
HAL Id: hal-02656727
https://hal.inrae.fr/hal-02656727

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Product versus additive threshold models for analysis of
reproduction outcomes in animal genetics

Ingrid David, Loys L. Bodin, Daniel Gianola, Andres Legarra, Eduardo
Manfredi, Christèle Robert-Granié

To cite this version:
Ingrid David, Loys L. Bodin, Daniel Gianola, Andres Legarra, Eduardo Manfredi, et al.. Product
versus additive threshold models for analysis of reproduction outcomes in animal genetics. Journal of
Animal Science, 2009, 87 (8), pp.2510-2518. �10.2527/jas.2008-1586�. �hal-02656727�

https://hal.inrae.fr/hal-02656727
https://hal.archives-ouvertes.fr


I. David, L. Bodin, D. Gianola, A. Legarra, E. Manfredi and C. Robert-Granié
animal genetics

Product versus additive threshold models for analysis of reproduction outcomes in

doi: 10.2527/jas.2008-1586 originally published online April 24, 2009
2009, 87:2510-2518.J ANIM SCI 

http://www.journalofanimalscience.org/content/87/8/2510
the World Wide Web at: 

The online version of this article, along with updated information and services, is located on

www.asas.org

 at INRA Institut National de la Recherche Agronomique on August 2, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


ABSTRACT: The phenotypic observation of some 
reproduction traits (e.g., insemination success, interval 
from lambing to insemination) is the result of envi-
ronmental and genetic factors acting on 2 individuals: 
the male and female involved in a mating couple. In 
animal genetics, the main approach (called additive 
model) proposed for studying such traits assumes that 
the phenotype is linked to a purely additive combina-
tion, either on the observed scale for continuous traits 
or on some underlying scale for discrete traits, of envi-
ronmental and genetic effects affecting the 2 individu-
als. Statistical models proposed for studying human 
fecundability generally consider reproduction outcomes 
as the product of hypothetical unobservable variables. 
Taking inspiration from these works, we propose a 

model (product threshold model) for studying a binary 
reproduction trait that supposes that the observed phe-
notype is the product of 2 unobserved phenotypes, 1 for 
each individual. We developed a Gibbs sampling algo-
rithm for fitting a Bayesian product threshold model 
including additive genetic effects and showed by simu-
lation that it is feasible and that it provides good esti-
mates of the parameters. We showed that fitting an ad-
ditive threshold model to data that are simulated under 
a product threshold model provides biased estimates, 
especially for individuals with high breeding values. A 
main advantage of the product threshold model is that, 
in contrast to the additive model, it provides distinct 
estimates of fixed effects affecting each of the 2 unob-
served phenotypes.

Key words:  additive model, Gibbs sampling, product model, reproduction traits
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INTRODUCTION

The phenotypic observation of some reproduction 
traits is due to effects contributed by the male and the 
female. For such traits depending on several individu-
als, a main approach that has been proposed in animal 
genetics models the observed phenotype (for continu-
ous traits), or an underlying variable (for binary traits 
analyzed under the threshold model assumption), as 
the sum of environmental and genetic effects contribut-
ed by the different individuals involved (Wilham, 1963; 
Varona and Noguera, 2001; Piles et al., 2005; Bijma et 
al., 2007). In some cases, these models give perplex-
ing results (e.g., high negative estimates of the cor-

relation between maternal and direct genetic effects; 
Robinson, 1996; Koerhuis and Thompson, 1997). Some 
authors have pointed out that the combination of the 
different sources of variation may not be purely addi-
tive (on either the observed or underlying scales). Ac-
tually, statistical models proposed for studying human 
fecundability generally consider the reproduction result 
as the product of hypothetical unobservable variables. 
For instance, Speirs et al. (1983) proposed a model in 
which the number of observed embryo implantations 
is the product of the number of viable embryos and a 
measure of uterus receptivity. For binary traits, Zhou 
and Weinberg (1996) assumed that the probability of 
conception in a menstrual cycle is the product of the 
probability that the cycle is viable and the probability 
that conception would occur. This product combina-
tion of factors for studying reproduction results has the 
advantage of being biologically more natural and easier 
to construe than the purely additive combination. Nev-
ertheless, such models have not been used for studying 
reproduction traits in animal genetics. In line with hu-
man studies, we propose a product threshold model for 
studying the outcome of an insemination taking into 
account the action of the male and female and the ge-
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netic relationships between individuals. The objectives 
of this study are 1) to present the theory of a product 
threshold model in a genetic context, and 2) to exam-
ine, with illustrations, the feasibility of this model.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because no animals were used.

