
HAL Id: hal-02656750
https://hal.inrae.fr/hal-02656750

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Barley yellow dwarf disease risk assessment based on
Bayesian modelling of aphid population dynamics

Frederic Fabre, J.S. Pierre, Charles-Antoine Dedryver, Manuel Plantegenest

To cite this version:
Frederic Fabre, J.S. Pierre, Charles-Antoine Dedryver, Manuel Plantegenest. Barley yellow dwarf dis-
ease risk assessment based on Bayesian modelling of aphid population dynamics. Ecological Modelling,
2006, 193, pp.457-466. �10.1016/j.ecolmodel.2005.08.021�. �hal-02656750�

https://hal.inrae.fr/hal-02656750
https://hal.archives-ouvertes.fr


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Fabre, F., Pierre, J.S., Dedryver, C.-A., Plantegenest, M. (2006). Barley yellow dwarf disease

risk assessment based on Bayesian modelling of aphid population dynamics. Ecological
Modelling, 193, 457-466.  DOI : 10.1016/j.ecolmodel.2005.08.021

 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in :  

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

Ecological Modelling, 2006, vol.193, no.3-4, 457-466 
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Abstract 

Fabre F., Pierre J. S., Dedryver C. A. & Plantegenest M. 2006. Barley Yellow Dwarf Disease 
risk assessment based on Bayesian modelling of aphid population dynamics. Ecological 
Modelling, 193, 457-466. 
 
A stochastic population dynamics model is proposed to improve integrated pest management 
strategies against the aphid Rhopalosiphum padi, the main Barley Yellow Dwarf Virus 
(BYDV) vector in winter cereals during autumn in Europe. The model is based on a 
temperature-dependent simulation of R. padi population dynamics. The model requires a 
single early assessment of the proportion of plants infested by aphids. To account for 
sampling errors and for uncertainty caused by the numerous factors acting on aphid 
population dynamics under field conditions, Bayesian statistical inference was used. The 
model allows assessment of the probability distribution of the area under the curve of the 
percentage of plants infested by R. padi during autumn, a predictor of the need for insecticide 
sprays against BYDV vectors. The accuracy of model predictions was tested on an 
independent data set collected from 1995 to 1998 in the main French small grain production 
areas. The use of this model as a basis for a user friendly decision support system improving 
BYDV management is discussed.  
Keywords: Barley Yellow Dwarf Virus, Decision support system, Integrated pest 
management, Rhopalosiphum padi, stochastic modelling, temperature. 
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1. Introduction 

