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Abstract

We investigate the structure of travelling waves for a model of a fungal disease
propagating over a vineyard. This model is based on a set of ODEs of the SIR-type
coupled with two reaction-diffusion equations describing the dispersal of the spores
produced by the fungus inside and over the vineyard. An estimate of the biological
parameters in the model suggests to use a singular perturbation analysis. It allows
us to compute the speed and the profile of the travelling waves. The analytical
results are compared with numerical simulations.

AMS subject classification: 92D30, 35K57, 35B20, 35B40.
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1. Introduction

Powdery mildew is one of the most encountered diseases of the vine. Caused by the
fungus Uncinula necator, a better knowledge of its mechanisms of propagation would
help to devise a better management of the epidemic.

Since Vanderplank [13], a number of models have been proposed for the propagation
of plant diseases. Recent papers investigate the role of a dispersal mechanism occurring
on two or more spatial scales, see e.g. [4,7,12]. In [14] the authors proposed such a
model in the context of a fungal disease in order to study the impact of the dual dispersal
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upon the velocity of an epidemic wave. It is based on partial differential equations of
the reaction-diffusion type describing the spores dual dispersal coupled with a delay
differential equation describing the evolution of the disease.

In the case of a fungal epidemic propagating over a vineyard, a complex model
that couples growth of the host and a dual dispersal mechanism for the spores has been
devised [3]. Two ranges of dispersal are taken into account in this model. At short
range (vinestock scale) spores disperse according to a ray tracing like technique, while
at longer range (between vinestocks) a dispersal kernel of gaussian type is used. A
crucial question is how to model the longer range dispersal. To investigate this question,
a simplified version of this model has been developed in [1]. It is similar to the model
considered in [14] but uses a SEIR formulation rather than differential delay equations.

The purpose of this paper is to estimate the spreading rate of the epidemic for a model
similar to the one described in [1]. The propagation phenomenon can be described by a
travelling wave. The rate of expansion is given by the wave speed. This approach has
been extensively used in the study of biological invasions, see e.g. [5,8,9, 11].

This paper is organized as follows. In Section 2 we present the model and discuss
the values of the parameters. The different time scales involved in the propagation
mechanism allow us to perform a singular perturbation analysis. This method provides
the asymptotic profile of the solution together with the velocity of propagation (Sec-
tion 3). The analytical velocity value is compared with numerical simulations of the
model (Section 4).

2. Mathematical Model

In [1] the authors suggested a model for spreading of an epidemic of powdery mildew
over a vineyard. We investigate a simplified version of this model in which we neglect
growth of the host and we focus on the asymptotic behaviour of solutions. Moreover,
for the sake of simplicity we do not take into account a latent phase. This case will be
studied in an upcoming article.

We consider a SIR model coupled with reaction-diffusion equations. The vectors of
the epidemic are the spores produced by the colonies of fungus located at the vegetal
tissue, mostly leaves. Assuming that the time variation of a colony size can be neglected,
we choose the infection unit to be a colony as in [10]. For the host, this infection unit is
a site that may be occupied by a colony of fungus or not.

The life cycle of the pathogen is the following: when spores land upon a free colony
site, they may germinate and create a new colony of fungus which will produce spores
in their turn during some sporulating period.

Let H(z, x) denote the spatial density of susceptible (healthy) sites at time ¢ and
position x, I (¢, x) the spatial density of infected (sporulating) sites and R (¢, x) the density
of removed sites (post-sporulating). The total spatial density of sites No = H + 1 + R
is assumed to be constant with respect to space and time.

We take into account two ranges for dispersal: short range (spores disperse inside
the vine stock where they originate), and a longer range (spores disperse at the vineyard
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scale). Let S(z, x) denote the density of spores produced by the colonies. The spores
total density S is subdivided according to the range of dispersal, short range dispersal
spores density S and longer range spores S>. They are produced by a sporulating colony
with the rate r > 0 and may disperse at short range with a constant probability F' € [0, 1]
and at longer range with probability (1 — F).

We assume that spores spread according to a Fickian diffusion coefficient D; > 0
(short range) and D> > D; > 0 (longer range) as in [14]. Spores fall down upon the
host with some deposition rate § > 0.

These assumptions lead to the following equations for spreading of spores :

51
W:DIASI_&SI_'_FFI 2.1)

05
a5 = DyAS, =88 +r(1 — F)I (2.2)
We assume that the contamination of the sites by spores is described by a proportionate
mixing law. Itis in accordance with the underlying hypothesis of classical epidemiologic
models in phytopathology (see Vanderplank [13]) that the rate of increase of diseased
tissue is proportional to the amount of spores multiplied by the probability that these
spores fall down on healthy tissues. We have:

BH_ ES(S +S)H (2.3)
= 1+ S -
O pssi+ s L (2.4)
ar ! 2 No p’ .