Methods

Background: Linear Additive Model for a 
Continuous Trait Depending on 2 Individuals. 
Statistical methodology for studying a quantitative ge-
netic trait dependent on several individuals has already 
been developed under the assumption of the additive 
model (Wilham, 1963; Bijma et al., 2007). To define 
the notation that will be used in this paper, we recall 
the corresponding theory as in Bijma et al. (2007). The 
model for a phenotype dependent on 2 individuals {i,j}, 
consists in expressing the observed phenotypic value, 
Pij as the sum of 2 unobserved phenotypic effects: a 
direct effect (PD,i) of individual i and an associative 
effect (PS,j) of the associated individual j:

	 P P Pij D,i S,j= + .	 [1.1]

Phenotypic direct and associative effects can both  
be decomposed into a heritable component, referred  
to as the breeding value (A), and a nonheritable  
environmental component (E). Thus, 
P A E A Eij D,i D,i S,j S,j= + + + , where AD,i is the direct 
breeding value (DBV) and AS,j is the associative breed-
ing value (SBV), which pertain to genetically distinct 
traits. In matrix notation, the corresponding animal 
model is as follows:

	 l Xb Z a Z aD D S S= + + + e,	 [1.2]

where l lij= { } is the vector of observed phenotypes; β 
is a vector of fixed effects, with incidence matrix X; aD 
and aS are vectors of DBV and SBV, respectively (each 
having an order equal to the number of animals in the 
pedigree), with corresponding incidence matrices  
ZD and ZS. The distributional assumption is 
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, where A is the numera-

tor relationship matrix and Ä represents the Kronecker 
product. The residuals ε are independent and identi-
cally distributed with variance se

2.
Threshold Models for a Binary Trait De-

pending on 2 Individuals. For dichotomous traits, 
the observed phenotype Pij

* (1 or 0) is modeled using 
generalized linear mixed model assumptions. The most 

widely used approach adopts the same linear predictor 
as for a linear mixed model with a probit link func-
tion:

	 Pr( ) ( ),*
, , , ,P A E A Eij D i D i S j S j= = + + +1 F 	

where Pr( )*Pij = 1  is the conditional (given the A and E 
variables) probability of success for the couple {i,j} and 
Φ is the standard cumulative distribution function of 
the normal distribution. This model is called the addi-
tive threshold model. This model is equivalent, under 
the threshold model theory (Wright, 1934; Gianola, 
1982), to
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where T is a threshold value and lij is an underlying 
variable linked to the environmental and genetic effect 
as in model [1.2].

Suppose now that the 2 unobserved pheno- 
types ( , ),

*
,
*P PD i S j  are dichotomous traits as well,  

such that Pr( ),
*

, ,P A ED i D i D i= = +( )1 F  and 

Pr( ) .,
*

, ,P A ES j S j S j= = +( )1 F  In this case, the relation-
ship between the probability of success for the unob-
served phenotypes and the observed phenotype is not 
obvious with the additive threshold model. A more in-
tuitive way to link observed and unobserved phenotypes 
in the case of dichotomous traits is to assume that a 
success is observed only if there is a success for each of 
the 2 unobserved phenotypes: P P Pij D i S j

*
,

*
,
* .= ´  For ex-

ample, conception in the couple is the result of success 
of each member. If the probabilities of success for the 2 
unobserved phenotypes are conditionally independent, 
then
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According to the classical threshold model theory, 
this product threshold model is equivalent to
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where PD i,
*  and PS j,

*  are related to 2 underlying continu-
ous variables, d and s, respectively.
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where TD and TS are the threshold values for d and s, 
respectively. Further, let
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	 d X b Z a eD D D D D= + + 	 [1.4]

and

	 s X b Z a eS S S S S= + + ,	 [1.5]

where the notations and distributional assumptions for 
the genetic effects are the same as in [1.2]. In addition, 
bD and bS are vectors of fixed effects, with incidence 
matrices XD and XS linking unobserved direct and as-
sociative phenotypes to fixed effects, respectively, and 
e eD S,  are mutually independent residuals with variances 
seD

2  and seS

2 , respectively.

