating that Pep1

orthologues are probably restricted to the B. cereus group.
However, in the genome of the atypical B. cereus strain
NVH 391–98, no pep1 orthologue could be identified. In
this strain, the genome has a reduced size (4 Mb) com-
pared to the other B. cereus group members [23], and no
CDC encoding gene is present. This finding is consistent
with the fact that this strain is genetically distant from
other B. cereus group members [24].

PlcR-dependent expression of pep1, pep2 and pep3
In silico analysis revealed the presence of a PlcR recogni-
tion site (TATGNAN4TNCATA) about 100 nucleotides
upstream from the three pep genes in B. cereus ATCC
14579. Alignment of the upstream region of the pep1, pep2
and pep3 genes identified in B.cereus ATCC 14579 showed
that the three promoter regions were very similar to the -
35 and -10 regions recognised by the σA RNA polymerase
of B. subtilis (Fig.3). A PlcR recognition site was also found
upstream from all the pep orthologues identified in the
other bacteria of the B. cereus group (data not shown).

We investigated whether the expression of the pep genes in
B. cereus ATCC 14579 depended on PlcR, by inserting
about 450 bp, including each of the 5'-pep regions,
upstream from the lacZ reporter gene of pHT304-18Z
(Table 1). B. cereus strains carrying the three different
recombinant plasmids were cultured in LB medium and
β-galactosidase activity was measured at various stages,
from the exponential growth phase to the late stationary
phase (Fig. 4). The kinetics of β-galactosidase production
were similar for all three strains, with pep-directed lacZ
transcription activated at the end of exponential growth.
However, transcription from the pep1 promoter appeared
to begin earlier, whereas that from the pep3 promoter was
activated later. These slight variations in the time course of
expression may reflect differences in promoter efficiency,
which might result from differences in the affinity
between PlcR and its target sequences. Our results indicate
that all three copies of pep are expressed in B. cereus ATCC
14579. The transcriptional activity of the three pep pro-
moters was drastically decreased in the B. cereus ATCC
14579 Δ plcR mutant (Fig. 4). Thus, the expression of the
three pep genes is PlcR-regulated. However, weak PlcR-
independent expression was detected for pep2'-Z (below

Alignment of spp1, spp2 and spp3 promoter regions identified in the B.cereus ATCC 14579 genomeFigure 3
Alignment of spp1, spp2 and spp3 promoter regions identified in the B.cereus ATCC 14579 genome. Diverging 
nucleotides are shown in grey boxes. The PlcR recognition site (bold underlined), -10 and -35 boxes (underlined) and the puta-
tive RBS-binding site (bold italic) are indicated. The transcription initiation site of spp1 is shown in bold.

Alignment of Pep sequences identified in members of the B. cereus groupFigure 2
Alignment of Pep sequences identified in members of 
the B. cereus group. Diverging amino acids are shown in 
grey boxes. Alignments were performed with the Multalin 
version 5.4.1 program [40]. The numbers indicate copy 
number (1, 2 or 3) in the available genome sequences from 
the B. cereus group. Each number 1 corresponds to a Pep 
orthologue encoded by an ORF positioned upstream from a 
cholesterol-dependent cytolysin-encoding gene. Bc14579: B. 
cereus ATCC14579; Bc10987: B. cereus ATCC10987; BcZK: 
B. cereus EL33; BcG9241: B. cereus G9241; Btk: B. thuringiensis 
serovar konkukian strain 97-27; Bt407: B.thuringiensis strain 
407Cry-; Bti: B. thuringiensis serovar israelensis ATCC 35646. 
For B. anthracis, the finished and unfinished genome 
sequences of the various strains gave the same Pep 
sequences, which are indicated only once. The B. anthracis 
strains tested were: strain Ames Ancestor, strain Ames, 
strain Sterne, strain Kruger B, strain A1055, strain CNEVA-
9066, strain Western North America USA6153, strain Vol-
lum, and strain Australia 94. In the B. anthracis strain A2012 
unfinished genome sequence, only orthologue number 1 was 
identified. *: Pep orthologue identified in an unfinished 
genome sequence.
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500 Miller Units), pep1'-Z and pep3'-Z (below 100 Miller
Units) (Fig. 4). This expression was significantly higher
than that observed with the negative control pHT304-18Z
without promoter (values < 10 Miller Units, data not
shown). In B. anthracis, the PlcR regulator is not func-
tional because the plcR gene is truncated [3]. A weak alo
expression was detected by RT-PCR in B. anthracis cells
grown in LB medium [25]. alo expression was also
detected in B. anthracis cultured in rich media or grown in
infected mice [18,22]. Thus, the weak expression of pep1-
clo detected in B. cereus ATCC 14579 Δ plcR, may be simi-
lar to the alo expression observed in B. anthracis, which
does not produce an active PlcR molecule. These peptides
were designated Spp, for small PlcR-regulated peptide.