IR 1
or_1, 2.5)
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where E is the inoculum effectiveness and p the duration of the infective phase.

The parameters of the model and their values are given in Table 1.

Let us explain how the values of the dispersal parameters § and D; are estimated. All
spores lifted up in the atmosphere fall down within half an hour so the deposition rate §
is approximately 50 day_l.

To estimate the diffusion coefficients D and D,, we only consider the spores dispersal
mechanism. Let D be a diffusion coefficient and § be a deposition rate. The density S of
spores dispersed in the atmosphere and produced by a single source obeys the following

equation:

S
E(r, x) = DAS(t,x) —85(1,x), V(t,x) € R x RF

S(x,0) = §p(x), Vx € R?
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Table 1: Model parameters

Parameter Description Value

) deposition rate 50 day_1

D, short range diffusion coefficient 50 m? day_1

D, long range diffusion coefficient 5000 m? day~!

r spores production rate 10* spores day—1 colony site ™!
F short range vs. long range dispersion 0.8

E inoculum effectiveness 0.1%

p infectious period duration 10 days

No total density of colony sites 40m~2 colony sites

where §g(x) is the Dirac function. Then the total amount of fallen spores upon the
vineyard at some point x € R? is

+00
P(x) = / 38(t, x)dt,
0

where P (x) is the probability density of fallen spores. It can be explicitly computed and
its variance is 0 = 4/ D /4. The values of Dy and D; in Table 1 have been chosen so that
o = 1 m for the short range dispersal and o = 10 m for the long range dispersal.

The basic reproductive rate of the disease is

Ro =rpE, (2.6)

Using the Routh-Hurwitz criterium, it can be easily computed by investigating the linear
stability of the trivial equilibrium point (S1, S», H, I, R) = (0, 0, Ny, 0, 0) of system
(2.1)—(2.5).

From a biological point of view Ry is the number of secondary colonies produced
by one infected colony. Indeed, Ry equals the number of spores r produced by a single
colony during the infectious period p multiplied by the probability that these spores
create a new colony.

We perform a parameter reduction for the model by using the dimensionless variables:

.88 - 88, - H . I
Sl = T S2 e ——— H = 7 I = 7
r Ny rNy No No
.t D
= -, f = x = —2

, n=pd, .
D A/ pDi D,

Omitting the tilde and equation (2.5), which is not used to solve the problem, we obtain

the following system
aS
8_t1 = AS| — 181 + nFI, (2.7)
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A

SE=dAS =S+ (- F)L. (2.8)
oH
FTie —Ro(S1 + $2)H, (2.9)
ol
E = Ro(S1+ S)H — I. (2.10)

The parameter 1 equals the ratio of the time scale of the life cycle of the pathogen
over the time scale of the spores dispersal. From the biological parameters listed in
Table 1, we can see that n = 500 is a large parameter since the dispersal process is fast
compared with the duration of the sporulating period.

Similarly the basic reproductive rate Ry equals 10. Thus we may assume that Ry is
of the order O (4/n) and we write Ry = ro/n with ro = O(1). Finally we consider the
system

95
O30 aS 0S4 0FL @.11)
a5
¥=dASz—7752—|—77(1—F)1, (2.12)
oH
FTie —ro/1(S1+ S2)H, (2.13)
al
o =ro/1n(S1 + S2)H — 1. (2.14)

Both from biological observations and numerical simulations (see thereafter), this
propagation arises due to travelling waves. In order to investigate these travelling waves
we use a singular perturbation analysis. This method allows us to derive an expression
for the wave speed and also gives us information about the asymptotic profiles of the
solution.

3. Propagation Analysis: Travelling Waves

In this section, we study system (2.11)-(2.14) considered for nonnegative time ¢ and on
the real line x € R. We are interested in travelling wave solutions, that is particular
solutions of the form

(S1, So, H, D(t, x) = (51, 82, H, (2),

where z = x —cf and c is the wave speed, an unknown positive real number that has to be
found together with the functions (87, Sz, H,I). To simplify the notations we omit the
tilde and we are concerned with the following system of ordinary differential equations
(here " denotes the derivative with respect to the variable z):

—cS| =S/ — 0S| +nFI, 3.1)

—cS) =dS) —nSy +n(l — F)I, (3.2)
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cH = I’oﬁH(Sl + S5), (3.3)
—cl' = ro/nH(S1 + $2) — 1, (3.4)

with the following behavior at infinity:
(81, 82, H, I)(=00) = (0,0,0,0), (S1, 52, H, I)(+00) =(0,0,1,0). (3.5

This means that the solution connects the disease free state (z = +00) to the post-
infected state (z = —o0). The variables that describe the disease, that is S, S» and [,
are pulse-like functions.

