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Summary A medium-density map of the horse genome (Equus caballus) was constructed using genes
evenly distributed over the human genome. Three hundred and twenty-three exonic primer
pairs were used to screen the INRA and the CHORI-241 equine BAC libraries by polymerase
chain reaction and by filter hybridization respectively. Two hundred and thirty-seven BACs
containing equine gene orthologues, confirmed by sequencing, were isolated. The BACs
were localized to horse chromosomes by fluorescent in situ hybridization (FISH). Overall,
165 genes were assigned to the equine genomic map by radiation hybrid (RH) (using an
equine RHsggo panel) and/or by FISH mapping. A comparison of localizations of 713 genes
mapped on the horse genome and on the human genome revealed 59 homologous seg-
ments and 131 conserved segments. Two of these homologies (ECA27/HSA8 and ECA12p/
HSA11p) had not been previously identified. An enhanced resolution of conserved and
rearranged chromosomal segments presented in this study provides clarification of chro-
mosome evolution history.

Keywords comparative mapping, gene mapping, horse.

Introduction

Genome mapping in domestic animals is used to reveal the
structure and evolution of the genome and to identify
markers for genes of interest that might be used in selection.
Construction of genetic linkage maps for the horse (Equus
caballus) was initiated using anonymous microsatellite
markers (Guérin et al. 2003; Penedo et al. 2005), but these
maps did not allow for interspecific comparisons except for a
few microsatellite-flanking sequences (Farber & Medrano
2004). A major step towards comparative mapping oc-
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curred with chromosome painting of human chromosomes
on the equine karyotype (Raudsepp et al. 1996). Further
refinement of the horse-human comparative map occurred
through the localization of genes using somatic cell hybrids
(SCH) and by radiation hybrid (RH) and cytogenetic (FISH)
mapping (Shiue etal. 1999; Milenkovic et al. 2002;
Chowdhary et al. 2003).

A likely comparative evolution of chromosomes in
mammals from a common ancestor was first described by
Chowdhary et al. (1998), who used chromosome painting
data from eight species belonging to five different orders.
Comparisons across species have also been performed with
genes mapped to specific locations (Milenkovic et al. 2002;
Chowdhary et al. 2003; Gustafson-Seabury et al. 2005).
Dense gene maps covering the entire horse genome are still
needed, but once available, these will allow for a general
comparison of genomes (Murphy et al. 2005). Specific algo-
rithms for studying mammalian chromosome evolution are
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being developed (Bourque & Pevzner 2002; Pevzner & Tesler
2003).

The present work was aimed at constructing a medium-
density map of the horse genome with evenly distributed
gene-specific markers assigned using RH and cytogenetic
mapping approaches. These maps will allow studies of
conservation and evolution of chromosomes and chromo-
somal regions between the horse and other mammalian
genomes.

Materials and methods

BAC library screening

Gene selection and primer design Five hundred and twenty-five
genes evenly distributed at an average interval of 5.7 Mb on
human autosomes and the X chromosome were selected.
Bovine or equine intra-exonic primers based on expressed
sequence tag sequences in consensus human-cattle and hu-
man-horse regions were designed with the ICCARE (Muller
et al. 2004; http://bioinfo.genopole-toulouse.prd.fr/iccare/)
and Primer 3 algorithms to amplify DNA fragments of
approximately 200 bp.

DNA amplification Primers were used to amplify genomic
DNA from cattle and horse by PCR using the following
conditions: 10-20 ng DNA in a total volume of 15 pl con-
taining 1.5 mm MgCl,, 125 pm each dNTP, 1 um primer
and 0.5 U Taq polymerase. Amplifications were performed
in PTC100 thermocyclers (M] Research, Bio-Rad Laborat-
ories, Hercules, CA, USA) with 5-min denaturation at 94 °C
and then 35 cycles of 30-s denaturation at 94 °C, 30-s
primer hybridization at 55 °C and 30-s elongation at 72 °C.
Fragments were analyzed on 2% agarose gels.

Hypbridization screening Three high-density filters, each con-
taining 18 432 duplicated clones of the equine CHORI-241
BAC library (BACPAC Resources, Oakland, CA, USA) and
representing about three genome equivalents, were screened
by hybridization using bovine or equine probes produced by
PCR amplification on whole genomic DNA with the primers
mentioned above. The PCR products were purified using
Wizard SV Gel and PCR Clean-Up System columns (Prome-
ga, Madison, WI, USA). For each hybridization, 25-30
probes (2 ng per probe) were mixed together in a maximum
volume of 30 ul and labelled by random priming with
50 pCi of (¢>2P)-dCTP and 2 U Klenow enzyme for 1 h at
37 °C. The reaction was stopped by adding 0.5 m EDTA (pH
8.0), and the labelled products were purified with commer-
cial columns (Nick™ Column; Amersham Bioscience AB,
Uppsala, Sweden) in conditions recommended by the
manufacturer. Homologous and heterologous hybridization
procedures followed standard protocols (Sambrook et al.
1989). Autoradiography using Kodak X-OMAT AR films
(E.I.S., Massy, France) were visually interpreted to identify

clone addresses. Pools of positive clones were distributed in a
two-dimension scheme, and each BAC was further verified
by PCR with the appropriate primers.