 
Barley yellow dwarf disease (BYD) is one of the most severe cereal diseases in the world 
(Lister and Ranieri, 1995). It is caused by viruses (Barley yellow dwarf viruses or BYDV and 
Cereal yellow dwarf viruses or CYDV) transmitted by several aphid species living on 
Poaceae (Rochow, 1969). On winter barley and winter wheat, yield losses associated with 
BYD epidemics are mainly caused by autumnal infections (Watson and Mulligan, 1960; 
Carrigan et al., 1981; Cisar et al., 1982). During this period, Rhopalosiphum padi is the most 
abundant BYDV vector in Europe (Gillet et al., 1990; Plumb, 1990).The control of BYD on 
winter cereals mainly relies on insecticides sprays as soon as aphids are established in the 
crop. However, BYD epidemics are sporadic in time and space and treatments are not 
required every year in each field. As a consequence, the treated area could be considerably 
reduced if insecticides were applied only when profitable. This can be achieved by means of a 
reliable decision making system. 
BYD epidemics course in a field strongly depends on the proportion of plants infested by 
aphids (Irvin & Tresh, 1990; Kendall et al., 1992; Leclercq-Le Quillec et al., 2000). Fabre et 
al. (2003) have shown that a decision making system based on the area under the curve of the 
proportion of plants infested by R. padi during autumn (called I thereafter), accurately 
predicted the profitability of insecticide treatment. However, to be effective, spraying has to 
be performed at early plant growth stages, before the growth of vector populations in the field 
(Plumb and Johnstone, 1995). Thus, an early reliable prediction of the value of I should be 
available.  
The temporal dynamics of an aphid population can be derived from its growth rate. The 
growth rate of R. padi depends on both extrinsic and intrinsic factors. The most important 
intrinsic factor is temperature. Its direct effect has been widely studied (Dean, 1974; Griffiths 
and Wratten, 1979; Williams, 1980; Elliott and Kieckhefer, 1989). Temperature also 
indirectly influences the population growth rate of R. padi through its effect on natural 
enemies (Campbell et al., 1974; Wilding, 1970). Several other factors can influence R. padi 
population growth rate: host plant species (Dean, 1973), cereal growth stage (Leather and 
Dixon, 1981; Kieckhefer and Gellner, 1988), BYDV infection of host plant (Araya and 
Foster, 1987) and generally host plant health, aphid density (Thirakhupt and Araya, 1992), 
rain (Araya and Fereres, 1991), aphid morphs (Elliott and Kieckhefer, 1989) and aphid clones 
(Simon et al., 1991). All together, these factors produce a large variability in the growth rate 
of aphid populations under field conditions. Some authors have attempted to integrate many 
of these factors in modelling aphid population dynamics (Carter et al., 1982; Skirvin et al., 
1997; Gosselke et al., 2001; Plantegenest et al., 2001). Though these models are useful 
research tools they are generally unsuitable for decision making because they require too 
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much data. However, to derive a correct management decision, forecasting tools cannot 
simply ignore these various sources of uncertainty. Beside the uncertainty resulting from the 
intrinsic variability of the system, a second source of uncertainty arises from sampling 
distribution of the parameter values (Ellner and Fieberg, 2003).  
Bayesian probability theory provides an accurate general framework for the elaboration of 
decision-making systems under uncertainty (Berger, 1985; Ellison, 1996). By considering 
parameters as random variables, Bayesian inference provides an explicit expression of the 
amount of uncertainty in parameter estimates (Ellison, 1996). Let y = {zj,xj} be an observed 
data set where {zj} is a set of vector of response variables, and {xj} a set of vector of 
explicative variables. Let f be a structural relationship linking x to z, z = f(x), where f is 
characterised by a vector of parameters β. The specificity of the Bayesian approach is to 
consider β as a random variable of which an a priori distribution is assumed. Let βi denote 
one particular value of the vector β (a particular state of nature). Given a data set y, a joint 
posterior conditional distribution of any vector of values of the model parameters p(βi|y) can 
be calculated using Bayes’ theorem: 

( ) ( ) ( )
( )yp

yLp
yp ii

i

ββ
β

⋅
=  

where  p(βi) is the prior distribution of β 
L(y|βi) is the likelihood of the data conditionally to βi  
p(y), is the probability of observing the data set (used to normalise the posterior 
density) (Gelman et al., 1995).  

Through Bayes' theorem our prior knowledge is weighted by the likelihood function to 
provide posterior expectations (Box and Tiao, 1992). p(βi|y) can be interpreted as a measure 
of credibility of βi if its prior probability and the observed data set are given. 
In the context of prediction, after the joint posterior probability had been evaluated on the 
available data sets, for any value of x, a random sample can be drawn from the posterior 
probability distribution of β to generate the expected distribution of the variable of interest z. 
Bayesian approach applied to ecological decision making is promising and many applications 
have been proposed (Clark, 2003a; Ellison, 2004; Rivot et al., 2004). However, few have been 
developed for pest management (Parisetti, 1983; Gold et al., 1990; Tari, 1996). The purpose 
of this paper is to exemplify this powerful approach through its application to the design of a 
user-friendly model based on a temperature dependent simulation of R. padi population 
dynamics during autumn in cereal fields to assess the risk of BYD epidemics.  
 