Contrary to the additive threshold model, the inter-
pretation of unobserved phenotypes is straightforward 
in the product threshold model. For instance, in the 
study of AI success, if individual j is the male, Pr( ),

*PS j = 1  
is the chance that the male produces a sperm capable 
of fertilizing the ovum if the latter is viable. Conversely, 
Pr( ),

*PD i = 1  is the chance that the ovum can be fertil-
ized, provided that the sperm is fecundant.

Product and additive threshold models support  
different biological assumptions. Figures 1 and 2  
depict for the additive and product threshold  
models, respectively, variations of Pr( )Pij = 1  with re-
spect to dD i D i D iA E, , , ,= +  with one curve for each 
dS j S j S jA E, , , .= +  In the additive threshold model, the 
probability of success Pr( )Pij = 1  can reach very high 
values as soon as dD i,  is sufficiently large in comparison 
with dS j, . In contrast, in the product threshold model, 

the increase of Pr( )Pij = 1  with dD i,  is penalized by the 
value of dS j,  and reaches a maximum value that is gen-
erally less than 1. Assuming a product threshold model 
may be more realistic in some cases. For instance, a 
sterile male will never have progeny, even if he is mated 
to highly fertile females. This case corresponds to the 
change of the lowest lines in Figures 1 and 2. For inter-
mediate dD i,  and dS j, , the change of Pr( )Pij = 1  for differ-
ent dS j,  values when dD i,  increases are similar and inde-
pendent of dS j,  values in the additive threshold model. 
On the other hand, in the product threshold model 
these changes in probability of success depend on the 
values of dS j, , and increase faster for greater dS j, . How-
ever, for reduced dD i,  and dS j, , the models behave simi-
larly because, in this case, the odds ratio is close to the 
relative risk.

Heritabilities. In the additive threshold model, the 
total variance of the underlying variate l is 
s s s s sel A A AD S DS

r2 2 2 2 2= + + + , where r denotes the addi-

tive genetic relationship between associates in a couple. 
The heritability of direct and associative effects on the 

underlying scale is then hA

A
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S
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s
 respectively. An approximate transfor-

mation of these heritabilities to the observed scale (p-
scale) is obtained by multiplying each heritability by 
z2/{Pr(P* = 1)[1 − Pr(P* = 1)]}, where z is the ordinate 
of a standard normal distribution function correspond-

Figure 1. Expected probability of success for a couple (i,j) under the assumption of the threshold additive model 
Pr( ) ,*

, , , ,P A E A Eij D i D i S j S j= = + + +( )1 F  as a function of the direct value dD i D i D iA E, , , ,= +  with one curve for each associative value 
dS j S j S jA E, , , ,= +  where Pij

* is the observed phenotype, A AD i S j, ,,  are the direct and associative breeding values, and E ED i S j, ,,  are the direct and 
associative environmental component, respectively.

