D. Citer-ce,

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, Version postprint Comment citer ce document

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

S. Yakar, E. Canalis, H. Sun, W. Mejia, Y. Kawashima et al., Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions, J Bone Miner Res, vol.24, issue.8, pp.1481-92, 2009.

S. Elis, ;. , H. Wu, Y. Rosen, C. J. Sun et al.,

R. J. Majeska and S. Yakar, Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties, vol.1

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

K. E. Poole and J. Reeve, Parathyroid hormone -a bone anabolic and catabolic agent, Curr Opin Pharmacol, vol.5, issue.6, pp.612-619, 2005.

T. J. Martin, J. M. Quinn, M. T. Gillespie, K. W. Ng, M. A. Karsdal et al., Mechanisms involved in skeletal anabolic therapies, Ann N Y Acad Sci, vol.1068, pp.458-70, 2006.

D. D. Bikle, T. Sakata, C. Leary, H. Elalieh, D. Ginzinger et al., Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone, J Bone Miner Res, vol.17, issue.9, pp.1570-1578, 2002.

E. Canalis, M. Centrella, W. Burch, and T. L. Mccarthy, Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures, J Clin Invest, vol.83, issue.1, pp.60-65, 1989.

N. Miyakoshi, Y. Kasukawa, T. A. Linkhart, D. J. Baylink, and S. Mohan, Evidence that anabolic effects of PTH on bone require IGF-I in growing mice, Endocrinology, vol.142, issue.10, pp.4349-56, 2001.

J. Pfeilschifter, F. Laukhuf, B. Muller-beckmann, W. F. Blum, T. Pfister et al., Parathyroid hormone increases the concentration of insulin-like growth factor-I and transforming growth factor beta 1 in rat bone, J Clin Invest, vol.96, issue.2, pp.767-74, 1995.

P. Watson, D. Lazowski, V. Han, L. Fraher, B. Steer et al., Parathyroid hormone restores bone mass and enhances osteoblast insulinlike growth factor I gene expression in ovariectomized rats, Bone, vol.16, issue.3, pp.357-65, 1995.

Y. Wang, S. Nishida, B. M. Boudignon, A. Burghardt, H. Z. Elalieh et al., IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone, J Bone Miner Res, vol.22, issue.9, pp.1329-1366, 2007.

D. E. Sellmeyer, D. M. Black, L. Palermo, S. Greenspan, K. Ensrud et al., Hetereogeneity in skeletal response to full-length parathyroid hormone in the treatment of osteoporosis, Osteoporos Int, vol.18, issue.7, pp.973-982, 2007.

Y. Wu, H. Sun, S. Yakar, and D. Leroith, Elevated levels of IGF-1 in serum rescue the severe growth retardation of IGF-1 null mice, Endocrinology, 2009.

S. Yakar, M. L. Bouxsein, E. Canalis, H. Sun, V. Glatt et al., The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone, J Endocrinol, vol.189, issue.2, pp.289-99, 2006.

S. Yakar, C. J. Rosen, W. G. Beamer, C. L. Ackert-bicknell, Y. Wu et al., Circulating levels of IGF-1 directly regulate bone growth and density, J Clin Invest, vol.110, issue.6, pp.771-81, 2002.

S. Yakar, J. Setser, H. Zhao, B. Stannard, M. Haluzik et al., Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice, J Clin Invest, vol.113, issue.1, pp.96-105, 2004.

K. J. Jepsen, B. Hu, S. M. Tommasini, H. W. Courtland, C. Price et al., Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility, Mamm Genome, vol.18, issue.6-7, pp.492-507, 2007.

A. M. Parfitt, M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche et al., Bone histomorphometry: standardization of nomenclature, symbols, and units, J Bone Miner Res, vol.2, issue.6, pp.595-610, 1987.

Y. Wu, H. Sun, S. Yakar, and D. Leroith, Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice, Endocrinology, vol.150, issue.9, pp.4395-403, 2009.

A. Iida-klein, S. S. Lu, F. Cosman, R. Lindsay, and D. W. Dempster, Effects of cyclic vs. daily treatment with human parathyroid hormone (1-34) on murine bone structure and cellular activity, Bone, vol.40, issue.2, pp.391-399, 2007.

T. Bianda, Y. Glatz, R. Bouillon, E. R. Froesch, and C. Schmid, Effects of shortterm insulin-like growth factor-I (IGF-I) or growth hormone (GH) treatment on bone metabolism and on production of Version postprint Comment citer ce document

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, 25-dihydroxycholecalciferol in GH-deficient adults, J Clin Endocrinol Metab, vol.83, issue.1, pp.81-88, 1998.

C. Menaa, F. Vrtovsnik, G. Friedlander, M. Corvol, and M. Garabedian, Insulinlike growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production. Studies in cultured mouse kidney cells, J Biol Chem, vol.270, issue.43, pp.25461-25468, 1995.

T. Nesbitt and M. K. Drezner, Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity, Endocrinology, vol.132, issue.1, pp.133-141, 1993.

M. S. Wong, S. Sriussadaporn, V. A. Tembe, and M. J. Favus, Insulin-like growth factor I increases renal 1,25(OH)2D3 biosynthesis during low-P diet in adult rats, Am J Physiol, vol.272, issue.6, pp.698-703, 1997.

M. S. Wong, V. A. Tembe, and M. J. Favus, Insulin-like growth factor-I stimulates renal 1, 25-dihydroxycholecalciferol synthesis in old rats fed a low calcium diet, J Nutr, vol.130, issue.5, pp.1147-52, 2000.

E. Zoidis, M. Gosteli-peter, C. Ghirlanda-keller, L. Meinel, J. Zapf et al., IGF-I and GH stimulate Phex mRNA expression in lungs and bones and 1,25-dihydroxyvitamin D(3) production in hypophysectomized rats, Eur J Endocrinol, vol.146, issue.1, pp.97-105, 2002.

K. Sato, Therapeutic agents for disorders of bone and calcium metabolism, Clin Calcium, vol.17, issue.1, pp.64-71, 2007.

J. E. Compston, Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure, Bone, vol.40, issue.6, pp.1447-52, 2007.

T. Thomas, Intermittent parathyroid hormone therapy to increase bone formation, Joint Bone Spine, vol.73, issue.3, pp.262-271, 2006.

C. J. Rosen, The cellular and clinical parameters of anabolic therapy for osteoporosis, Crit Rev Eukaryot Gene Expr, vol.13, issue.1, pp.25-38, 2003.

J. T. Swarthout, D. 'alonzo, R. C. Selvamurugan, N. Partridge, and N. C. , Parathyroid hormone-dependent signaling pathways regulating genes in bone cells, Gene, vol.282, issue.1-2, pp.1-17, 2002.

M. Yamaguchi, N. Ogata, Y. Shinoda, T. Akune, S. Kamekura et al., Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice, Endocrinology, vol.146, issue.6, pp.2620-2628, 2005.

V. E. Demambro, D. R. Clemmons, L. G. Horton, M. L. Bouxsein, T. L. Wood et al., Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice, Endocrinology, vol.149, issue.5, pp.2051-61, 2008.

S. Amin, B. L. Riggs, . Melton-lj-3rd, S. J. Achenbach, E. J. Atkinson et al., High serum IGFBP-2 is predictive of increased bone turnover in aging men and women, J Bone Miner Res, vol.22, issue.6, pp.799-807, 2007.

C. A. Conover, E. W. Johnstone, R. T. Turner, G. L. Evans, J. Ballard et al., Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis, Growth Horm IGF Res, vol.12, issue.3, pp.178-83, 2002.

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, Ar (B) were analyzed over 2 growth periods (4-8 weeks and 8-16 weeks of age) and expressed as ratios (i.e., linear growth rate between 4 to 8 weeks =(Le 8w -Le 4w )/Le 4w ). Data presented as mean +/? SEM or n = 10-15 mice in each group over each period of time. *-denotes p<0, Figure 3. Linear and transverse bone growth rates Linear growth rate indicated by increases in femur length (Le) (A) and transverse growthrate indicated by increases in Tt

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, Version postprint Comment citer ce document

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, Stiffness (A) indicates resistance to bending and max load (B)] indicates the maximum force the sample can bear before failure. Data presented as mean +/? SEM of n=10-15 mice in each group at each time point. *-denotes p<0.05 comparing KO-HIT mice to Control. #-denotes p<0.05 comparing HIT mice to Control, Mechanical properties of femora were assessed by 4-point bending test on 16 week mice

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

, Cortical bone morphology: Tt.Ar

, Ct.Th

, Robustness (Tt.Ar./Le) (mm), p.0

. N. Tb, /mm) ce document

S. Elis, H. Courtland, Y. Wu, H. Sun, C. J. Rosen et al., Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact, Journal of Bone and Mineral Research, vol.25, issue.9, pp.2051-2058
URL : https://hal.archives-ouvertes.fr/hal-02655605

. Pth-l, Pm (%)

. Bfr/p and . Pm,

, c Different from PTH-treated control