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Abstract

In this technical report we briefly describe the instances submitted to the 2006 and
2007 Max-SAT Evaluations. First, we introduce the instances that can be directly encoded
as Max-SAT. Then, we describe the methods used to translate problem instances coming
from other optimization frameworks to Max-SAT. Finally, we present a quick reference
table containing short descriptions of each set of problem instances.
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1. Introduction

Max-SAT is the optimization version of SAT where the goal is to satisfy the maximum
number of clauses. It is considered as one of the fundamental combinatorial optimization
problems because many important problems can be expressed as Max-SAT.

The First (2006) and Second (2007) Max-SAT Evaluations were co-located events of the
Ninth and Tenth International Conferences on Theory and Applications of the Satisfiability
Testing (SAT-2006 and SAT-2007), respectively. They were organized by Josep Argelich,
Chu Min Li, Felip Manyà and Jordi Planes with the objectives, among others, of identifying
successful solving techniques and identifying challenging benchmarks. The purpose of this
paper is to describe the instances used in both evaluations. The instances submitted to the
2006 Max-SAT Evaluation were a subset of the instances submitted to the 2007 Max-SAT
Evaluation. Hence, in the following we focus on the 2007 instances.

Max-SAT problem instances are expressed using a propositional logic-like language.
However, there exist more expressive languages such as weighted constraints or pseudo-
boolean constraints. For this reason, some instances in the evaluations were taken from a
Weighted Constraint Satisfaction Problem (WCSP) or Pseudo-Boolean Optimization (PBO)
repositories and reformulated to Max-SAT. In this paper, we explain how to translate au-
tomatically instances coming from these frameworks to Max-SAT.

The structure of the paper is as follows: Section 2 provides preliminary definitions
on Max-SAT. Section 3 presents the problems that were directly modelled as Max-SAT.
Sections 4 and 5 presents problems coming from the 2005 PB Evaluation [23] and from a
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WCSP repository [9] and show the translation mechanism that we used. Finally, section
6 contains a table with a brief description of the benchmarks submitted to the evaluation
and presents some concluding remarks.

2. Preliminaries

In the sequel X = {x1, x2, . . . , xn} is a set of boolean variables taking values over the set
{true, false}, which stands for true and false, respectively. A literal is either a variable xi

or its negation x̄i. Given a literal l, its negation l̄ is x̄i if l is xi and is xi if l is x̄i. A clause
C is a disjunction of literals.

A weighted clause is a pair (C, w), where C is a clause and w is the cost of its falsification,
also called its weight. If a problem has clauses that must be satisfied, we call such clauses
mandatory or hard and associate with them a special weight ⊤. Non-mandatory clauses are
also called soft. In practice, ⊤ can be associated to a natural number equal to the sum of
all the weights of the soft clauses plus 1.

An assignment is an instantiation of a subset of X. If variable xi is assigned to true,
literal xi is satisfied and literal x̄i is falsified. Similarly, if variable xi is instantiated to false,
literal x̄i is satisfied and literal xi is falsified. An assignment is complete if it gives values
to all the variables in X (otherwise it is partial).

A weighted formula in conjunctive normal form (WCNF) is a set of weighted clauses.
A model is a complete assignment that satisfies all mandatory clauses. The cost of an
assignment is the sum of weights of the clauses that it falsifies. Given a WCNF formula
F , Weighted Max-SAT is the problem of finding a model of F of minimum cost. This cost
will be called the optimal cost of F . Note that if a formula has only mandatory clauses,
weighted Max-SAT is equivalent to classical SAT.

The second Max-SAT Evaluation consisted of four categories:

• Unweighted Max-SAT (U): All clauses are soft and have the same weight 1.

• Weighted Max-SAT (W): All clauses are soft and may have different weights.

• Unweighted Partial Max-SAT (P): There is a set of mandatory clauses and a set of
soft clauses. All soft clauses have the same weight 1.

• Weighted Partial Max-SAT (WP): There is a set of mandatory clauses and a set of
soft clauses. Soft clauses may have different weights.

The Partial Max-SAT terminology was first introduced in [6]. Note that all the instances
in the Unweighted Partial and Weighted Partial categories have models (i.e., are satisfiable
with respect to hard clauses).