David et al.2512

 at INRA Institut National de la Recherche Agronomique on August 2, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


ing to a threshold = F- =é
ëê

ù
ûú

1 1Pr( )*P  (Dempster and 

Lerner, 1950).
In contrast to the additive threshold model, it is pos-

sible to assess the heritabilities of the unobservable in-
dividual phenotypes PD

* and PS
* in the product threshold 

model. The parametric definitions are 
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underlying scale. The genetic variances on the observed 
scale (p-scale) are given by sA P PD p scale D D x scale

z h
( ) ( )- -

=2 2 2  

and sA P PS p scale S S x scale
z h

( ) ( )- -
=2 2 2  (Dempster and Lerner, 

1950) for the direct and associate genetic effects, re-
spectively, where zPD

 and zPS
 are the ordinates of a 

standard normal distribution function corresponding to 
thresholds equal to F- =é

ëê
ù
ûú

1 1Pr( )*PD  and F- =é
ëê

ù
ûú

1 1Pr( ) ,*PS  

respectively. Therefore, the heritabilities of direct and 
associative effects on the observed scale are 

h h z P PA P PD p scale D x scale D( ) ( )
/ Pr Pr* *

- -
= ´ =( ) - =( )é

ëê
ù
ûú{2 2 2 1 1 1 }} 

and 

h h z P PA P PS p scale S x scale S-( ) -
= ´ = - =( )é

ëê
ù
ûú{2 2 2 1 1 1

( )
/ Pr( ) Pr* * }}, 

respectively. Because PD
* and PS

* are unobservable, one 
has to estimate Pr( )*PD = 1  and Pr( ).*PS = 1

Parameter Estimation. Parameter estimation 
methods in the additive threshold model are well known 
(Gianola and Foulley, 1983; Harville and Mee, 1984; 
Gilmour et al., 1985; Hoeschele and Tier, 1995; Moreno 
et al., 1997) and will not be presented here. Bayesian 
inference in the product threshold model can be carried 
out using the Gibbs sampling algorithm with a modifi-
cation of the data augmentation algorithm described in 
Sorensen et al. (1995). In the classical additive thresh-
old model, the idea is to sample the underlying variable 
from its conditional posterior distribution (a truncated 
normal distribution, on the left if P = 1 and on the right 
otherwise). The next step is to sample each parameter 
from its conditional posterior distribution, with the un-
derlying variable replacing the observed data, so that 
the Gibbs sampler is as for the linear model (Sorensen 
et al., 1995). Implementation of the product thresh-
old model can be done using the same approach and a 
supplementary step, which is the sampling of PD,i and 
PS,j. Consider the following notation,

	 Pr( ) Pr( ) ,,
'

,
'P w P wD i i D S j j S= = ( ) = = ( )1 1F Fq q and 	

where PD,i and PS,j are the unobserved phenotypes, 
q qD S and  are the vectors of parameters (i.e., fixed and 
random effects) for direct and associative phenotypes, 
respectively; w wi j

' ' and  are row incidence matrices link-
ing q qD S and  to the unobserved phenotypes. PD,i and 

PS,j are sampled in the nth step of the Gibbs sampling 
from their joint conditional distribution.
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where P w wt i D
n

j S
n= - ( )´ ( )- -1 1 1F F' ' .q q  Given PD,i and 

PS,j, parameter sampling is identical to the additive 
model by regarding PD,i and PS,j as the data. We added 
this supplementary step to the TM program developed 
by A. Legarra (Institut National de la Recherche 
Agronomique-Station d’Amélioration Génétique des 
Animaux, Castanet-Tolosan, France, personal commu-
nication).

Illustrations

A study with 4 different simulated designs (Table 1) 
was performed to illustrate the feasibility of the prod-
uct threshold model. The base population consisted of 
60 unrelated sires and 200 or 2,000 unrelated dams 
without records. Sires were randomly mated to dams to 
generate 600 or 4,200 progeny. Dam (DBV) and sire 
(SBV) breeding values were generated using bivariate 
normal distributions with parameters corresponding to 
the designs shown in Table 1. Genetic values of the 
progeny were sampled as the mean of sire and dam 
genetic values plus the Mendelian sampling. Part of the 
progeny were randomly assigned to be females and have 
an unobserved direct phenotype (400 or 4000 individu-
als i), whereas the other part were considered to be 
males and have an associative unobserved phenotype 
(200 individuals j). The observed phenotypes, resulting 
from the association of individuals i and j, were gener-
ated according to the product threshold model. The 
underlying d and s values were generated for each cou-
ple using Eq. [1.4] and [1.5]. Two fixed effects were in-
cluded in the model. The first effect f1 was a cross-
classified effect with 3 levels that affected direct and 
associative unobserved phenotypes. The second effect f2 
was a cross-classified effect with 2 levels affecting as-
sociative unobserved phenotypes only. Here, bD