Here in the limit n — 400, the profile of the solution can be split into three different
regions: the region where the contamination has not yet begun (ahead of the front), the
region where it is over (behind the front) and a thin layer where the contamination takes
place (the reaction zone). A dimension analysis of the reaction layer shows that its length
is of the order O (#) Using formal asymptotic analysis, we obtain the profile of
the solution.

We first consider the outer problem and for this purpose we set

(S1, 8, H, (z) = (8, 83, H, 1%)(z) + %(Sll, Sy, HL Y@ 4+ 0 (%) . (3.6)

Substituting this expansion into system (3.1)-(3.4), we obtain up to the first order:

SV=FI1° S)=01-F1°, (3.7)
HO(SY 4+ 89 =0, (3.8)
1% =1 (3.9)

Finally, using (3.5), we obtain the following outer problem:
for z > 0 (ahead of the front):

S1=8%=1=0, H=1, (3.10)
and for z < 0 (behind the front):

H=0, S,=FI, S=(-F)I,

3.11
cl' =1. G-11)

Therefore the resolution of this outer problem leads us to the profiles of the solutions:

H(z) = 1,20, 1(z) = Ipe¥“ 1,9

_ _ (3.12)
S1(z) = IoFe¥/“ 1,29, Sa(z) = Ip(1 — F)e¥/“ 1o,

where 1 .- is the Heaviside function and I is some constant that should be determined
by matching these expressions to the inner problem.
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In order to analyze the inner problem, we introduce a stretched variable & = n'/%z
and put

(s1, 52, h, 0)(§) = (81, $2, H, 1) (V/n2),

then:
si/—l-isi —s51+ Fi =0,
N4
ds! + s —ss+ (1= F)i =0
2 2 — Y%
NI (3.13)

ch’ = roh(s1 + $2),

1
ci’ = —roh(s; + s2) + —i.
v
If we expand the vector function (s, 52, 4, i) in the powers of 1/#:
1 1
(51,52, b, D)(E) = (57,55, h°,i%)(&) + ;(s%, s3. b iNYE) + 0 (F) . (314

and plug this expansion into (3.13), we obtain for the zero order terms:

0" =¥+ Fi® =0,
ds)) =3+ 1 - F)i®=o0,

c(hy — roh0(s0 + 59, (3.15)
c(i®) = —roh®(s¥ + 59).
From the matching conditions, we have:
(s, 59, h0, 1% (xo00) = (8V, 89, HO, 10)(0%). (3.16)

Taking the sum of the last two equations in (3.15) we obtain that A° + i® is a constant
function. Since (S, 89, H?, 1°)(0T) = (0,0, 1,0), then it follows from the match-
ing conditions (3.16) that 2°(€) + i%&) = 1. Since H°(07) = h%(—o00) = 0, then
i 0(—00) =1 0(O_) = 1. This equality allows us to determine the unknown constant /
in (3.12): Ip = 1.

Finally we obtain the following explicit expression for the solution of the outer
problem:

H(iz)=1,20, 1(2) = e/ 1 z<0

‘ (3.17)
S1(z) = Fe’“ 1,29, $2(2) = (1 — F)e¥/“ 1 ..

The matching conditions do not allow us to determine the wave speed. It can be
found from the inner problem. Its solutions should match the outer solution and should
also be positive in order to ensure the positivity of the travelling wave. The complete
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inner problem consists of system (3.15) together with the following limits at infinity
(superscript O is omitted)

(s1,82,h,i)(§ = —00) = (F,1=F,0,1), (s1,82,h,i)(§ =4+00) =(0,0,1,0).

As already noticed, since 7 = 1 —i this system of four differential equations reduces
to a system of three, that reads:

51" —s1+ Fi =0,

dsy" —so+(1 —F)i =0,

ci’ = —ro(1 —i)(s1 + 52)

(s1,52,0)(§ = —00) = (F, 1 = F, 1), (s1,82,0)(§ =+00) =(0,0,0).