2. Materials and Methods 

2.1 Data set. 
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2.1.1 Aphid sampling. 
 
 
 
The data set contained 52 records of field monitoring carried out from 1989 to 1999 in 18 
locations in the most important French small grain production areas of the northern half of 
France. Experimental fields were sown in early autumn (mid September to mid October) with 
winter barley susceptible varieties (cvs Alaska, Esterelle, Intro, Keliba, Gaelic, Labéa, 
Rossini). Observations were carried out in four replicates receiving no insecticide sprays. Plot 
size was 3 x 11 m. Plots were allowed to be spontaneously colonised by aphids. R. padi 
populations were monitored at 5 to 14 day intervals from crop emergence to about the end of 
November. Counts were done in each plot in 4 randomly chosen locations. In each location, 
25 consecutive plants were examined along the same row. From 1989 to 1994, the number of 
wingless and the number of winged aphids were recorded on each plant, as well as the 
proportion of plants infested by at least one aphid and the proportion of plants infested by 
winged aphids alone . From 1995 to 1999, the proportion of plants infested by at least one 
aphid and the proportion of plants infested by winged aphids alone were recorded. Growth 
stage of the barley was also recorded at each sampling occasion using the decimal code 
proposed by Zadoks et al. (1974). The first data set (1989-94), 27 field experiments including 
180 sampling dates - data set 1) was used for parameter estimation of the model and the 
second one (1995-99), 25 field experiments - data set 2) was used for model validation. Both 
data set represents a wide range of agricultural, climatic and aphid infestation conditions. 
 
 2.1.2 Temperature. 
The daily maximum and minimum temperatures were collected from the Météo France® 
network stations in standardised conditions (2 m high under a shelter). Stations were chosen 
as close as possible to the experimental locations (at a maximum of 50 kilometres apart). 
 
2.2 BYD risk assessment model. 

2.2.1 General scheme of the system 
Four steps are involved in the BYD risk assessment model.  
Step 1: A field assessment of the proportion of plants at growth stages DC 11 or DC 12 

infested by aphids is carried out. This observation is used to derive F(0), the probability 
distribution of the actual proportion of plants infested by aphids at time t = 0, as 
explained in the section 2.2.2.  

Step 2: A sample of Nbsim values, {Fi(0)}1 ≤ i ≤ Nbsim, is drawn from the distribution F(0) and 
used to generate a sample of Nbsim values of the initial average number of aphids per 
100 plants, {Ni(0)}1 ≤ i ≤ Nbsim, as explained in the section 2.2.3. 
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Step 3: Observed daily minimum and maximum temperatures at date t (θmint and θmaxt ) are 
used to generate r(t), the probability distribution of the population growth rate. For each 
initial average number of aphids and for each date t < tmax (tmax being fixed at the end 
of November), a value ri(t) is drawn from r(t) and used to calculate Ni(t+1) from Ni(t) , 
as explained in the section 2.2.4. 

Step 4: The Nbsim simulated population dynamics, {Ni(t)}(1 ≤ i ≤ Nbsim, 0 ≤ t ≤ tmax), are used to 
generate a sample {Ii}1 ≤ i ≤ Nbsim (as explained in the section 2.3). The sample 
{Ii}1 ≤ i ≤ Nbsim provides a posterior predictive distribution of the risk index I. 

Nbsim was fixed to 6.105. The program was implemented in Turbo Pascal with Borland Delphi 
6.0®. 
 
 2.2.2 Assessment of the probability distribution F(0).  
A field assessment of the proportion f of plants infested by R. padi at the cereal growth stages 
one leaf or two leaves (DC 11 or 12) is carried out by observing n contiguous plants in NQ 
quadrats. F(0) the probability distribution of the actual proportion of plants infested by aphids 
at time t = 0 is assumed to follow a normal distribution with mean f and variance f·(1-f)/nNQ 
(Madden and Hughes, 1999). A presence/absence notation was preferred to a precise counting 
of the number of aphids to simplify sampling procedure. 
 