' , . ,= é
ëê

ù
ûú0 1 5 1  

and bS
' , . , . , , ,= -é

ëê
ù
ûú0 1 5 0 5 0 2  where the 3 first elements in 

βS corresponded to the effects of f1 and the fourth and 
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fifth to the effects of f2. Levels of the fixed effects were 
randomly assigned to each couple with equal probabil-
ity for each level. We fixed s se eD S

2 2 1= =  and randomly 

assigned εD and εS to each couple. Discrete phenotypes 
P PD S

* *, , and P* were generated as follows: PD
* = 1 if 

d TD> , PD
* = 0 otherwise; PS

* = 1 if s TS> , PS
* = 0 other-

wise, and P P PD S
* * *.= ´  Values of TD and TS were fixed 

to 0 in all designs.
The first 2 designs had perfectly balanced data: each 

of the 400 “female” individuals i was associated to each 
of the 200 “male” individuals j. The first design as-
sumed a large ( )sAD

2 1=  variance for the direct genetic 

effect and a moderate ( . )sAS

2 0 25=  variance for associa-

tive genetic effect; the second employed a very small 
(0.05) variance for the direct genetic effects. In the 
third design, there were unbalanced data (males were 

randomly mated with females) with a small variance 
for the direct genetic effect. In the fourth design, few 
observations per individual i were considered with mod-
erate variances for direct and associative effects.

Each design was analyzed using 3 models: the prod-
uct threshold model, the additive threshold model, and 
a multiple-trait threshold model, which considers PD

* 
and PS

* as observed phenotypes. Results obtained with 
the multiple-trait threshold model were a reference con-
sidered as the best parameter estimates (called best) 
that can be obtained. In practice, this third model can-
not be applied to real data, because PD

* and PS
* are un-

observed phenotypes.
For all models, the Gibbs sampler analysis was car-

ried out using 1 chain consisting of 300,000 iterations. 
After discarding the first 30,000 iterations, samples of 
the parameters of interest were saved every 100 itera-

Table 1. Description of simulated designs 

Item Design 1 Design 2 Design 3 Design 4

No. of dams 200 200 200 2,000
No. of individuals i 400 400 400 4,000
No. of individuals j 200 200 200 200
No. of records 80,000 80,000 80,000 12,000
sAD

2 1.00 0.05 0.05 0.36

sAS

2 0.25 0.25 0.25 0.25

r u uD S( , ) 0.30 0 0.30 0.30

Type of design Balanced Balanced Unbalanced Unbalanced
Pr(PD = 1)1 0.73 0.72 0.73 0.73
Pr(PS = 1)1 0.47 0.46 0.47 0.45
Pr(P = 1)1 0.32 0.30 0.32 0.30

1Probability computed using the simulated data.

Figure 2. Expected probability of success for a couple (i,j) under the assumption of the threshold product model 
Pr( ) ,*

, , , ,P A E A Eij D i D i S j S j= = +( )´ +( )1 F F  as a function of the direct value dD i D i D iA E, , , ,= +  with one curve for each associative value 

dS j S j S jA E, , , ,= +  where Pij
* is the observed phenotype, A AD i S j, ,,  are the direct and associative breeding values, and E ED i S j, ,,  are the direct and 

associative environmental component, respectively.
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tions. Flat priors were used for all parameters, and be-
ginning values were randomly sampled.

RESULTS

Except for sAD

2  in design 2, genetic parameter esti-

mates obtained with the product threshold model were 
in accordance with the simulated data (Table 2). Simi-
lar posterior means and credibility intervals were ob-
tained with the multiple trait model (results not shown). 
In nearly all designs, heritability estimates obtained 
with the additive threshold model understated true val-
ues, whereas genetic correlation estimates aligned with 
those obtained with the product threshold model. Fixed 
effects were well estimated with the product threshold 
model but not with the additive one (Table 3). How-
ever, fixed effects in product and additive threshold 
models do not have the same interpretation and cannot 
be properly compared. Even if posterior means were 
similar, credibility intervals obtained for fixed effects 
with the product threshold model were 3 to 4 times 
larger than those obtained with the multiple trait mod-
el (results not shown).