PCR screening, sequencing and gene identification Genes that
could not be identified in the equine CHORI-241 BAC lib-
rary were then screened on the equine INRA BAC library by
PCR as described previously (Milenkovic et al. 2002). DNA
from each isolated BAC clone was amplified by PCR with the
corresponding gene primer pair and the products purified as
above. One to three nanograms of purified PCR product was
directly sequenced on one strand with the forward primer
using either an ABI 377 (Applied Biosystems, Foster City,
CA, USA) or a MegaBACE (Molecular Dynamics, Sunnyvale,
CA, USA) automatic sequencer. Sequences were queried
against homologous sequences using the BLASTN algo-
rithm (http://www.ncbi.nlm.nih.gov) to confirm the iden-
tity of the gene in the isolated clone (E < e *°).

Genome mapping

FISH mapping One hundred and thirty BAC clones chosen
in regions that were poorly defined in the equine map
(corresponding to human chromosomes 6, 9, 10, 11, 12,
18, 19 and 21) were localized on equine metaphase chro-
mosomes by fluorescent in situ hybridization (FISH). R and
G banding was as described elsewhere (Hirota et al. 2001;
Lear et al. 2001; Chowdhary et al. 2003; Perrocheau et al.
2005). The international horse chromosome banding
standard (ISCHN 1997) was used as a reference.

RH mapping Genes reported here and those in Perrocheau
et al. (2005) were localized on the horse RHsgoo panel
(Chowdhary et al. 2002) by PCR or SSCP using the cor-
responding primers. The PCR components included 50 ng
panel DNA, 2 mm MgCl,, 250 pm each dNTP, 0.36 pum each
primer and 1.12 U Taq polymerase in a final volume of
15 pl. Amplification conditions were identical to those
described above. Fragments were analyzed on 2% agarose
gels and visually interpreted. The ExcelGel DNA Analysis kit
(Amersham) was used for SSCP analysis (Laurent et al.
2000). Each gene was incorporated into the first version of
the whole-genome map (Chowdhary et al. 2003). A two-
point analysis was then performed with a program devel-
oped in our laboratory. Markers with a LOD score >6 were
included in the same synteny group and considered to
belong to the same chromosome. Multipoint analysis
ordering the genes within linkage groups was carried out
with the Defalgo option of the CarthaGene software (http://
www.inra.fr/bia/T/CarthaGene/).

Comparative mapping A comparative horse—human map was
constructed using the most recent gene locations on the
horse and human maps (Chowdhary et al. 2003; Lee et al.
2004; Raudsepp et al. 2004; Gustafson-Seabury et al.
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2005). First, a backbone map for horse was made using the
RH mapping data alone. Then, FISH-mapped genes were
added on the horse map in positions that minimized rear-
rangements with the human genome. Orthologous gene
locations on the human genome were obtained from
sequencing data available at Ensembl (http://www.ensembl.
org; version dated April 2005). Genes were classified into
homologous segments and conserved segments according
to their comparative location in the human and equine
genomes. Homologous segments between the horse and
human genomes were defined as chromosome segments
containing one or more homologous genes. Conserved
segments were defined as smaller units of homologous
segments containing at least two genes, and segments were
assumed to be uninterrupted in the two species. Within a
segment, the order of more than two genes had to be pre-
served. Slight differences in gene order in small intervals
were accepted for conserved segments. In these cases, con-
served segments were defined according to the parsimony
hypothesis, which limits the number of rearrangements
between the horse and human genomes.

Results

Primer panel

Consensus sequences between human-bovine (428) and
human-equine (97) ESTs were generated from intra-exonic
fragments of each chosen gene. Among these, 323 primer
pairs (226 bovine and 97 equine) amplified horse genomic
DNA (Table S1). The corresponding fragments had an
average length of 175 bp (ranging from 82 to 300 bp) and
were used as hybridization probes.

BAC library screening

Three filters, which corresponded to about 25% of the
CHORI-241 BAC library and represented three equine
genome equivalents, were screened by hybridization with
323 probes (226 bovine and 97 equine) resulting in the
identification of 151 and 66 genes respectively. Overall, 217
genes were obtained, representing a 67% yield. The INRA-
LGBC library was screened by PCR with 113 primer pairs,
which led to the isolation of 83 genes, with a 73% yield.
BLASTN analysis of sequences from 300 putative genes
confirmed the identity of 237 unique genes (Table S2).
These genes were distributed, on average, at 12.7-Mb
interval in the horse genome. An average of 2.1 BAC clones
per gene was obtained, but this figure is an underestimate
because the genes were not sequenced in all retrieved BACs.