Putative role of the Spp peptides
Bacillus species are known to produce and export an abun-
dance of small peptides. Several of these peptides are
involved in signalling or have antimicrobial activity [21].
Analysis of the deduced amino-acid sequence (26 aa) of
spp1 (pep1) with the SignalP 3.0 server showed there to be
no predicted signal peptide. However, a double-glycine
motif was found at positions 12 to 13 in all the Spp ortho-
logues (Fig. 2). This double-glycine motif is a characteris-
tic of some secreted peptides, such as competence-
stimulating peptides in streptococci and bacteriocins in
lactic acid bacteria [26]. The leader region of such peptides
is cleaved after the double-glycine motif by an ABC trans-
porter [27]. The presence of the double-glycine motif sug-

gested that Spp is exported. By analogy to the described
functions of double-glycine peptides in other Gram-posi-
tive bacteria, and given that competence has never been
described in B. cereus, we hypothesized that Spp has a bac-
teriocin-like function.

For analysis of the physiological role of Spp, the entire
deduced amino-acid sequence of spp1 (26 aa), and the 13
aa C-terminal region of this peptide (starting after the two
glycines) were synthesised chemically, giving Pep26 and
Pep13, respectively. These two molecules were tested
against various target bacterial cells, to determine whether
Spp1 had bacteriocin-like functions. No growth inhibi-
tion was observed with the negative control (diluted
DMSO) for any bacterial cell (not shown), whereas Pep13
displayed antibacterial activity at high concentrations
(7.26 mM) on Bacillus target cells: B. subtilis, B. thuringien-
sis, B. cereus F4430, and B.cereus ATCC 14579 (Fig. 5). The
antibacterial activity of Pep13 was detectable at dilutions
down to 1.85 mM. Pep13 (at 7.26 mM) also displayed
antibacterial activity against other Gram-positive target
bacteria: Enterococcus faecalis, Streptococcus agalactiae and
Listeria innocua, but not against Staphylococcus aureus (data
not shown). We also assayed activity against Gram-nega-
tive indicator bacteria: Pep13 (at 7.26 mM) displayed
weak antibacterial activity against Salmonella spp., but not
against Escherichia coli K12, Proteus mirabilis or Pseu-
domonas aeruginosa (data not shown). Antibacterial activ-
ity of Pep26 (at 2.45 mM) resulted in only a small growth

Table 1: Strains and plasmids used in this study

Strain or plasmid Relevant genotype Source or reference

Strains
B. cereus ATCC14579 laboratory collection
B. cereus Δ plcR ATCC14579 plcR::Km [5]
B. subtilis 168 laboratory collection
B. cereus F4430/73 laboratory collection
B. thuringiensis 407 Cry- laboratory collection
E. coli ET12567 (F- dam-13::Tn9 dcm-6 hsdM hsdR recF143 zjj-202::Tn10 galK2 galT22 ara14 pacY1 xyl-5 leuB6 thi-1) laboratory collection
Proteus mirabilis N. Boemare
Pseudomonas aeruginosa N. Boemare
Salmonella spp. N. Boemare
Enterococcus faecalis P. Serror
Listeria innocua laboratory collection
Streptococcus agalactiae P. Serror
Staphylococcus aureus P. Serror