 2.2.3 Conditional probability distribution P[N|F].  
Data set 1 was used to produce a sample (denoted thereafter {P,N}) of 180 observed couples 
(Fi, Ni) to investigate the relationship between the proportion of infested plants and the 
average number of aphids per 100 plants. N was assumed to follow a log-normal distribution 
with mean μN = a·[exp(b·F)-1] and variance σΝ

2. Accordingly, the following model was fitted 
to data set 1 (Fig. 1) : 

Ni = a·[exp(b·Fi)-1]·exp(ωi)  equation (1) 
 

where a and b are real coefficients and ωi are independent random variables normally 
distributed with mean 0 and variance σΝ

2.   
The term exp(ωi) is a multiplicative log-normal process error.  
Following Gelman et al. (1995), as many experimental data were available and few 
parameters had to be estimated, non-informative prior distributions were considered ([a,b] ~ 
Uniform on ]0, 104] × ]0, 104] and σΝ

2 ∼ Gamma inverse [10-3, 10-3]). A sample of 5000 
draws of the joint posterior probability distribution P(a,b, σΝ

2|{P,N}) was generated using 
Markow Chain Monte Carlo (MCMC) techniques (Gibbs sampling algorithm [Gelman et al., 
1995]) with Winbugs® V1.3 (Spiegelhater et al., 2000) after convergence of the chains had 
been checked with the Brooks and Gelman (1998) diagnostic proposed by Winbugs®.  
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The marginal posterior distributions of the three parameters were directly computed from the 
MCMC samples (Fig. 2A). 
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Fig. 1. Proportion of plants infested by Rhopalosiphum padi , F, as a function of the average 
number of aphids per 100 plants, N (observation: open circles; model: line). 

 
2.2.4 Modelling the population dynamics of R. padi.  

Population dynamics of R. padi were described by a density-independent exponential model 
with a variable growth rate: 
 

Nt+Δt = Nt·exp[r(t)·Δt].  equation (2) 
where Nt is the average number of aphids per 100 plants on day t and r(t) the population 
growth rate between t and t+Δt.  
Population growth rate. Growth rate was assumed to be temperature-dependent and to 
follow a linear day-degree model. A set of observed values of r was obtained by using 
equation 2 for each pair of consecutive sampling densities (Nt, Nt+Δt) from the data set 1. 
During the 2 consecutive dates, the mean daily rate of degree-day accumulation was 
computed as  
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( )∑
=

+ −⋅=
t

1k
2

maxmin 8.5
t

1DD kk
Δ

θθ

Δ
 equation (3) 

where θmink and θmaxk are the minimum and maximum temperatures recorded on the day k 
and 5.8°C is the lower developmental threshold for R. padi (Elliott and Kieckhefer, 1989).  
 
 
 

 
Fig. 2. A: Posterior marginal probability distribution of equation 1 parameters (a, b,  σΝ

2). B: 
Posterior marginal probability distribution of equation 4 parameters (c, d,  σr

2). The mean (μ), 
2.5% (q2.5) and 97.5% (q97.5) quantiles of the posterior marginal probability distribution are 
computed from a MCMC sample of 5000 draws. 

 
As in the northern part of France temperatures above 25°C are extremely uncommon after 
September 15th, no specific control of the effect of high temperatures has been implemented. 
For the sake of simplicity, stochasticity due to sampling has not been taken into account and 
counts with less than 100 aphids in the 4 plots were not considered in order to avoid the 
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effects of random fluctuations attributable to small sample size. Some observations presenting 
a drastic decrease of the aphid population just after insecticide applications in an adjacent plot  
were also removed from the data set. The linear day-degree model was fitted to the data set 
containing the 99 remaining observed pairs {(ri, DDi)} (Fig. 3): 
 

ri = c·DDi+d+ηi  equation (4) 
where c and d are real coefficients and ηi are independent random variables normally 
distributed with mean 0 and variance σr

2.  
Α sample of 5000 draws of the joint posterior probability distribution of the 3 parameters was 
generated with Winbugs® using non informative prior distribution ([c, d] ~ Uniform on [-104, 
104] × [-104, 104] and σr

2   ∼ Gamma inverse [10-3, 10-3]). The marginal posterior distributions 
of the 3 parameters are presented in Fig. 2B.  
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Fig. 3. Growth rate of R. padi populations (r) in cereal field conditions in autumn as a function of 
the mean daily rate of day-degree accumulation over a 5.8°C threshold (DD) (r² = 0.42, n = 99, 
p<10-3). 
 