RH map

Two hundred and thirty-seven genes from this study and 32
genes from Perrocheau et al. (2005) were typed on the

Construction of a horse gene map

RHs009 panel (Table S2). Among these, 205 genes were
scorable. The two-point linkage analysis assigned 167 genes
at a LOD score 26.0. The RH location was in agreement
with that determined by FISH and/or with what was
expected from the horse-human comparative map. Among
the remaining 38 genes, 19 were assigned because their RH
localization agreed with those obtained by FISH even
though their two-point linkage LOD scores were <6.0. The
other 19 were discarded (LOD < 6.0 and a discrepancy with
FISH). In total, 186 genes were added to the 255 previously
mapped on the RH map (Fig. 1). The RH map now includes
441 type I markers and 470 type II markers. These 911
markers are clustered in 101 linkage groups distributed on
the 31 autosomes and on the X chromosome. Twenty-six
markers remain as singletons. On average, three linkage
groups were found on each chromosome with a range of
one to eight per chromosome. For seven chromosomes,
enrichment of the RH map has allowed merging two to five
linkage groups into a single group. The cumulative size of
the RH map obtained by summing all linkage groups was
17 039 cR. Thus, the map provides on average one gene
every 2.5 Mb, estimated at 18.7 cR.

FISH mapping

One hundred and thirty BACs were localized on equine
chromosomes by FISH mapping (Table S2). Among these,
87 had chromosomal locations in agreement with RH data
and/or with those expected from comparative mapping. The
remaining 43 assignments were not conclusive. Thus, there
are 511 cytogenetic gene localizations including those re-
cently located on ECA17, ECA22 and ECAX (Lee et al
2004; Raudsepp et al. 2004; Gustafson-Seabury et al.
2005). In this study, at least one gene was mapped on each
equine chromosome, except for eight chromosomes (ECA16,
ECA17, ECA18, ECA19, ECA25, ECA28, ECAX and ECAY).
For the first time, two genes were mapped by FISH on the
short arm of chromosome 12 and three on chromosome 27,
which previously contained only one gene by RH mapping
(Perrocheau et al. 2005). Moreover, the map was enriched
with genes in previously poorly covered regions on ECA6,
ECAS8, ECA12, ECA27, ECA29 and ECA30. These new gene
localizations allowed anchoring of a fifth RH linkage group
on ECA8 and the orientation of 11 RH linkage groups
(Fig. 1).

Comparative mapping

Our work adds 165 genes to the equine gene map, which
now contains 713 genes (441 on the RH map, 511 genes
on the cytogenetic map and 238 on both maps). Genes
mapped as a singleton, by a single technique or in total
disagreement with the comparative map were removed
from this calculation. These 713 genes are distributed
into 59 homologous segments between the horse and
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Figure 1 Integrated equine map and comparative horse-human map. Equine chromosomes are represented to the left of the figure as G-banded
idiograms. Markers located by fluorescent in situ hybridization (FISH) are represented to the right of the idiograms. Radiation hybrid (RH)-mapped
markers are aligned in the most likely order to the right of vertical rounded bars representing RH linkage groups. Shaded bars are anchored to the
chromosomes by at least one marker while white bars are ordered according to the linkage map data. RH linkage groups anchored during this study are
depicted with a green line and striped bars correspond to merged RH linkage groups. The distances are indicated in cR. Comparative mapping to the
human genome is depicted as rectangular vertical bars showing homologous segments with, to their right, the most likely order of the genes based on
their equine localizations. The physical locations of the genes on the human genome are indicated in megabases (http://www.ensembl.org). Segments
considered as conserved appear in blocks. Gene symbols (in italics) of the present study are shown in red and those located by both FISH and RH are
in bold face.
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Figure 1 (Continued).

human genomes. Among these, only nine contain a sin-
gle gene. This work confirmed the existence of two
homologous segments, ECA2/HSA8 and ECA7/HSA19,
which were previously suggested by the location of a
single gene (Lindgren et al. 2001; Mariat et al. 2001;
Chowdhary et al. 2003). Moreover, the mapping of
FLJ20036 confirmed the homology between ECA27 and
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HSA4, which was previously identified with a microsat-
ellite linked to the F11 gene (Chowdhary et al. 2003) and
by the FISH localization of FRG1
2005).