(3.18)

We first investigate conditions that ensure the positivity of the solution in the general case
0 < F < 1. For that purpose we assume that the solution has an exponential behaviour
até = +oo:

(51,82, )(§) ~ € (01,00, 6), § — +00.
The positivity of the solution relies on the positivity of the components of the vector
V = (01, 02, k) and A should be a non positive real number. Putting this asymptotic into
(3.18), we obtain the following system of equations for A and V:

(A2 — 1oy + Fx =0,
dr?> — 1oy + (1 — F)k =0, (3.19)
cik = —rg(oy] 4+ 07).

Since V is a positive vector, F' € (0, 1) and X is a non positive real number we obtain from
the two first equations that A has to be in the interval (max(—1, —1/ Vd ), 0). Therefore,
since d is larger than one, we obtain the following necessary condition: the equation

A2 -1 0 F
det 0 d\—-11—F|=0, (3.20)
ro 70 CA

1
has a real solution in the interval (——, O) .

Vd

1
This condition re-writes as follows: there exists A € _ﬁ’ O) such that

—) (1 — A2 (1 — dr?
o _ (=) ( )( ) — ®(. F.d),
¢ (I—F)(1 -2+ F(I—da)
this implies that
" M*(F,d), where M*(F,d)= sup ®(, F,d)> 0. (3.21)
C

re(=75.0)
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This yields a lower bound of the wave speed for 0 < F < 1:

ro

c>c*(F,d) with ¢*(F,d) = ———.
M*(F,d)

(3.22)

We now consider the degenerate situation /' = 1 (short dispersion only). In this case
system (3.18) reduces to the system of two equations (s, = 0):

Sl//—Sl-i-l' =0,
ci’ = —ro(1 —i)sy (3.23)
(s1,1)(§ = —o0) = (1, 1), (s1,0)(§ = +00) = (0, 0).

As before we suppose that the solution has an exponential behavior at £ = +o0:

(s1,0) (&) = e (01, k), & — +o00.

Using the same argument as in the general case we obtain the following condition: there

exists A € (—1, 0) such that

0 _ a0 -2,
C

This condition re-writes as follows:

The degenerate case F = 0 can be investigated in the same way and we find

34/3d
2

c > ro-

Finally we have found the following lower bound for the wave speed:

34/3d
2

ro for F=0
c>c"(F,d) givenin(3.22)for0 < F <1 (3.24)

3V3
;/_ro for F =1

Here are some qualitative properties of the minimal wave speed c*(F, d), see Ap-
pendix A for the proof. It is increasing with respect to d and decreasing with respect to
F. In addition when d is large we have the following asymptotic:

1 — Fx(F)

D N S

ford — +o0, (3.25)
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where x (F) is defined by

1
X(F)= 2B = F =y (1= F)O-F).

We will numerically show in the next section that this necessary condition on the
wave speed is a sufficient condition also and that the quantity in the right hand side of
(3.24) corresponds to the spreading rate of the epidemic.

Remark 3.1. Using (3.22) we can notice that if d is large enough, we have

3/3d 3J3

= lim ¢*(F.d). and
o o= i e (F.d), and =

d
ro £ lim ¢*(F,d) = rov/d——.
F—>1- d—1

Therefore the minimal wave speed is discontinuous at /' = 1 and continuous at F' = 0.
This remark will be confirmed in the next section from comparison with numerical
simulations.

4. Numerical Simulations

In this section we compare the numerical simulations with the asymptotic formulas
that have been obtained above. The numerical simulations of system (2.11)-(2.14) are
fulfilled by using a semi-implicit finite difference discretization for the reaction-diffusion
equations and Euler scheme for the ordinary differential equations. The values of the
parameters for numerical simulations are taken from the biological observations (cf.
Table 1):

500, d =100 —10
n= ) - , o= .
500

Fig. 1 shows the solution for the case F' = 0.8. We can see that the reaction occurs
in a very thin layer and the components of the solution are close to the analytical profiles
obtained above (see (3.17)) from the asymptotic analysis of the limiting problem (n —
~+00). In particular, S & FI and S, ~ (1 — F)I.

Next we vary the value of F in order to study its influence on the wave speed.
Fig. 2 represents a comparison of the numerical wave speeds with those obtained from
the asymptotic analysis (3.24). We first observe that the numerical wave speed and the
analytical one differ from each other for less than 5%, except for the cases corresponding
to a single dispersion (F = 1, short dispersion and F = 0, long dispersion), where for
these limit situations the wave speed error is about 8%.