Plasmids
pHT304-18'Z ApR and EmR cloning vehicle; lacZ reporter gene [38]
pHT-Ppep1'Z 433 bp region upstream from clo start codon inserted between PstI and BamHI sites of pHT304-

18'Z
this work

pHT-Ppep2'Z 448 bp region upstream from pep2 start codon inserted between HindIII and BamHI sites of 
pHT304-18'Z

this work

pHT-Ppep3'Z 480 bp region upstream from pep3 start codon inserted between HindIII and BamHI sites of 
pHT304-18'Z

this work

Km, kanamycin; Ap, ampicillin; Em, erythromycin.
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inhibition zone in assays with Bacillus indicator cells (data
not shown), and no effect was observed against other
indicator bacteria. The C-terminal region of Spp1 (syn-
thetic Pep13) had stronger antibacterial activity than the
entire Spp1 molecule (synthetic Pep26). This suggests that
processing by cleavage downstream from the double-gly-
cine motif may be necessary for peptide activation.

Among the indicator strains tested, B. cereus strains which
are Spp producers, were the most affected by the Pep13
antibacterial activity. Thus, other maturation process such
as posttranslational modifications, are probably required
to protect the bacterial cells against their own peptide.

When B. cereus vegetative cells were incubated 1 hour in a
phosphate buffer supplemented with Pep13 (to a final
concentration of 0.7 mM), the number of CFU decreased
from 1.5 (+/-0.1) × 107/ml to 3.3 (+/- 0.7) × 106/ml
(experiments were repeated twice). In the same condi-
tions, the number of B. subtilis CFU decreased from 2.1 ×
107/ml to 2.3 × 105/ml. This indicates that Pep13 was bac-
tericidal rather than bacteriostatic against these target
cells.

However, although spp is expressed, there is no evidence
that Spp is actually synthesized and secreted. Further-
more, given the high concentrations of Pep13 required in
our assays, we cannot rule out that the antibacterial activ-
ity detected is caused by the high Pep13 hydrophobicity
rather than by a specific antibacterial activity.

B. cereus has been isolated from soil, and from the gut of
insects and nematodes [28]. Like many other bacteria iso-
lated from such ecological niches in which there is strong
competition between numerous species of micro-organ-
isms for colonisation, B.cereus has been shown to produce
antimicrobial peptides [29,30]. Recently, an antibacterial
substance with a molecular mass of 3.4 kDa, active only
against Gram-positive bacteria, was described in B. cereus
ATCC 14579 [31]. This antibacterial activity is probably
not caused by Spp, because its antibacterial spectrum is
different and the predicted molecular mass of Spp1 is
lower: 2.9 kDa (26 aa), and 1.5 kDa for the C-terminal
fragment of Spp1 (13 aa). However, we cannot rule out
the possibility that Spp1 undergoes post-translational
modifications, accounting for differences in molecular
mass and antibacterial spectrum.

Two small peptides with double-glycine leader sequences
produced by competent cells of S. pneumoniae were
recently shown to be involved in the lysis of non-compe-
tent S.pneumoniae cells, leading to the release of pneumo-
lysin, a non-secreted CDC. This work revealed the
existence of co-operation between bacteriocins and a CDC
[32]. In B. cereus, Clo, which is found in the extracellular
fraction [4], is most probably exported by the SEC
machinery because it has a signal peptide. Thus, the link
between Spp and Clo is probably different from that
described in S. pneumoniae.