Correlations between “best estimated” and predict-
ed direct or associative breeding values were greater 
for the product threshold model than for the additive 
threshold model in all designs (Table 4). A plot be-
tween the “best” and estimated breeding values from 
the product threshold model did not show any trend, 

whereas the additive model underestimated the largest 
breeding values (Figure 3). Nevertheless, correlations 
between breeding values estimated with product and 
additive threshold models were high.

DISCUSSION

For studying reproduction results, we proposed the 
product threshold model, which supposes that a success 
for P* is observed when there is a success for PD

* and PS
*. 

A similar approach has been proposed for modeling em-
bryo implantation after in vitro fertilization in humans: 
the EU model (Speirs et al., 1983), where E is the num-
ber of viable embryos and U is a binary indicator of 
uterine receptivity. Dukic and Hogan (2002) showed 
that in the extreme case where the number of embryos 
transferred is equal to one for all subjects, none of the 
model parameters is identifiable from observed data. 
Our illustrations imply a similar situation where each 
female event is associated with a unique male event. 
Nevertheless, our results (with input parameters essen-
tially recovered within high credibility regions) suggest 
that parameters are identifiable, at least under the con-
ditions considered. In general, identification is very dif-
ficult to study in complex hierarchical models such as 
the one considered here. In any case, if proper priors 
are adapted for all parameters, this provides unambigu-
ous Bayesian learning (Carlin and Louis, 2000; Soren
sen and Gianola, 2002). However, it may be the case 

Table 2. Variance components estimated (posterior mean) with the additive and product threshold models for the 
different designs (credibility interval in brackets)1 

Item sAD

2 sAS

2 r a aD S( , ) hD p scale( )-

2 hS p scale( )-

2

Design 12

  Simulated data 1.00 0.25 0.30 0.25 0.14
  Product threshold model 1.07 0.22 0.12 0.26 0.13 

[0.94,1.21] [0.18,0.27] [−0.12,0.36] [0.24,0.28] [0.11,0.15]
  Additive threshold model 0.58 0.03 0.06 0.21 0.01

[0.51,0.66] [0.02,0.03] [−0.20,0.32] [0.19,0.23] [0.01,0.01]
Design 23

  Simulated data 0.05 0.25 0.00 0.03 0.15
  Product threshold model 0.05 0.19 0.21 0.03 0.12 

[0.04,0.06] [0.15,0.23] [−0.12,0.53] [0.02,0.03] [0.10,0.14]
  Additive threshold model 0.03 0.02 0.24 0.02 0.01

[0.05,0.04] [0.02,0.03] [−0.11,0.57] [0.01,0.02] [0.01,0.02]
Design 33

  Simulated data 0.05 0.25 0.30 0.02 0.15
  Product threshold model 0.06 0.27 0.62 0.03 0.15 

[0.05,0.07] [0.22,0.33] [0.33,0.63] [0.02,0.03] [0.13,0.18]
  Additive threshold model 0.03 0.02 0.53 0.02 0.01

[0.03,0.04] [0.02,0.03] [0.23,0.80] [0.01,0.02] [0.01,0.02]
Design 44

  Simulated data 0.36 0.25 0.30 0.14 0.15
  Product threshold model 0.39 0.19 0.59 0.13 0.11 

[0.30,0.49] [0.11,0.28] [0.25,0.88] [0.11,0.16] [0.07,0.16]
  Additive threshold model 0.21 0.01 0.65 0.10 <0.01