Growth rate estimation under low temperature regime. Because of the scarcity of 
observations in which the recorded temperature was below 0°C in the data set, the method 
used above was irrelevant for growth rate assessment at low temperatures. Below – 5°C, 
many authors (Griffiths and Wratten, 1979; Williams, 1980; Dedryver and Gellé, 1982) have 
stated that high rates of mortality occurred in R. padi populations. Few R. padi survive under 
– 8°C. From these qualitative observations, below – 5°C the population growth rate was set 
to: 

ehr +−=
min

1
θ   equation (5) 
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where θmin is the minimum temperature of the considered day and e and h are real 
coefficients set to 8.41 and 0.125 respectively to achieve a daily mortality rate of 15% of the 
population at – 5°C and of 90% at – 8°C. 
 
2.3 Validation of the BYD risk assessment model.  
The validation was performed by checking whether the population dynamics model 
accurately predicts the value of the BYD risk index I for the 25 independent field records 
(data set 2). To estimate I, the area under the curve describing aphid population dynamics, the 
trapezoidal integration method was used. To avoid the influence of the length of the time 
interval of the survey on the value of I, it was rescaled by dividing it by its duration. I was 
calculated with both the actual observed dynamics of aphid (Iob) and predicted dynamics 
produced by the model (Ipr) after simulated aphids densities [i.e. {Ni(t)}(1 ≤ i ≤ Nbsim, 0 ≤ t ≤ tmax)] 
were expressed in proportions of infested plants using the reciprocal of equation 1 with mean 
values of a and b. For each monitored field, 2 simulations were run: one with actual observed 
temperatures and one with 20 year average temperatures. For Iob, the four replicates enabled 
the production of a 90% confidence interval under the assumption of a normal distribution. 
For Ipr, the 50 % and 90% posterior intervals were derived from their posterior predictive 
distribution with 5%, 25%, 75% and 95% quantiles. 
 

3. Results 

 
3.1 Validation using actual temperatures. 
The regression analysis ( Ipr = 0.81 Iob, n=25, r²=0.89, P<0.0001) indicated that the 
simulation model run with actual temperatures accurately predicted Iob (Fig. 4). However, the 
model tended to slightly underestimate the actual value of I as the regression slope was 0.81. 
In 21 field experiments out of 25 (84%) the 90% confidence interval of Iob and 90% posterior 
interval of Ipr overlapped. 
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Fig. 4. Relationship between mean observed value of the BYDV risk index (Iob) and its mean 
predicted value (Ipr) for simulations ran with actual observed temperatures ( , Solid line : n=25, 
r²=0.89, P<0.0001) and with 20 year average temperatures ( , Dotted line : n=25, r²=0.85, 
P<0.0001). 

 
3.2 Validation with 20 year average temperatures. 
Similar results were obtained when 20 year average daily temperatures were used 
(Ipr = 0.74 Iob, n=25, r²=0.85, P<0.001) (Fig. 4). The underestimation of the actual value of 
Iob was slightly higher than for actual temperatures. However, the slopes of the regression 
lines obtained with 20 year average temperatures (0.74) and with actual observed 
temperatures (0.81) were not significantly different (student's t-test = 0.46, df = 46). In 21 
field experiments out of 25 (84%) the 90% confidence interval of Iob and 90% posterior 
interval of Ipr overlapped (Fig. 5). In the 4 other field experiments, Ipr values were always 
underestimated. In these 4 experiments, the mean value of the area under the curve of the 
percentage of plants infested by winged aphids after t = 0 is 48.2 (SD ± 39.6) versus only 26 
(SD ± 28.5) in the 21 fields experiments where confidence intervals overlapped, suggesting 
that this discrepancy could be attributed to substantial infestations of the field after the date of 
initialisation of the simulation. 
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Fig. 5. Mean (▲) and 90% confidence interval (broken lines) of Iob and box plot of Ipr predicted with 20 year 
average temperatures for the 25 field experiments. The boxes indicate the first and upper quantiles and the 
diamonds (♦) indicate the mean of Ipr. Full lines extending from each end of the box show the extent of the 90% 
posterior intervals (derived from the posterior predictive distributions with the 5 and 95 % quantiles). For Iob, a 
90% confidence interval was estimated assuming a normal distribution (mean ± 1.65 SD). 
 