3. Problem instances directly encoded as (Weighted) Max-SAT

In this section we describe those problem instances that can be naturally encoded directly
as (Weighted) Max-SAT. Obviosly, it may exist other problems not described in this report
that can be directly encoded as Max-SAT such as the set covering problem or the set packing
problem, but we will focus only on the instances submitted to the 2007 Max-SAT Evaluation.
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3.1 Random Max-k-SAT

A k-SAT CNF formula is a CNF formula in which all clauses have size k. Random unsat-
isfiable 2-SAT and 3-SAT formulas were generated with three different generators: Cnfgen
[31], [26] and [28]. We fixed the number of variables and varied the number of clauses.
Instances generated with [31] and [26] may contain repeated clauses, while this does not
occur with [28]. The name of each problem instance specifies how many literals per clause
and how many variables and clauses per instance. The name of each random Max-k-SAT
problem contains the appropriate information in order to know how many literals per clause
and how many variables and clauses are included in the instance. Regarding the random
weighted Max-k-SAT instances, only the generator [26] is used and a uniform random weight
is associated to each clause. All the weights range from 1 to 10.

3.2 Random Partial Max-SAT

These instances were created using a random partial Max-SAT generator [3]. Basically, it
generates random Max-k-SAT instances with [26] and then n clauses are declared hard and
the rest are declared soft. Note that n is the number of variables. For the unweighted Partial
Max-SAT case, all soft clauses have weight 1. Regarding the weighted Partial Max-SAT
case, all clauses have a uniform random weight ranging between 1 and 10.

3.3 Max-one

Given a satisfiable CNF formula, max-one is the problem of finding a model with a maximum
number of variables set to true. This problem can be encoded as Max-SAT by considering
the clauses in the original formula as mandatory and adding a weighted unary clause (xi, 1)
for each variable in the formula. We considered the max-one problem over two types of
CNF formula. First, over random 3-SAT instances of 150 variables (generated with Cnf-
gen [31]). Second, we selected structured satisfiable SAT instances coming from the 2002
SAT Competition [29] submitted by J.D. Pehoushek. We considered the following sets of
instances: 3col80, 3col100, 3col120, 3col140, cnt, dp and ezfact32.

3.4 Max-cut

Given a graph G = (V, E), a cut is defined by a subset of vertices U ⊆ V . The size of a cut is
the number of edges (vi, vj) such that vi ∈ U and vj ∈ V −U . The Max-cut problem consists
on finding a cut of maximum size. It can be encoded as Max-SAT associating one variable
xi to each graph vertex. Value true (respectively, false) indicates that vertex vi belongs to
U (respectively, to V − U). For each edge (vi, vj), there are two clauses xi ∨ xj , x̄i ∨ x̄j .
Given a complete assignment, the number of violated clauses is |E| − S where S is the size
of the cut associated to the assignment. We considered Max-Cut instances extracted from
random graphs (generator [15]) of 60 nodes with varying number of edges.

We also considered Max-Cut instances from the DIMACS graphs [16]. In Figure 1 a
detailed description of these graphs is shown. Since solving the Max-CUT problem of the
original DIMACS graphs cannot be handled by current solvers, we generated subgraphs
from them. Specifically, we removed nodes from the original graphs and their related edges,
until the resulting graphs had about 40 nodes. Then, we encoded the Max-CUT problem
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Problem nodes density
brock200 1 200 74.54
brock200 2 200 49.63
brock200 3 200 60.54
brock200 4 200 65.77
brock400 1 400 74.84
brock400 2 400 74.92
brock400 3 400 74.79
brock400 4 400 74.89
brock800 1 800 64.93
brock800 2 800 65.13
brock800 3 800 64.87
brock800 4 800 64.97
c − fat200 − 1 200 7.71
c − fat200 − 2 200 16.26
c − fat200 − 5 200 42.58
c − fat500 − 1 500 3.57
c − fat500 − 10 500 37.38
c − fat500 − 2 500 7.33
c − fat500 − 5 500 18.59
hamming10 − 2 1024 99.02
hamming10 − 4 1024 82.89
hamming6 − 2 64 90.48
hamming6 − 4 64 34.92
hamming8 − 2 256 96.86
hamming8 − 4 256 63.92
johnson16 − 2 − 4 120 76.47
johnson32 − 2 − 4 496 87.88
johnson8 − 2 − 4 28 55.56
johnson8 − 4 − 4 70 76.81
keller4 171 64.91
keller5 776 75.15
keller6 3361 81.82
MANN a9 45 92.73

