S. Tarnawski, J. Hamelin, L. Locatelli, M. