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Abstract
Background: Rare long distance dispersal events impact the demography and the genetic
structure of populations. When dispersal is modelled via a dispersal kernel, one possible
characterisation of long-distance dispersal is given by the shape of the tail of the kernel, i.e. its type
of decay. This characteristic is known to directly act on the speed and pattern of colonization, and
on the spatial structure of genetic diversity during colonization. In particular, colonization waves
behave differently depending on whether the kernel decreases faster or slower than an exponential
(i.e. is thin-tailed vs. fat-tailed). To interpret and extend published results on the impact of long-
distance dispersal on the genetic structure of populations, we examine a classification of dispersal
kernels based on the shape of their tails and formally demonstrate qualitative differences among
them that can influence the predicted diversity of a propagule pool sampled far from two distinct
sources.

Results: We show that a fat-tailed kernel leads asymptotically to a diverse propagule pool
containing a balanced mixing of the propagules from the two sources, whereas a thin-tailed kernel
results in all propagules originating from the closest source. We further show that these results
hold for biologically relevant distances under certain circumstances, and in particular if the number
of propagules is large enough, as would be the case for pollen or seeds.

Conclusion: To understand the impact of long-distance dispersal on the structure and dynamics
of a metapopulation, it might be less important to precisely estimate an average dispersal distance
than to determine if the tail of the dispersal kernel is fatter or thinner than that of an exponential
function. Depending solely on this characteristic, a metapopulation will behave similarly to an island
model with a diverse immigrant pool or to a stepping-stone model with migrants from closest
populations. Our results further help to understand why thin-tailed dispersal kernels lead to a
colonization wave of constant speed, whereas fat-tailed dispersal kernels lead to a wave of
increasing speed. Our results also suggest that the diversity of the pollen cloud of a mother plant
should increase with increasing isolation for fat-tailed kernels, whereas it should decrease for thin-
tailed kernels.
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Background
In plant species, the patterns of gene flow by way of seed
and pollen dispersal determines the demographic behav-
iour of populations, the spatial distribution of neutral and
selected genetic diversities, and their evolution. Long-dis-
tance dispersal (LDD) is an important characteristic of
dispersal events affecting population ecology, species dis-
tribution, evolution, and conservation [1-4]. It can be
quantified by the proportion of the dispersers present far-
ther than a specified threshold or by a distance beyond
which only a small fraction of dispersers are found, e.g.
1% [4]. An alternative formulation of LDD concerns the
shape of the tail of the dispersal kernel. This characteristic
is known to play a major role in the speed of colonization
[5-7], spatial pattern during colonization [8] and genetic
structure after spatial expansion [9]. Because of its major
role, much effort is put in characterizing this shape of the
dispersal tail, both through a better understanding of dis-
persal mechanisms (mechanistic models, see e.g. [3]) and
through better empirical descriptions of observed patterns
(empirical models, see e.g. [10,11]). Dispersal kernels are
themselves subject to evolution and LDD should gener-
ally be selected for under simple assumptions [12,13].

There exists a large 'set of possibilities' when considering
dispersal kernels. When addressing long-distance disper-
sal, it is common to distinguish leptokurtic (kurtosis of
the distribution higher than that of a Gaussian with the
same variance) versus platykurtic kernels (e.g. [9]). How-
ever, as we will show below, kurtosis is a property of the
entire distribution and is an insufficient characterisation
of the tail for the purpose of predicting long-distance dis-
persal. When dealing only with the shape of the tail, a first
distinction made is whether the functions are exponen-
tially bounded or not. Functions not exponentially
bounded [7] are also named fat-tailed kernels [6]. They
can be contrasted with thin-tailed kernels that decrease
faster that an exponential function, with an intermediate
behaviour for the exponential-like kernels (those that
have the same behaviour as the exponential function in ±
∞). Another way of classifying the tails of dispersal kernels
is to distinguish whether they are regularly varying or rap-
idly varying [14]. Roughly speaking (Additional file 1 for
a precise definition), power-law decreases, also named
algebraic tails, are regularly varying [11] whereas all types
of exponential decreases (including exponential-power
functions for instance) are rapidly varying.

The way the tail of the dispersal kernel and the number
and positions of individuals emitting propagules interact
to determine the number of propagules arriving at a long
distance is well formalized and documented because it
plays a major role in determining the colonization speed
(e.g. [5]). The effect of this interaction on the genetic
diversity of distant propagule pools and the consequences

for the structure of genetic diversity has only been
approached through simulations (e.g. [9,15-17]). We
investigate here the relative contributions of sources at dif-
ferent distances to the pool of propagules by asking an
apparently simple question: at long distance from two iso-

1-D dispersal kernels and proportion πA of propagules from source AFigure 1
1-D dispersal kernels and proportion πA of prop-
agules from source A . (a) Plot of the three dispersal ker-
nels used (hatched line, Gaussian kernel; solid line, exponential 
kernel; long-hatched line, power-law kernel with a = 3). All 
three have the same mean distance travelled, equal to 2 m 
(parameter α equals respectively 3.44, 2 and 2). (b) Log-plot 
of the three dispersal kernels (c) Proportion of propagules 
from source A as a function of position x between -20 m and 
20 m for the three dispersal kernels. The distance between 
the two sources A and B is 2 m, equal to the mean dispersal 
distance.
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lated propagule sources, does one source dominate in the
propagule pool or is there an approximately even mixture
of propagules from both sources?

We show that, asymptotically, the answer depends criti-
cally on whether the dispersal kernel is fat-tailed or not.
Fat-tailed kernels lead to a balanced mixing of the prop-
agules from the two sources, and thus to a diverse prop-
agule pool. Contrarily, thin-tailed kernels result in a
propagule pool of low diversity, with nearly all prop-
agules originating from the closest source. We further
show that this asymptotic property is valid for biologically
relevant distances and numbers of propagules.

Results and discussion
Asymptotic results
1-dimension
When considering the proportion of propagules originat-
ing from each of two sources A and B, in the propagules
shadow at point x, πA(x) and πB(x), we showed that there
is a qualitative difference depending upon the weight of
the tail of the dispersal kernel (Methods and Figure 1; In
the Additional file 1, we also provide a formal proof gen-
eral to all families of kernels). Indeed, when going from xB
to +∞, the proportion of propagules from A (the farthest
source) tends toward:

• 0 for a thin-tailed kernel

• a value πlim strictly between 0 and 1/2 for an exponential
dispersal kernel

• 1/2 for a fat-tailed kernel.

This means that at long distances the propagules from the
two sources are well mixed with a ratio approximating 1:1
only if the dispersal kernel is fat-tailed. On the other hand,
if the dispersal kernel has a thinner tail than the exponen-
tial the fast majority of propagules received originate from
the closer source and almost all those originating from the
source located farther are absent in the propagule shadow.
The exponential kernel thus appears as a critical point
where the composition of the propagule shadow changes
qualitatively.

Moreover, for the particular kernels that we studied, we
show that the variations in proportions of propagules
from A are monotonic between xB and +∞ with (i) a
decrease towards 0 for thin-tailed exponential power ker-
nels, (ii) a constant value for an exponential kernel and
(iii) an increase towards 1/2 for fat-tailed exponential
power kernels and power-law kernels (Methods and Fig-
ure 1). This is unfortunately not the rule for all dispersal
kernels suggested. For example, the commonly applied
2Dt model (Table 1 and [18]) or the mixture of two Gaus-

sian (Table 1 and [19]) lead to a function πA(x) tending to
the correct asymptotic value (resp. 1/2 and 0) but in non-
monotonic ways (Fig. 2). The πA predicted with the fat-
tailed 2Dt model decreases before increasing towards 1/2
and that predicted with the thin-tailed mixture of two
Gaussian models increases before decreasing to 0.

2-dimensions
The 1-dimension results are strictly transposable to the 2-
dimension problem (Methods), except that the differ-
ences in the patterns of mixing are even more striking (Fig-
ure 3). When going away from the two sources along a
transect, the proportion of propagules from A:

• tends either towards 0 or 1 depending on the direction
followed if the kernel is thin-tailed

• tends towards values strictly between 0 and 1, depend-
ing on the direction followed, if the kernel is exponential

• tends towards 1/2 independently of the direction fol-
lowed if the kernel is fat-tailed.

Here again, at long-distances from the two sources, the
closest source is the only one that contributes significantly
to the propagule shadow for a thin-tailed kernel, whereas
both sources evenly contribute for a fat-tailed kernel. The
exponential kernel is a critical point between these two
behaviours. However, notice that on the line of equidis-
tance between A and B the proportion of propagules from
A is logically 1/2, whatever the kernel, and whatever the
distance to the sources.