Problem nodes density
MANN a27 378 99.01
MANN a45 1035 99.63
MANN a81 3321 99.88
p hat1000 − 1 1000 24.48
p hat1000 − 2 1000 49.01
p hat1000 − 3 1000 74.42
p hat1500 − 1 1500 25.34
p hat1500 − 2 1500 50.61
p hat1500 − 3 1500 75.36
p hat300 − 1 300 24.38
p hat300 − 2 300 48.89
p hat300 − 3 300 74.45
p hat500 − 1 500 25.31
p hat500 − 2 500 50.46
p hat500 − 3 500 75.19
p hat700 − 1 700 24.93
p hat700 − 2 700 49.76
p hat700 − 3 700 74.80
san1000 1000 50.15
san200 0.7 1 200 70.00
san200 0.7 2 200 70.00
san200 0.9 1 200 90.00
san200 0.9 2 200 90.00
san200 0.9 3 200 90.00
san400 0.5 1 400 50.00
san400 0.7 1 400 70.00
san400 0.7 2 400 70.00
san400 0.7 3 400 70.00
san400 0.9 1 400 90.00
sanr200 0.7 200 69.69
sanr200 0.9 200 89.76
sanr400 0.5 400 50.11
sanr400 0.7 400 70.01

Figure 1. The 66 graphs from the Second DIMACS challenge [16].

of such subgraphs. Let α = |V |/40 and let V = {v1, v2, . . . , vi, . . . , vn} be the set of vertices
of the original graph. For each node vi of the original graph, we conserved it if i%α = 0,
otherwise it was removed.

The weighted Max-CUT version of the random graphs and of the reduced DIMACS
graphs are built by associating a uniform random weight to each edge. Such weight ranges
from 1 to 10.

As noted in [30], the spin glass problem can be reformulated as computing the Max-
CUT of a specific graph. Frauke Liers provided us 5 unweighted and 5 weighted spin glass
instances and other 20 unweighted instances were created by Han Lin using the Spin Glass
Server [17]. While all those instances can be solved in zero time with a branch-and-cut
algorithm [30, 12], they are quite challenging for current Max-SAT solvers [4].

242



2006 and 2007 Max-SAT Evaluations: Contributed Instances

3.5 The Minimum Vertex Covering problem

Given a graph G = (V, E), a vertex covering is a set U ⊆ V such that for every edge (vi, vj)
either vi ∈ U or vj ∈ U . The size of a vertex covering is |U |. The minimum vertex covering
problem is a well-known NP-Hard problem. It consists in finding a covering of minimal
size. It can be naturally formulated as (weighted) Max-SAT. We associate one variable xi

to each graph vertex vi. Value true (respectively, false) indicates that vertex xi belongs to
U (respectively, to V − U). There is a binary weighted clause (xi ∨ xj ,⊤) for each edge
(vi, vj). It specifies that at least one of these two vertices have to be in the covering because
there is an edge connecting them. To minimize the number of vertices in the covering, there
is a unary clause (x̄i, 1) for each variable xi in order to specify that it is preferred not to
add vertices to U .

3.6 The Maximum Clique Problem

Given a graph G = (V, E), a clique is a set U ⊆ V such that for every vertex v ∈ U , v is
connected to all the vertices in U . The size of a clique is |U |. The maximum clique problem
(Max-Clique) consists in finding a clique of maximal size. This problem is deeply related
to the Minimum Vertex Covering. As noted in [13], finding the maximum clique of a graph
G = (V, E) is equivalent to finding a minimum vertex covering of the complementary graph
Ḡ. Given a graph G = (V, E), its complementary graph is noted by Ḡ = (V, Ē). It is
constructed with the same set of vertices V and (vi, vj) ∈ Ē iff (vi, vj) /∈ E. Hence, we
model Max-Clique problems as Minimum Vertex Covering problems over the complementary
graph. Observe that the maximum size of the maximum clique is equivalent to |V | − S,
where S is the size of the minimum vertex covering.

We considered maximum clique instances extracted from random graphs [15] with 150
nodes and varying number of edges. We also considered the 66 Max-Clique instances from
the Second DIMACS challenge [16] (See Table 1 for details).