Agar-spot tests showing antibacterial activity of synthetic Pep13Figure 5
Agar-spot tests showing antibacterial activity of syn-
thetic Pep13. Indicator strains were grown in LB to an 
OD600= 0.6 and diluted to OD= 0.2 before spreading on LB 
agar. We spotted 15 μl of Pep13, at dilutions of 7.26 mM to 
0.93 mM, on indicator strains. Antibacterial activity was 
assessed after overnight incubation at 37°C.

7.26 3.63 1.85 0.93Indicator strain

B. cereus ATCC 14579

B. cereus F4430

B. thuringiensis

B. subtilis

Pep13 concentration (mM)

Expression of pep genes in B. cereus ATCC 14579 and B. cereus ATCC 14579 Δ plcRFigure 4
Expression of pep genes in B. cereus ATCC 14579 and 
B. cereus ATCC 14579 Δ plcR. Expression of Ppep1'-Z 
(circle), Ppep2'-Z (square), and Ppep3'-Z (triangle) in wild-
type (closed symbols) and B. cereus Δ plcR (open symbols) 
strains. Grey symbols, OD600 of cultures of bacteria. Cells 
were grown at 37°C in LB medium. Time zero indicates 
entry into stationary phase. Standard deviations of triplicate 
measurements are shown for β-galactosidase activity.
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In S. pyogenes, a co-operative effect between a CDC (Slo)
and a protein (Spn) encoded by a gene from the same
operon has been observed. This co-operative effect
increases toxicity to target cells [14]. We showed that spp1
(pep1) and clo are co-transcribed in B. cereus ATCC 14579.
This operon structure was found to be conserved among
bacteria belonging to the B. cereus group. These findings
suggest that Clo and Spp might co-operate to play a role
similar to that of Slo and Spn in S.pyogenes, in specific eco-
logical niches or growth conditions that remain to be
determined.

Conclusion
This work has led to the identification of spp genes present
in all members of the B. cereus group. We showed that the
three spp genes of B. cereus ATCC14579 were expressed in
a PlcR-dependent manner. In all the B. cereus group
strains, a spp gene is coexpressed with the CDC genes
encoding cereolysin, thuringiolysin or anthrolysin. The
biological signification of this co-expression and the pro-
posed Spp antibacterial role will have to be clarified.

Methods
Strains and growth conditions
The strains used in this study are listed in Table 1. E. coli,
and B. cereus cells were routinely grown in Luria broth
(LB), at 37°C with vigorous shaking. The antibiotic con-
centrations used for bacterial selection were: ampicillin,
100 μg.ml-1; erythromycin, 10 μg.ml-1 and kanamycin,
150 μg.ml-1. Bacteria with the Lac+ phenotype were iden-
tified on LB agar containing 40 μg.ml-1X-Gal.

Database comparison and sequence analysis
TBLASTN alignments were performed with the deduced
amino-acid sequence of the protein encoded by pep1 from
B. cereus ATCC 14579 to screen the NR database [33]. The
putative signal peptide in the polypeptide sequence was
identified with the SignalP 3.0 server [34].

DNA manipulation
Plasmid DNA was purified from E. coli using QIAprep
spin columns (Qiagen). Chromosomal DNA was
extracted from B. cereus cells as previously described [35].
Restriction enzymes and T4 DNA ligase were used as rec-

ommended by the manufacturer (New England Biolabs).
Oligonucleotide primers were synthesised by Proligo-
Genset (Paris, France). PCR was performed in a GeneAmp
PCR system 2400 thermocycler (Perkin-Elmer), using the
high-fidelity Pfx DNA polymerase (Invitrogen). Amplified
DNA fragments were purified with the QIAquick PCR
Purification Kit (Qiagen), digested and separated on 0.7%
agarose gels. Digested DNA fragments were extracted from
agarose gels by centrifugation in a filter device (Ultrafree
DA, Millipore). All constructs were verified by DNA
sequencing (GenomeExpress, France). Electroporation
was used to transform E. coli and B. cereus, as previously
described [36,37].