Finite distances
Effect of the range of distances
The asymptotic results presented above are true whatever
the distance between the two sources and the mean dis-
persal distance but only at an infinite distance from the
sources. The distances at which this asymptotic behaviour
is a good approximation depend on the distance between
the sources relative to the mean dispersal distance. The
limit value for the exponential kernel, which is between 0
and 1/2, also depends on these two measures.

When the distance between the two sources is large with
regard to the mean distance travelled (that is when (xB-
xA)/δ is large), the exponential model tends to behave as a
thin-tailed kernel (Figure 4, top, hatched lines). Both lead
to a negligible proportion of propagules from A in the
propagule shadow at the right of source B. For fat-tailed
kernels this proportion remains close to 0 in the vicinity
of B, but increases as expected to 1/2 farther from B.

When the distance between the two sources is small with
regard to the mean distance travelled (that is when (xB-
Page 3 of 12
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xA)/δ is small), the three models tend to behave similarly
(Figure 4, top, black lines): the exponential model
remains equal to a value close to 1/2, the fat-tailed models
increase to 1/2 but starting from a high value at point xB
(thus the increase is weak) and the thin-tailed models
decrease to 0 very slowly.

Range of distances actually travelled in natural conditions
Among a given amount of propagules emitted (R), the
one that travels the longest distance is known as the fur-
thest forward propagule (FFP). It is of particular impor-
tance during a colonisation since its position will define
the extent of the population at the next generation. The
position of the FFP also indicates the range of distances to
consider when evaluating the biological relevance of the
asymptotic results given above. As already known [5], the
position of this FFP largely depends on the amount of
propagules emitted (R). This is particularly true for fat-
tailed dispersal kernels (Figure 4, bottom).

For the exponential kernel, the proportion of propagules
from A in the propagule shadow does not depend on posi-

tion. Thus, whatever the number of propagules emitted,
the level of mixing of propagules only depends on the dis-
tances between the sources (relative to the mean distance
travelled).

For a thin-tailed kernel the position of the FFP from B
shows a weaker dependence to the number of propagules
emitted. For the Gaussian we have used the asymptotic
behaviour of the propagule shadow (absence of prop-
agules from A) is (i) always reached for far sources, (ii)
only reached for large number of propagules emitted
(above 103) if the distance between the sources equals the
mean dispersal distance and (iii) never reached for nearby
sources (Figure 4).

For the power-law kernel we have used, the position of the
FFP from B shows huge variations depending on R. The
asymptotic behaviour of the propagule shadow (one half
of the propagules coming from A) is (i) almost always true
for close sources, (ii) reached for large number of prop-
agules emitted (above 103) if the distance between the
sources equals the mean dispersal distance, and (iii) still

Table 1: Six families of 1-dimensional dispersal kernels used in this study, together with their characteristics. The mean distance 

travelled is obtained from . Expression Γ() stands for the Gamma function.

Kernel 
families

Expression Parameters 
values

Weight of the tail Mean distance travelled, δ
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observable for far sources if the number of propagules is
very large (106).

Between the sources
The absence of mixing of the propagules from the two
sources, observed at long distances for a thin-tailed kernel,
can also be seen in the region between the two sources
when the distance between the sources is large with regard
to the mean distance travelled (high values of the ratio
(xB-xA)/δ). In particular, the Gaussian model rapidly leads
to πA being a binary function equal to 1 if the closer source
is A and 0 elsewhere (Figure 5). This means that a point x
receives almost only propagules from the closer source.
Contrarily, fat-tailed kernels lead to functions πA with a
smoother decline of πA between xA and xB, thus providing
a range of positions (around the origin in Figure 5) where
the propagule shadow is diverse.

Conclusion
Our results contradict a very intuitive idea. One would
expect that the propagule shadow received at long dis-
tance from two close and distinct sources should be simi-
lar to that received from one source emitting half of each
propagule type. However, we show that this is only the
case if propagules are dispersed following a fat-tailed dis-
persal kernel: at long distances, a mixing of the propagules
from the two sources happens with a ratio 1:1 of prop-
agules from each source. On the other hand, in species
with thin-tailed dispersal kernels all the propagules col-
lected far from the sources originate from the closest
source, independently of the distance between the

sources. Propagules from the farther source are absent in
the propagule shadow.

This property has several implications in terms of the
dynamics of the genetic diversity over a landscape with
several distinct propagule sources. The genetic composi-
tion of the propagule pool will qualitatively depend on
the type of dispersal kernel. In general, pools are expected
to be diverse and little differentiated with fat-tailed disper-
sal kernels, where all the sources contribute significantly
to the pool. The opposite is expected with thin-tailed ker-
nels, where only the closest source has a significant contri-
bution to each pool. In a metapopulation context, our
result suggests that a metapopulation will follow an island
model or gene pool model [20,21] with fat-tailed kernels,
whereas thin-tailed dispersal kernels lead to stepping-
stone or one-donor models [20].

Our results further help us to understand why thin-tailed
dispersal kernels lead to a colonization wave of constant
speed, whereas fat-tailed dispersal kernels lead to a wave
of increasing speed [5,22,23]. With thin-tailed dispersal
kernels the only individuals/sources that contribute to the
advance of the front of the wave are those already located
on the front; and the number of these individuals/sources
remains constant. On the contrary, with fat-tailed disper-
sal kernels, all the individuals/sources in the population
contribute to the colonization events. Thus, as the popu-
lation grows so does the number of long distance disper-
sal events as well as the longest distance travelled. The
speed of advance of the wave thus increases. Investigating
the position of the parent of the furthest forward prop-
agule could help to confirm this idea. The consequences
of our analysis are less clear concerning the genetic struc-
ture during colonization. Fat-tailed kernels lead to long-
distance dispersers founding very isolated satellite popu-
lations, with large founder effects (e.g. [24]). Our results
indicate that all the individuals of the population are
putative parents of these long-distance dispersers. Thus
concerning the global genetic structure we expect a high
spatial differentiation, but with no general isolation by
distance pattern, a same genotype being present in very
distant positions. For thin-tailed kernels, no long-distance
founding events are expected, and only the few individu-
als in the front of the colonization contribute to the next
settlers (which is a typical property of the diffusion mod-
els, obtained from Gaussian kernels [8]). This could imply
a progressive loss of diversity during the advance of the
front, leading to weaker differentiation [15] and an isola-
tion by distance pattern. This thin-tailed scenario is partic-
ularly well illustrated by [25] who show that a new variant
appearing on the front of a colonization either stays where
it appeared or moves with the colonization front but in
both cases variant individuals remain clustered. Remark
finally that the significance of the foundation events in

Proportion πA of propagules from source AFigure 2
Proportion πA of propagules from source A. Propor-
tion of propagules from source A as a function of position x 
between -20 m and 20 m for two dispersal kernels:hatched 
line, 1-dimensional 2Dt with a = 3 and α = 4.7; solid line, mix-
ture of two Gaussians with p = 2/3, α1 = 1 and α2 = 4. The 
mean distance travelled is the same for both kernels and 
equals 2 m.
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reducing diversity, particularly for fat-tailed kernels, could
be decreased if the further propagules are more clumped
than modelled usually. This is indeed a pattern observed
in some experiments (e.g. [26]). It though depends on
whether the clumped propagules originate from the same
source or not.

Obviously, no dispersal kernel will extend forever stricto
sensu but this does not discredit asymptotic results, as

illustrated in many scientific domains. Yet, the validity of
the asymptotic results should be checked for ecologically
relevant dispersal distances, which we investigated here by
considering the position of the further forward propagule.
We show here that, in practice, the difference between
thin and fat-tailed kernels depends on the interactions
among (i) the distance between sources, (ii) the mean dis-
persal distance or any scale parameter of the dispersal ker-
nel (actually, the ratio of distance between sources to the

Proportion πA of propagules from source A in a 2-D spaceFigure 3
Proportion πA of propagules from source A in a 2-D space. Proportion of propagules from source A as a function of 
position (x, y) in a 2-dimensional space for three dispersal kernels:top, exponential kernel; bottom left, Gaussian kernel; bottom 
right, power-law kernel with a = 4. The mean distance travelled is the same for the three kernels and equals 2 m (parameter α 
equals respectively 2.26, 1 and 1). The sources A and B are located in (-1,0) and (1,0). The lighter greys stand for larger pro-
portions of propagules from A, such as indicated by the colorbar.
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mean dispersal distance gathers i and ii) and (iii) the
number of propagules emitted by the sources. For
instance, when sources are very close, the absence of mix-
ture for thin-tailed kernels is only effective at very long
distances, whereas it is effective at realistic distances when
sources are distant enough. Since the position of the fur-
thest forward propagule increases with the number of
propagules dispersed, these realistic distances are more
likely to be reached for larger numbers of propagules.