Analysis of Travelling Waves for a Model in Phytopathology 59
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Fig. 1: Travelling wave solution: S1 (continuous line) and FI (dots) (top left), S2
(continuous line) and (1 — F)I (dots)(top right), I (bottom left) and H (bottom right).

Next we observe that the introduction of a long dispersion (even with a very little
proportion F' < 1) generates a rapid jump of the wave speed. The wave speed is
discontinuous at F' = 1 when long dispersion is introduced. This observation confirms
the analytical expression for the minimal wave speed (see Remark 3.1). In other words
it seems that the travelling wave corresponding to a single short dispersion is unstable
with respect to perturbations of long dispersion type. Such a phenomenon has already
been noticed by several authors (see for example [12] and the references therein).
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Fig. 2: Comparison of the analytical and numerical (dots) values of the wave speed for
different values of F.

5. Concluding Remarks

In this work we have studied the influence of a dual dispersal mechanism on the rate of
invasion of a powdery mildew epidemic over a vineyard. The model we use is based on
a reaction-diffusion system coupled with ordinary differential equations.

We have obtained that the wave speed is discontinuous with respect to the proportion
of long range dispersal and more specifically at ' = 1 that corresponds to the case of
short range dispersal only. This result is quite similar to the ones obtained for various
models in the literature: on the one hand, in the context of composite dispersal kernels
for integral kernel based models (see [7,12]), and on the other hand, for a simple model
of a reaction-diffusion equation coupled with an ordinary differential one (see [6]).

However for all these models the wave speed is monotonic with respect to the pro-
portion of long dispersal (cf. fig. 2). Nevertheless a non monotonic behavior of the
wave speed has been observed in [14] for the model with delay differential equations: a
certain proportion of long distance dispersal leads to an optimal velocity. Delay reaction-
diffusion equations seem to exhibit a more complex behavior.

Now let us discuss the biological values that were obtained with our model: we found
an asymptotic rate of expansion v, ~ ¢/D1/p ~ 2m.day ! for short range dispersal
only (F = 1), and for F < 1, v, lies between 10 and 25 m.day_l. From biological
observations the rate of expansion of powdery mildew epidemic is of order 1 m.day_l.
Though the spreading rate computed is too high, it is not absurd considering the model
is quite simple. For instance we did not take into account the row structure of vineyards
that is likely to slow the disease. This situation will be investigated in a forthcoming

paper.
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Appendix A. Qualitative properties of the minimal wave speed

In this Appendix we prove the qualitative properties of the minimal wave speed ¢*(F, d)
introduced in Section 3. Let us first notice that the quantity M™*(F, d) defined in (3.21)
can be re-written as:

rEd = - (1= x2)(1 — &)
VT Ve (- Fy(1— Y4 F(1—x2)

We set the function

x(1 = x3)(1 — ex?)

PO = T T I —ed) 1 Fi =)

and the quantity M*(F, d) re-writes

1 1
M*(F,d) = — sup ¢ (., F, —) )
Vd 0.1 d

If we compute the partial derivatives of function ¢ with respect to € and F' we obtain:

30 Fx>(1 —x?)

= 5 > 0, foranyx € (0, 1),
de ((1 —F)(1 —ex?) + F(I — x2))

3 x2(1—e)
IF _(

5 >0, forany0 <€ < 1.
(1 — F)(1 — ex?) + F(1 —x2)>

Therefore M*(F, d) is increasing with respect to F and decreasing with respect to d.
Finally from (3.22) we obtain that ¢* (F, d) is decreasing with respect to F and increasing
with respect to d.

We now consider the case where d is large (d >> 1). Then we have

PO P PR Uk hen d
(b(x, ,E>~¢(x, ’)N(l—F)—I—F(l—xz) when d — +00.

Therefore we obtain that

1
M*(F,d)~ — sup ¢(., F,0),
NZEE)

and from (3.22) we conclude that

1

c*(F,d) ~ rovd .
SUp(o,1) o(., F,0)
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It remains to compute the supremum in the above formula.
For that purpose let us introduce the function v defined by

Simple computations show that the derivative of this function vanishes at x satisfying
the polynomial equation:

Fx*—B3-F)x>+1=0.

Since F' lies in (0, 1) we see that this equation has exactly two positive real roots xE
given by

1
+12
(x™) ——2 3 F:l:\/(l O —-F)).

In addition we easily see that (x_)2 € (0, 1) while (x*')2 > 1. Therefore we conclude
that:

1
= lnf = x ,
sup. iy ¢, F,0)  ©.D V=ya)

that completes the proof of (3.25).
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