Construction of pep'-lacZ transcriptional fusions
We constructed pep'-lacZ transcriptional fusions by insert-
ing a PCR-amplified DNA fragment harbouring the puta-
tive pep1, pep2 or pep3 promoter regions, digested at the
endonuclease sites introduced in the primers (Table 2),
between the corresponding sites of pHT304-18'Z [38].
The recombinant plasmids (Table 1) were introduced into
B. cereus ATCC 14579 wild-type and Δ plcR mutant strains
by electroporation.

β-Galactosidase assay
β-Galactosidase specific activities from cells of B. cereus
strains harbouring plasmids with lacZ transcriptional
fusions were measured as previously described [35], and
were expressed in units of β-galactosidase per milligram of
protein (Miller units). The Bradford method (BioRad pro-
tein assay) was used for total protein quantification.

RNA extraction and primer extension
Total RNA was extracted from B. cereus ATCC 14579 wild-
type and ΔplcR cells grown in LB at 37°C, at the onset of
stationary phase (T0), two hours (T2) and four hours (T4)
after T0, as previously described [39]. The clo transcription
start site was identified by primer extension with the Ext-
snClo oligonucleotide (Table 2), as previously described
[39]. DNA sequencing was performed by the dideoxy
chain termination method, with the same primer and the
corresponding PCR product used as the template, with the
T7 sequenase PCR product sequencing kit (USB Corpora-
tion).

Table 2: Primers used

Primer name 5'-3' sequence* Restriction sites

Ppep1-L GATACTGCAGCCTTATGGGCCAATAGCAGT PstI
Ppep1-R CGTCGGATCCTGATTGATAAATGATTGCTAACTAA BamHI
Ppep2-L CGCAAGCTTTCTAAACAAGGAATCCTACAAAG HindIII
Ppep2-R CGCGGATCCCTCCTCTTTTTCGTATTAAGATG BamHI
Ppep3-L CGCAAGCTTGGAAATAGTGGGTCTAGAACAT HindIII
Ppep3-R CGCGGATCCCCTCTTTTGTTAATACTGGGA BamHI
Extsnclo CTAACTAATAAACATGCAAGGAAC

* Restriction enzyme sites are underlined.
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Antibacterial activity
The entire deduced amino-acid sequence of the pep1 ORF
(26 aa: MEIAMAVLKFVGGVIPLIQELLKAFM), and the 13
aa C-terminal region of this peptide were synthesised
chemically by Millegen (Toulouse, France). These mole-
cules were called Pep26 and Pep13, respectively. Due to
their strong hydrophobicity, these molecules were dis-
solved in DMSO, as recommended by the manufacturer.
The resulting stock solution was then diluted with H2O to
7 mg.ml-1 (2.45 mM) in 65% (v/v) DMSO/H2O for
Pep26, and to 11 mg.ml-1 (7.26 mM) in 25% (v/v)
DMSO/H2O for Pep13. These solutions were further
diluted in H2O and assayed on target bacterial cells. Indi-
cator strains were grown in LB at 37°C with vigorous
shaking, until an OD600nm of 0.6 was reached. They were
then diluted in fresh LB to give an OD of 0.2 and 5 ml
were spread on LB-agar plates. The plates were incubated
for 10 min and excess liquid was then removed. Plates
were allowed to dry at room temperature for 10 min
under laminar air flow. Then, 15 μl of Pep26, Pep13, or
DMSO (diluted to a final concentration of 65% as nega-
tive control) were applied to the plates inoculated with
indicator strains. Plates were incubated overnight at 37°C
before checking for a putative zone of growth inhibition.

In order to determine whether Pep13 was bactericidal or
bacteriostatic, indicator strains were cultured as described
above until an OD of 0.7 was reached. They were diluted
10 fold in a 0.1 M potassium phosphate buffer (pH 7) and
200 μl were incubated with 20 μl of a 7.2 mM Pep13 solu-
tion for 1 hour at 37°C. Then, the mixture was serially
diluted to determine the number of CFU on LB agar
medium.
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