Pollen dispersal is a typical case where large numbers of
propagules are dispersed. Our results show that the out-
crossing part of the pollen pool of isolated plants will be
diverse only if the dispersal kernel is fat-tailed. At the

opposite, the contribution of the closest pollen donors
will be largely dominant if the kernel is thin-tailed. It thus
seems that a correct estimation of the shape of dispersal
kernels is even more crucial for pollen than for seed dis-
persal if we wish to predict the impact of population frag-
mentation or low density on the maintenance and spatial
structure of genetic diversity. Empirical studies that com-
pare thin and fat-tailed kernels estimated with a variety of
methods tend to find that pollen dispersal kernels are fat-
tailed in tree species [27-29] as well as in grasses and forbs
([30] using paternity analysis; [31] for a review on crops,
[32,33] using phenotypic markers). Interestingly, as
expected from our results, if pollen dispersal kernels are
generally fat-tailed, reasonable low densities or levels of

Proportion πA of propagules from source A and position of the FFP from BFigure 4
Proportion πA of propagules from source A and position of the FFP from B. Mixing of propagules as a function of 
distances to the sources and distances actually travelled by the propagules. For three dispersal kernels (left, exponential kernel; 
centre, Gaussian kernel; right, power-law kernel with a = 3; all having a mean dispersal distance equal to 2 m) we have plotted 
the proportions of propagules from A as a function of position x (Top) and the distribution of the further forward propagule 
from B (Bottom). For each kernel, the bottom figure informs on the range of distances where the FFP is expected (for three dif-
ferent amounts of propagules), and thus where the proportion of propagules from A should be read with particular interest on 
the corresponding top figure. In the top figures, three designs are represented with distance between the sources A and B 
equal to:solid line, 0.2 m; hatched line, 2 m; long- hatched line, 20 m (the source B is always in 0, and A is located consequently). In 
the bottom figures, three intensities for the sources A and B have been considered with the amount of propagules emitted R 
equal to: light gray, 106; gray, 103; black, 10. For the different kernels, the x-axis scale has been adapted to include the distances 
actually travelled by propagules, and thus a log-scale has been used for the power-law kernel. When R equals 10, 103 and 106 

the FFP from B is around 5, 15 and 30 m for the exponential, around 4, 8 and 12 m For the Gaussian, and around 1, 30 and 
1000 m for the power-law. Thus, for instance, with the power-law kernel the FFP mostly stays within the first 50 m when R = 
10 (bottom right, black) where the asymptotic property is only valid for two close sources (top right, solid line). At the oppo-
site, when R = 106, the FFP is likely to travel 1000 m (bottom right, light gray), where the asymptotic is reached whatever the 
distance between sources (top right, long-hatched line).
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isolation tend to promote diversity of pollen clouds, as
estimated by an efficient number of fathers in tree species
([34] for a review) or correlated paternity within sibships
[35]. Diverse pollen clouds were observed, for example,
over isolated or low density individuals of Prunus mahaleb
L. [36], Pinus sylvestris [35] or Sorbus torminalis (Oddou-
Muratorio et al. submitted). Similar results were obtained
on male-sterile plants of oilseed-rape [17]. Among these
species, the last three had been shown to disperse pollen
following fat-tailed dispersal kernels [17,27,33,37].
Empirical results showing a diversity of pollen pools over
reasonably isolated individuals thus tend to indicate that
pollen dispersal kernels are generally fat-tailed. A thor-
ough investigation of the impact of the number and spa-
tial arrangement of sources on the results presented in this
study would be necessary before drawing definite conclu-
sions.

Methods
1-dimensional asymptotic results
Let us consider two sources of propagules A and B (seeds,
pollen or spores), located in a 1-dimensional space at
positions xA and xB>xA. Those two sources are assumed to
emit the same quantity of propagules and to disperse
them around themselves following the same kernel γ(x).
The proportion of propagules from A received at point x is
independent of the total number of propagules emitted
by each source. This can be written

where  is the ratio of the number of

propagules from B over the number of propagules from A.