4. Discussion 

 
In spite of its simplicity, the population dynamics model provided accurate estimates of the 
BYD risk index proposed by Fabre et al. (2003). The model is initialised with a single 
estimate of the proportion of plants infested by aphids when others often needs as starting 
values fields densities of aphids and of their natural enemies (e.g. Gosselke et al., 2001; 
Plantegenest et al., 2001). In R. padi, as in many aggregative insects (Wilson and Room, 
1983), population density is strongly linked to the proportion of infested plants allowing us to 
accurately estimate the average number of aphids per plant from an observation of this 
proportion. This is a pledge of good use by decision-makers because, unlike counting aphid 
and natural enemies numbers, this proportion is relatively easy to assess in fields. However 
this sampling needs to be done thoroughly to avoid mis-counting and decision-makers may 
undoubtedly require some basic training and instructions on making such observations. A 
further easier alternative could be to use suction trap data to estimate the daily immigration 
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rate of R. padi into the field (Morgan, 2000). However, in France, suction traps are very 
distant from each others and the network only covers the northern part of the country, which 
limit their practical use. Moreover, many factors can affect aphids settling in crops such as 
topography or locally dominant reproductive mode of R. padi (Simon et al., 1996; Rispe et al., 
1998). Skirvin et al. (1997) emphasized that suction traps catches cannot account for 
differences in the simultaneous dynamics of Sitobion avenae in two neighbouring fields. In 
this context, field sampling achieves the best trade-off between reliability and easiness for an 
accurate assessment of initial aphid density. 
The BYD risk assessment was based on simulation of the population dynamics of the main 
BYDV vector in autumn-sown cereals, the aphid R. padi. Few population dynamics models 
have been proposed for R. padi (Wiktelius and Pettersson, 1985; Gosselke et al., 2001) and 
the model of Morgan (2000) was the only one to deal with its autumnal dynamics. Models 
describing aphid population dynamics are usually deterministic (Carter et al., 1982; Wiktelius 
and Pettersson, 1985; Skirvin et al., 1997; Ro and Long, 1999; Morgan, 2000; Gosselke et al., 
2001; Plantegenest et al., 2001) and, except in Ro and Long (1999), parameter estimation 
relies on laboratory experiments. The innovative approach described here used stochastic 
modelling and dealt with field data. Indeed, to our view, the complex array of environmental 
variables and feedback loops driving aphid abundance in natural conditions can, in some 
cases, limit the reliability of parameters estimated under controlled conditions. The noisy 
character of field data compelled us to use a simple model including few parameters. A 
density-independent exponential model with a variable growth rate depending only on 
temperature was chosen because this variable is known to have the strongest influence on 
aphid dynamics in a temperate climate (Dean, 1974; Griffiths and Wratten, 1979; Williams, 
1980; Elliott and Kieckhefer, 1989). The effect of temperature was introduced, as in Ro and 
Long (1999), through a mean-minus base degree day method. The density-independent 
assumption was justified by the fact that R. padi rarely achieved high densities during the 
period studied (in our data set, the average density per infested plant was 2.32 ± 2.26). 
Thirakhupt and Araya (1992) have shown that no decrease of the R. padi population growth 
rate is observed for densities below 5 to 10 aphids per plant. 
 