3.7 Combinatorial Auctions

A combinatorial auction is defined by a set of goods G and a set of bidders that bid for
indivisible subsets of goods. Each bid i is defined by the subset of requested goods Gi ⊆ G
and the amount of money offered. The bid-taker, who wants to maximize its revenue, must
decide which bids are to be accepted. Note that if two bids request the same good, they
cannot be jointly accepted [25]. In its Max-SAT encoding, there is one variable xi associated
to each bid. There are unit clauses (xi, ui) indicating that if bid i is not accepted there is a
loss of profit ui. Besides, for each pair i, j of conflicting bids, there is a mandatory clause
(x̄i ∨ x̄j ,⊤).

We used the CATS generator [18] that allows to generate random instances inspired
from real-world scenarios. In particular, we generated instances from the Regions, Paths
and Scheduling distributions. The number of goods was fixed to 60 and we increased the
number of bids. By increasing the number of bids, instances become more constrained
(namely, there are more conflicting pairs of bids) and harder to solve.
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4. Problem instances coming from the 2006 PB Evaluation

A (linear constrained) pseudo-boolean optimization problem (PBO) [27, 11] has the form:

(1) minimize
∑n

j=1 cj · xj

(2) subject to
∑n

j=1 aijlj ≥ bi, i = 1 . . .m

where variables xj can take values in {0, 1}, lj is either xj or 1 − xj , and cj , aij and
bi are non-negative integers. (1) is the objective function and (2) are the pseudo-boolean
constraints. A PBO instance can be translated into a Max-SAT formula as follows: each
pseudo-boolean constraint is translated into a set of hard clauses using MiniSAT+ [11] (the
algorithm heuristically decides the most appropriate translation choosing among adders,
sorters or BDDs). The objective function is translated into a set of soft unit clauses. Each
summand cj · xj becomes a new soft unit clause (x̄j , cj).

The following problem instances were taken from the 2006 PB Evaluation [22]: logic
synthesis [34], misc (garden), routing [2], MPI (Minimum-size Prime Implicant) [24], MPS
(miplib) [1]. They were translated to Max-SAT as specified above.

5. Problem instances coming from a WCSP repository

A WCSP can be roughly defined as a generalization of the Max-SAT problem that contains
variables with a finite number of values rather than boolean variables and contains weighted
constraints rather than weighted clauses. Formally, a weighted constraint satisfaction prob-
lem (WCSP) [20] is a tuple P = (⊤,X ,D, C). X = {1, . . . , n} is a set of variables. Each
variable i ∈ X has a finite domain Di ∈ D of values that can be assigned to it. (i, a) denotes
the assignment of value a ∈ Di to variable i. A weighted tuple is a pair (t; w) where t is
an assignment to a subset of variables and w is a cost expressed as a natural number. A
weighted constraint (also called cost function) Ck contains all the weighted tuples defined
over the same subset of variables. When a weighted tuple has cost ⊤, it means that the
assignment indicated by such tuple is forbidden, otherwise the assignment is permitted with
the corresponding cost. C is the set of weighted constraints of the WCSP problem. The
cost of an assignment is the sum of the costs of the weighted tuples that are a subset of
such assignment. The usual task of interest is to find a complete consistent assignment with
minimum cost, which is NP-hard.

Similarly to the translation of a CSP to SAT [32], there are two possible ways of encoding
a WCSP problem as Max-SAT: the direct and the log encoding. The first one was shown
to maintain nice propagation properties from the original CSP problem [32]. Hence, we
translated most of the WCSP instances using the direct encoding.

In what follows, we present how the direct encoding works. We associate a boolean
variable xij with each value j that can be assigned of the WCSP variable xi. Then, we
create new hard clauses to assure that each WCSP variable is given a value. That is, for each
WCSP variable xi with values {1, 2, . . . , d} we add the hard clause (xi1 ∨ xi2 ∨ · · · ∨ xid,⊤).
Furthermore, we add hard clauses that ensure that a WCSP variable is not given more than
one value: For each WCSP variable xi and each pair of different values j, k of variable xi