If ρB tends to 0, πA tends to 1, if ρB tends to 1, πA tends to

1/2 and if ρB tends to +∞, πA tends to 0. We shall now cal-

culate this ratio for three different types of dispersal ker-
nels (Table 1) chosen because (i) they are the most
commonly used in the literature, (ii) they are the simplest
parametric families for dispersal kernels and (iii) they can
be associated through sums and products to encompass
almost all models of dispersal kernels (detailed below).

Exponential kernels
For the exponential kernels, the ratio of propagules from
source B over propagules from source A has the following
form between xB and +∞:

This means that ρB and πA do not depend on x for x>xB and
that πA takes a constant value between 0 and 0.5.

Power-law kernels
For power-law kernels, the ratio of propagules from
source B over propagules from source A between xB and
+∞ equals:

When x tends to +∞, ρB tends to 1, and thus πA tends to 1/

2. A second property is that ρB decreases for x>xB (this can

be checked by writing it in the classical form 

with ξ<ζ<0), and consequently, πA increases for x>xB.

Exponential power kernels
In the case of a kernel from the exponential power family,
(including the Gaussian kernels), the ratio of propagules
from source B over propagules from source A when x>xB is
given by

and this function can be written as
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Proportion of propagules from source A between the sourcesFigure 5
Proportion of propagules from source A between the 
sources. Proportion of propagules from source A as a func-
tion of position x between -300 m and 300 m for three dis-
persal kernels:hatched line, Gaussian kernel; solid line, 
exponential kernel; long-hatched line, power-law kernel with a 
= 3. The mean distance travelled is the same for the three 
kernels and equals 10 m (parameter α equals respectively 
17.7, 10 and 10).
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where o(x-1) is any function tending to 0 strictly faster than
x-1 in +∞. So, in +∞,

Thus, ρB tends to +∞ if c>1 and to 1 if c<1. Consequently,
πA tends to 0 if c>1 and tends to 1/2 if c<1. The particular
case c = 1, corresponding to the exponential kernels leads
to the same result as above, i.e. a limit strictly between 0
and 1/2.

Moreover, for x>xB, the derivative of ρB is

which is positive when c>1 and negative when c<1. Con-
sequently, for c>1, ρB increases towards +∞ when x
increases if x>xB and πA thus decreases towards 0. When
c<1, ρB decreases towards 1 when x increases if x>xB and πA
thus increases towards 1/2.

Rules for compounds of simple functions

If a kernel γ(x) can be written as the weighted sum of two

simpler functions, γ(x) = w1g1(x) + w2g2 (x), where g2 has a

heavier tail than g1 (i.e.  when x tends to ∞)

then the ratio of propagules from source B tends to the
same value as that obtained for the function g2 when x

tends to ∞.

This can be seen from the ratio

, in

which the first terms of both the numerator and the
denominator will be negligible in regards to the second

terms when x tends to ∞.

If a kernel γ(x) can be written as the product of two sim-

pler functions, γ(x) = g1(x) × g2(x), where g2 has a heavier

tail than g1 (i.e.  when x tends to ∞), then the

ratio of propagules from source B behaves, when x tends

to ∞, as that obtained for the function g1.

Indeed the ratio ρB can be written as a product of two
ratios:

. If the first

ratio tends to ∞, then ρB tends to +∞, whatever the limit of

the second ratio (because this second ratio is larger than
1). If the first ratio tends to 1, so does the second ratio

since g2 has a heavier tail than g1 and thus ρB tends to 1. If

the first ratio tends to a limit strictly over 1, then the sec-
ond ratio tends either to 1 or to a limit strictly over 1 and

in both cases, ρB tends to a limit strictly over 1.

2-dimensional asymptotic results

The analyses can readily be extended to the two-dimen-
sional case by considering two point sources of prop-
agules A and B, located at positions (xA, 0) and (xB, 0) with

xA = -xB. Those two sources are assumed to emit the same

number of propagules and to disperse them around them-

selves following the same 2-dimensional kernel γ(x, y).
We consider only isotropic kernels, that is kernels satisfy-

ing . Each point (x, y) where we

calculate the proportion of propagules coming from
source A can be expressed in polar coordinates by a dis-

tance r and an angle θ. Its distance to point B is then given
by

and its distance to point A is given similarly by

We are interested in letting r go to infinity while keeping
θ constant. This means that we are considering a point
moving away from the two sources in a given direction.
The Taylor expansions of expressions r' and r" can then be
obtained as:

where o(r-1) stands for any function negligible compared
to r-1 when r tends to +∞.