[0.17,0.26] [0.00,0.02] [0.2,0.99] [0.08,0.12]
1aD, aS: direct and associative breeding values.
2400 individuals i, 200 individuals j, balanced data.
3400 individuals i, 200 individuals j, unbalanced data.
44,000 individuals i, 200 individuals j, unbalanced data.
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that the prior could always be influential, even for very 
large samples. An argument suggesting why we ob-
tained good estimations of the parameters using flat 
priors is as follows. In the standard linear animal mod-
el, the genetic additive (a) and permanent environmen-
tal (p) effects cannot be disentangled from each other 
at the level of the conditional likelihood because only 
their sum is identified (an infinite number of values a 

and p produce the same sum). However, when all ran-
dom effects are integrated out, the corresponding vari-
ance components can be identified in the marginal like-
lihood, provided their covariance matrices are not 
diagonal (due to the relationship matrix considered for 
the additive genetic effect). A similar reasoning holds in 
the product threshold model: at the level of the condi-
tional likelihood, the probabilities Pr(PS = 1) and 

Table 3. Fixed effects ( )f f1 2 or  estimated with the additive threshold and product threshold models for the differ-
ent designs (credibility interval in brackets) 

Item

f1 f2

Level 2-Level 1 Level 3-Level 2 Level 2-Level 1

Direct Associative Direct Associative Associative

Simulated data 1.50 −1.50 1.00 0.50 2.00
Design 11

  Product threshold model 1.53 −1.53 0.99 0.52 2.00
[1.49,1.58] [−1.60,−1.46] [0.96,1.02] [0.44,0.61] [1.96,2.07]

  Additive threshold model 0.46 0.93 0.75
[0.43,0.48] [0.90,0.95] [0.73,0.80]

Design 22

  Product threshold model 1.56 −1.48 1.00 0.44 1.88
[1.49,1.63] [−1.58,−1.38] [0.97,1.03] [0.32,0.55] [1.79,1.98]

  Additive threshold model 0.70 1.03 0.67
[0.68,0.72] [1.01,1.05] [0.65,0.69]

Design 33

  Product threshold model 1.47 −1.57 1.03 0.38 2.08
[1.42,1.52] [−1.69,−1.46] [1.00,1.06] [0.25,0.50] [1.99,2.17]

  Additive threshold model 0.71 1.05 0.66
[0.69,0.73] [1.03,1.07] [0.64,0.68]

Design 44

  Product threshold model 1.38 −1.52 1.03 0.58 2.16
[1.21,1.58] [−1.85,−1.28] [0.95,1.12] [0.22,0.96] [1.88,2.64]

  Additive threshold model 0.60 0.97 0.72
[0.54,0.66] [0.90,1.03] [0.67,0.77]

1400 individuals i, 200 individuals j, balanced data, high direct genetic variance.
2400 individuals i, 200 individuals j, balanced data, small direct genetic variance.
3400 individuals i, 200 individuals j, unbalanced data, small direct genetic variance.
44,000 individuals i, 200 individuals j, unbalanced data, medium direct genetic variance.

Table 4. Correlations between breeding values predicted with the different models (between direct breeding values 
above the diagonal, associative breeding values below the diagonal) 

Model Design
Multiple trait 

threshold model
Additive  

threshold model
Product  

threshold model

Multiple trait threshold model Design 11 — 0.98 0.99
Design 22 — 0.95 0.96
Design 33 — 0.95 0.97
Design 44 — 0.83 0.88

Additive threshold model Design 11 0.94 — 0.98
Design 22 0.91 — 0.98
Design 33 0.93 — 0.98
Design 44 0.73 — 0.95

Product threshold model Design 11 0.97 0.96 —
Design 22 0.95 0.96 —
Design 33 0.97 0.96 —
Design 44 0.83 0.93 —

1400 individuals i, 200 individuals j, balanced data, high direct genetic variance.
2400 individuals i, 200 individuals j, balanced data, small direct genetic variance.
3400 individuals i, 200 individuals j, unbalanced data, small direct genetic variance.
44,000 individuals i, 200 individuals j, unbalanced data, medium direct genetic variance.
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Pr(PD = 1) are not identified because an infinite num-
ber of values yield the same product, Pr(PS = 1) × 
Pr(PD = 1). However, the explanatory structure in the 
probit link functions are distinct for the 2 components, 
and further, the “male” and “female” genetic effects 
have different covariance matrices. This led to param-
eter identification in the cases examined. In short, our 
illustration results suggest that identification was at-
tained, even though improper priors were adopted for 
fixed effects and variance components.