we create the clause (x̄ij ∨ x̄ik,⊤). Finally, for each weighted tuple we add a new weighted
clause that represents its contribution.
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Example 1 As an example, consider a WCSP defined with variables {x1, x2, x3} each one
with three values {a, b, c}. Let be the constraint C1 defined over variables {x1, x2, x3} with
weighted tuples (x1 = a, x2 = a, x3 = a; 1), (x1 = b, x2 = a, x3 = c; 3) and (x1 = a, x2 =
b, x3 = b;⊤). We need to create 9 boolean variables: x1a, x1b, x1c, x2a, x2b, x2c, x3a, x3b, x3c.
We add 3 hard clauses that assure each WCSP variable takes a value: (x1a ∨ x1b ∨ x1c,⊤),
(x2a ∨ x2b ∨ x2c,⊤) and (x3a ∨ x3b ∨ x3c,⊤). We assure we do not assign more than one
value to each WCSP variable xi (with i = 1, 2, 3): (x̄ia ∨ x̄ib,⊤), (x̄ia ∨ x̄ic,⊤), (x̄ib ∨ x̄ic,⊤).
Finally, we add the contribution of each weighted tuple: (x̄1a∨x̄2a∨x̄3a, 1), (x̄1b∨x̄2a∨x̄3c, 3)
and (x̄1a ∨ x̄2b ∨ x̄3b,⊤).

Now, we present the log encoding. For each WCSP variable xi with |Di| values, we create
xi1, . . . , xim where m = ⌈log2(|Di|)⌉ propositional variables. Each of the 2m combinations
represents a possible value of xi.

Example 2 Consider a WCSP variable x1 with 3 values {a, b, c}. We need to create m =
⌈log2(|Di|)⌉ = ⌈log2(3)⌉ = 2 variables to represent each value of variable x1. That is, we
create propositional variables x11 and x12 that allow 4 combinations. Precisely, x11 ∨ x12

represents value a, x11 ∨ x̄12 represents value b and x̄11 ∨ x12 represents value c. Observe
that combination x̄11 ∨ x̄12 is not used.

The log encoding does not require to ensure that each WCSP variable is assigned a value
or that it is given only one value. However, it may happen as stated above that the number
of values |Di| of a WCSP variable xi is not power of 2. In that case, we have to add hard
clauses to forbid that non-existing values are assigned.

Example 3 Consider the WCSP variable x1 with 3 values {a, b, c} of the previous example.
It is clear that a possible fourth value represented by x̄11 ∨ x̄12 does not exist because our
variable has only 3 values. Hence, we add hard clause (x̄11 ∨ x̄12,⊤) to assure that such a
value is never assigned.

Finally, we add the clauses that represent each weighted tuple.

Example 4 As an example, consider a WCSP defined with variables {x1, x2, x3} each one
with three values {a, b, c}. Let be the constraint C1 defined over variables {x1, x2, x3} with
weighted tuples (x1 = a, x2 = a, x3 = a; 1), (x1 = b, x2 = a, x3 = c; 3) and (x1 = a, x2 =
b, x3 = b;⊤). We create 6 boolean variables. Variables x11 and x12 represent the values of
the WCSP variable x1. Variables x21 and x22 represent the values of the WCSP variable
x2. Variables x31 and x32 represent the values of the WCSP variable x3. All three WCSP
variables have only 3 values, hence we have to forbid a fourth value is assigned. Hence, we
add three hard clauses {(x̄11 ∨ x̄12,⊤), (x̄21 ∨ x̄22,⊤), (x̄31 ∨ x̄32,⊤)}. Finally, we add (large)
clauses representing each weighted tuple: {(x11 ∨ x12 ∨ x21 ∨ x22 ∨ x31 ∨ x32, 1), (x11 ∨ x̄12 ∨
x21 ∨ x22 ∨ x̄31 ∨ x32, 3), (x11 ∨ x12 ∨ x21 ∨ x̄22 ∨ x31 ∨ x̄32,⊤)}.

We created Max-CSP random instances generated using the protocol specified in [19].
We distinguish 4 different sets of problems: Dense Loose (DL), Dense Tight (DT), Sparse
Loose (SL) and Sparse Tight (ST). Each set contains 10 instances with 3 values and 10
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instances with 4 values per variable. Note that a Max-CSP instance can be seen as a
WCSP in which all weighted tuples have a cost 1.

We considered structured instances that were taken from a Weighted Constraint Satis-
faction Problem (WCSP) repository [9] including Weighted Queens [21], Planning [8] and
Satellite Photograph Schedulling (SPOT5) [5].

All the previous instances were translated to Max-SAT using the direct encoding. For
the SPOT5 case, we also considered the log encoding.