The ratio of propagules from B over propagules from A at
point (x, y) = (r, θ) can then be written as
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where o(1) stands for any function tending to 0 when r
tends to +∞.

By analogy with the 1-dimensional equation, in the direc-
tion θ when r tends to +∞, the ratio ρB(r, θ) behaves just
as the ratio for a 1-dimensional kernel γr, and a distance
between the two sources of 2cosθxB. The following results
are thus direct consequences of the 1-dimensional results.

Exponential kernels

For an exponential dispersal kernel (see Table 2) the ratio

ρB(r, θ) tends to  which is more than 1

for -π/2<θ<π/2 (that is in the direction of B) and less than

1 for π/2<θ<3π/2 (that is in the direction of A). As a result,

the proportion of propagules from A, πA(r, θ) tends to

πlim(θ), which is between 0 and 1/2 for -π/2<θ<π/2 and

between 1/2 and 1 for π/2<θ<3π/2.

Exponential power kernels

For an exponential power dispersal kernel (Table 2), if

c>1,ρB(r, θ) tends to +∞ when π/2<θ<3π/2 and tends to -

∞ when π/2<θ<3π/2. If c<1, ρB(r, θ) tends to 1 whatever

the value of θ. Finally, if c = 1, corresponding to the expo-

nential kernel, we find again the previous result: ρB(r, θ)

tends to . Consequently, the proportion

of propagules from A, πA(r, θ) tends to 0 for π/2<θ<3π/2

(direction of B) and to 1 for π/2<θ<3π/2 (direction of B)

when c>1; it tends to 1/2 whatever the direction θ when

c<1. For the exponential kernel (c= 1), πA(r, θ) tends to

values strictly between 0 and 1, such as already mentioned
above.

Power-law kernels
For the power-law kernels, ρB(r, θ) tends to 1 for all a>2,
and all θ. This means that the proportion πA(r, θ) tends to
1/2 in all directions for any power-law kernel.

Validity of the asymptotic results for natural scales
We computed distances actually travelled by some prop-
agules to evaluate whether the asymptotic results analyti-
cally derived are effective at finite distances of biological
interest. The range of distances of interest depends on the
dispersal kernel, by virtue of the mean distance travelled
and the dispersal tail; in addition the range of distances is
also very sensitive to the number of propagules R emitted
by each source [5].

We derived numerically for different kernels γ and
number of propagules R, the distribution of the position
of the furthest forward propagule (FFP) coming from B
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Table 2: Four families of 2-dimensional dispersal kernels used in this study, together with their characteristics. The mean distance 

travelled is obtained from . Expression Γ() stands for the Gamma function.

Kernel families Expression Parameters values Weight of the tail Mean distance travelled, δ

Exponential α >0 Rapidly varying
Exponential

2α

Gaussian α >0 Rapidly varying
Thin-tailed

Power-law α>0
a>2

Regularly varying
Fat-tailed

Exponential power α,c>0 Rapidly varying
Thin-tailed for c>1
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Exponential for c = 1
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[5]. The probability density function (PDF) of this ran-
dom variable is given by

FFPB(x) = Rγ(x - xB)F(x - xB)R-1

where F is the cumulative distribution function (CDF)
associated with γ. This expression means (i) that the fur-
ther forward propagule from B is one of the R propagules
emitted by B, (ii) that it falls at a distance x-xB from its
source (B) and (iii) that the R-1 other propagules from B
fall at distances smaller than (x-xB).

As a simplification, we have chosen to focus on the posi-
tion of the FFP from B (and not on the position of the FFP
from both sources A and B), because its distribution does
not depend on the position of source A. This is a conserv-
ative choice because the extreme dispersal event of interest
for biological questions (such as speed of colonization or
contamination between fields...) is the FFP, which is
either the FFP from B, or the FFP from A if it travelled fur-
ther than the FFP from B [5].

We considered three wide-ranged values for R equal to 10;
1000 and 1000000. These orders of magnitude corre-
spond for instance to the numbers of dispersed rodents
offspring, tree seeds and crop pollen grains.

The computation of the proportions of propagules from
the source A at distances close to that of the FFP from B
allowed asserting if the asymptotic properties obtained
when the distance is tending toward infinity are good
approximations for what happens to the further forward
individuals.
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