Despite the major effect of temperature on R. padi population dynamics, the moderate 
coefficient of determination of equation 3 (0.42) suggests that many other factors drive the 
abundance of aphid populations in field conditions. Bayesian inference is well adapted to deal 
with such large sources of uncertainty. It allows explicit incorporation into the model of the 
uncertainty attributable to sampling errors and to uncontrolled factors which drive the pattern 
of R. padi aggregation on plants and the population growth rate in the field. Rather than a 
single mean estimation of aphid densities, as derived by previously listed deterministic 
models, the whole posterior probability density function of aphid densities is obtained. The 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Fabre, F., Pierre, J.S., Dedryver, C.-A., Plantegenest, M. (2006). Barley yellow dwarf disease

risk assessment based on Bayesian modelling of aphid population dynamics. Ecological
Modelling, 193, 457-466.  DOI : 10.1016/j.ecolmodel.2005.08.021

 
   

   
   

   
M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t 

model validation carried out on a large independent data set collected under normal farm 
working conditions showed that this modelling strategy was efficient.  

The main limitation to the use of climate driven systems is that future climate cannot 
be accurately predicted. However, comparison of the results obtained by simulations with 
actual daily observed temperatures and 20 year average daily temperatures has shown only a 
weak reduction in accuracy of the model’s predictions. Moreover, simulations were run 
successfully with early field sampling (GS 11 or 12) when insecticide spray against BYD can 
still be applied. Consequently, the model was shown to be suitable in an actual predictive 
context where only past climate and early population density estimates are available. To 
further improve its interest, the model should be fit to wheat, BYD being also a major 
problem on this crop. To our view, the main adjustment should come from difference in the 
relationship between growth rate and temperatures. Indeed, authors generally reports that, at 
early growth stages (i.e. in autumn), R. padi has lower fecundity on wheat than on barley 
(Leather and Dixon, 1981 ; Kieckhefer and Gellner, 1988). 

In many cases the model underestimated weakly the actual value of I. Differences in 
barley varieties for R. padi settling and multiplication are generally low (Forslund et al., 
1998) and do not seem to play a role in this discrepancy. This could be due to later 
colonisation events occurring after t = 0. The large degree of year to year variation in the 
number of migrating individuals as well as in the length of the colonisation period, render 
migration process difficult to model (Gosselke et al., 2001). However, model discrepancy 
remained relatively moderate for two main reasons: the effect of colonisation on field 
population dynamics becomes smaller when the number of wingless aphids increases, and the 
number of flying R. padi decreases rapidly in the second half of October (Hullé et al., 1994). 
In practice, to deal with the risk of late colonisation, users could continue monitoring their 
fields until mid-October. This choice was made by Gosselke et al. (2001) to adapt the 
simulated immigration to the true occurrence of immigrants. An alternative approach could be 
to introduce a stochastic variable accounting for the colonisation process occurring after t = 0 
in the model but this would result in an enlargement of the predicted confidence interval. 
However, one must bear in mind that this problem can be get around when using the value of 
I to derive a binary response on whether or not applying a treatment. Indeed, to do so, the 
value of I predicted in a given field is compared with a decision threshold value (Is), a 
particular value of I, determined using cost-benefit analysis (Fabre et al., 2003). Accordingly, 
it is not a strict requirement that I quantifying the exact value of the area under the proportion 
of plants infested by R. padi because the decision rely on the comparison between relative 
values of I. Within such decision making framework, a deterministic model will provide a 
point estimate of I: only a binary response can be derived (i.e. I>Is or I≤Is). In the opposite, 
the Bayesian approach is more informative: based on the posterior probability density 
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function of I, an estimation of the probability that a treatment is necessary (i.e. the probability 
that I>Is) can be obtained.  

Bayesian inference is fast becoming an accepted statistical tool among ecologists (Ellison, 
2004) and natural resource managers (e.g. Rivot et al., 2004; Prato, 2005). This work 
exemplified its advantages and high tractability in integrated pest management. Besides its 
practical efficiency evidenced in this work, the Bayesian methodology allows us to associate 
any prediction with a measure of its reliability that is generally not the case when dealing with 
deterministic models. As emphasised by Clark (2003b), ignoring uncertainty in model 
parameters lead to narrows confidence intervals, to forecast failure and finally to a loss of 
credibility in decision making systems. 
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