6. Concluding remarks

In this paper we have overviewed most of the instances submitted to the 2007 Max-SAT
Evaluation. Figure 2 briefly describes them. The first column specifies the category, the
second column shows the number of instances of each set and the third column gives a short
description. The description contains a reference to a generator (if it was needed) and/or
to some paper in which the benchmark is described in detail. 2007 Max-SAT Evaluation
results and a comparison of all the submitted solvers can be found in [4]. Note that the
authors of this technical report submitted almost all the instances. However, some instances
were submitted by other authors:

• Random Max-2-SAT (U), random Max-3-SAT (U), random Weighted Max-2-SAT
(W), random Weighted Max-3-SAT (W), random unweighted Partial Max-2-SAT (P),
random weighted Partial Max-3-SAT (P), random weighted Partial Max-2-SAT (WP),
random weighted Partial Max-3-SAT (WP) and the Quasigroup Completion Problem
instances were submitted by the organizers.

• Some random Max-3-SAT (U) instances and 20 unweighted spin glass (U) instances
were submitted by Han Lin.

We would like to remark that we cannot explain in detail how the Ramsey Number
instances and the Quasi Group Completion problem instances were generated.

Recently, we have collected new problem instances that we plan to submit to future
evaluations. They include unsatisfiable DIMACS instances, protein alignment instances,
hidden optimum value instances and time tabling instances, to name a few.

Acknowledgements
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Cat. N.I. Short Description

U 330 Random Max-2-SAT. Generators [31, 26, 28].
U 310 Random Max-3-SAT. Generators [31, 26, 28].
U 62 Max-CUT of reduced DIMACS graphs [16].
U 40 Max-CUT of random graphs. Graph generator [15].
U 25 Spin-Glass [30] modelled as Max-CUT.
U 48 Ramsey Number. Generator [33].

W 90 Random Weighted Max-2-SAT. Generator [26].
W 80 Random Weighted Max-3-SAT. Generator [26].
W 62 Weighted Max-CUT of reduced DIMACS graphs [16].
W 40 Weighted Max-CUT of random graphs. Graph generator [15].
W 5 Spin-Glass [30] modelled as Weighted Max-CUT.
W 48 Weighted Ramsey Number. Generator [33].

P 90 Random Partial Max-2-SAT. Generator [3].
P 60 Random Partial Max-3-SAT. Generator [3].
P 96 Max-Clique of random graphs. Graph generator [15].
P 62 Max-Clique of DIMACS graphs [16].
P 80 Max-One of random satisfiable instances. Generator [31].
P 60 Max-One of 2002 SAT Competition satisfiable instances [29].
P 7 Garden instances from 2005 PB Evaluation [23].
P 17 Logic Synthesis instances [34] from 2005 PB Evaluation [23].
P 148 Min. Prime Imp. [24] on DIMACS instances [16] from 2005 PB Evaluation [23].
P 15 Routing instances [2] from 2005 PB Evaluation [23].
P 20 Dense Loose Max-CSP instances. Generator [10].
P 20 Dense Tight Max-CSP instances. Generator [10].
P 20 Sparse Loose Max-CSP instances. Generator [10].
P 20 Sparse Tight Max-CSP instances. Generator [10].
P 7 Weighted Queens instances from WCSP repository [9]. Generator [21].

WP 90 Random Weighted Partial Max-2-SAT. Generator [3].
WP 60 Random Weighted Partial Max-3-SAT. Generator [3].
WP 88 Comb. Auction instances following PATHS distribution. Generator [18].
WP 84 Comb. Auction instances following REGIONS distribution. Generator [18].
WP 84 Comb. Auction instances following SCHEDULING distribution. Generator [18].
WP 16 MIPLIB instances [1] from 2005 PB Evaluation [23].
WP 186 Factor instances from 2005 PB Evaluation [23].
WP 71 Planning instances [7] from WCSP repository [9].
WP 42 SPOT5 instances [5] from WCSP repository [9].
WP 25 Quasigroup Completion Problem instances [14].

Figure 2. Instances submitted to the 2007 Max-SAT Evaluation.
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tency applied to optimal planning. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming, CP-06, pages 680–684, 2006.

[9] S. de Givry, F. Heras, J. Larrosa, E. Rollon, M. Sanchez, and T. Schiex. The
wcsp repository. http://mulcyber.toulouse.inra.fr/plugins/scmcvs/cvsweb.

php/benchs/?cvsroot=toolbar, 2003.

[10] Simon de Givry. Random binary max-csp generator, file random vcsp.c.
http://mulcyber.toulouse.inra.fr/plugins/scmcvs/cvsweb.php/benchs/

generators/?cvsroot=toolbar, 1995.
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