The product threshold model was proposed for study-
ing reproduction results under a double assumption: 
the observed phenotype is the product of 2 unobserved 
phenotypes and these unobserved events are condition-
ally independent. When events are not independent, 
Pr( ) Pr( | ) Pr( ).*

,
*

,
*

,
*P P P Pij D i S j S j= = = = ´ =1 1 1 1  In this 

case, expressing conditional probabilities as a function 
of genetic and environmental factors is not trivial and 
needs further investigations. On the other hand, it may 
be of interest to include a third unobserved phenotype 
affecting the reproduction result: the embryo survival 
effect. Even if, theoretically, the product threshold 
model can consider more than 2 unobserved pheno-
types, including a third one could induce convergence 
problems. Actually, it is well known that the additive 
threshold model can produce biased estimates of pa-
rameters when the amount of data per level of fixed 
effect is small, known as the extreme category problem 
(Misztal et al., 1989; Moreno et al., 1997). The risk of 
an extreme category problem is greater in the product 
threshold model, where the probabilities of success of 
the unobserved phenotypes are in essence greater than 
the probability of success of the observed phenotype. 
This problem increases as the number of unobserved 
phenotypes increases. Because PD

* and PS
* are unobserv-

able, it does not seem possible to investigate a priori 
this kind of problem.

The illustrations aimed to investigate whether or not 
the product threshold model is feasible and to evalu-
ate the importance of bias from fitting a (wrong) ad-

ditive threshold model when observations come from a 
product threshold model. Even though different designs 
(balanced vs. unbalanced data; low, medium, or high 
variances; low vs. medium correlation; scant or con-
siderable information per individual) were considered, 
these represent only a few of the many possible data 
scenarios. Due to heavy computing time requirement (2 
wk per estimation), there were no replications of each 
design. Therefore, further investigations are needed to 
evaluate properties of the product threshold model. 
Nevertheless, we obtained similar results for simulations 
with some replications and fewer observations (8,000).

The product threshold model can extract more in-
formation from the data than the additive threshold 
model, provided that it holds. Also, it is able to esti-
mate the effect of an environmental factor on either the 
direct or associative unobserved phenotypes, whereas 
the additive threshold model only allows estimating a 
global effect on the observed phenotype. Our results 
indicated that the additive threshold model tended to 
temper the effect of a factor by combining the effects 
on the direct and associative phenotype. The second 
level of had a slightly positive effect on the observed 
phenotype in comparison with its first level in the ad-
ditive threshold model, whereas it had a positive effect 
on the direct phenotype and a negative one on the as-
sociative phenotype. Therefore, strategies for improv-
ing P* may be different in the 2 models. For instance, 
AI success declines with time in some species (Mackey 
et al., 2007). In species where fresh semen is used, a 
product model would estimate year effects on male and 
female fertility separately and then identify which sex 
is responsible for the decline. Subsequently, fertility re-
search could be focused on this sex.

Discrepancy between best and predicted breeding 
values with the additive threshold model was especially 
marked for individuals with increased breeding values. 
Consequently, fitting an additive threshold model when 
data are generated under the product threshold model 
assumption would lead to a less effective evaluation of 

Figure 3. Correlation between direct breeding value obtained with product and additive threshold models in design 1 (200 individuals i, 400 
individuals j, balanced data, high direct genetic variance).
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the best animals in the population. This issue requires 
additional study.

The objective of the study was to propose an alterna-
tive model to the additive threshold model for study-
ing reproduction result in an animal genetics context 
to evaluate if estimation procedures can work well on 
this model and to evaluate if results obtained with this 
model differ from those obtained with the classical ap-
proach. Because parameters seem estimable, the next 
step of the analysis would be to compare the predictive 
ability of the 2 models on real data to provide valida-
tion of the product threshold model.
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