Two additional homologies between horse and human
chromosomes, ascertained by both FISH and RH mapping,

(Perrocheau et al.

were revealed: (1) a homologous segment between ECA27
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Figure 1 (Continued).

and HSAS8 with the mapping of PDGFRL and LOC84549
and (2) a homologous segment between the p arm of
ECA12 and the p arm of HSA11 with the mapping of
FBX03 and TRAF6. In addition, a segment on ECA1
homologous to HSA15q may be interrupted with genes
on HSA14q as revealed by RH mapping of one gene,
FLJ11186. Within these 59 horse-human homologous
segments,

we were able to define 131 conserved
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segments. These conserved segments include 87% of the
compared loci and contain an average of four to five
genes, revealing a noticeable level of chromosomal rear-
rangements within homologous segments. For example,
although ECA23 is completely homologous with HSA9,
the chromosome is composed of four different conserved
segments containing genes alternatively located on the p
and q arms of HSA9. In addition, 33 conserved segments
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Figure 1 (Continued).

were newly identified. Two of these introduced insertions . .
. ) Discussion
in previously defined homologous segments, one on ECA4
corresponding to the distal part of HSA7p (FLj20323,
FAPP2 and ANLN) and the other on ECA12 with a
segment of HSA1lp (FBXO3 and TRAF6). Thirty-seven

localizations converted homologous segments that were

The 323 primer pairs amplifying horse DNA were used to
screen the INRA and the CHORI-241 equine BAC libraries.
Screening efficiency of equine probes was inferior to that of
bovine probes, possibly because of the presence of horse-
previously specified by one gene into conserved segments specific repeated sequences in the equine probes. The PCR
screening identified more positive clones than hybridization
screening, but after sequencing, the yields of positive clones
were the same (61% and 59% respectively). Overall, the
number of confirmed genes (237) relative to the number of
searched genes (323) was 73%, which was comparable

(Fig. 1+). Identification of new conserved segments was
made using 10 loci (Fig. 1%¥) and 16 isolated loci
(Fig. 1x%). This represents 38% of the newly localized
genes, whereas 62% (102/165) of the genes were inclu-
ded in previously defined conserved segments.
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Figure 1 (Continued).

with other studies (Cai et al. 1998; Lindgren et al. 2001;
Raudsepp et al. 2002). In this study, the number of assigned
genes on the horse genomic map increased by 31% over the
previous version of the map.

The comparative map between horse and human con-
taining 713 genes was developed based on RH and FISH
data. We identified 59 homologous segments between horse
and human, confirming close genome organization between
the two species. However, intra-chromosomal rearrange-
ments of 131 conserved segments occurred. It is not known
whether these intra-chromosomal rearrangements are be-
cause of repeated horse sequences present at a higher
density in certain chromosomes. These observations support
the hypothesis of a first phase of differentiation because of
inter-chromosomal rearrangements followed by a second
phase with the intra-chromosomal reshuffling as suggested
by the observed difference between the number of conserved
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(131) and homologous (59) segments. Heterogeneity in the
conservation of horse-human chromosomal regions was
illustrated by the comparison of ECA24/HSA11 and
ECA11/HSA17. ECA24 represents a single conserved seg-
ment on HSA11, whereas ECA11 is divided into at least six
conserved segments on HSA17. Conversely, for some equine
chromosomes, gene order is strongly conserved, as observed
for ECA17, ECA22 and ECAX (Lee et al. 2004; Raudsepp
et al. 2004; Gustafson-Seabury et al. 2005). The cumulative
length of all conserved segments is about half of the human
genome.

Our mapping data can also be used for understanding the
evolution of the human and horse genomes as initiated by
Chowdhary et al. (1998) with chromosome painting. The
eutherian ancestral karyotype (EUT) was tentatively
reconstructed with 50 chromosomes, of which 40-42 were
acrocentric (Murphy et al. 2001; Richard et al. 2003).
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Compared with the EUT, the equine genome has undergone
more inter-chromosomal rearrangements than the human
genome simply because of the existence of a larger number
of chromosomes. For example, EUT3 is homologous to
HSA6 but splits into three equine chromosomes or chro-
mosome arms (ECA10q/ECA20/ECA31). In some instances,
the one-to-one reciprocal relation between ECA and HSA
also stands for the eutherian karyotype; for example,
EUT19, 17, 21, X, and Y correspond to ECA11, 17, 22, X, Y
and HSA17, 13, 20, X and Y respectively. An interesting
situation is given by EUT6, which is homologous to HSA3
and HSA21, but HSA3 split into ECA16 and ECA19 after
the human-horse lineage diverged.

The construction of a medium-density map is considered
as a step toward high-density maps, which will refine the
horse map and the comparative maps with other species.
These data will also contribute to ongoing studies aimed at
the identification of genes of interest and the construction of
an equine physical map.
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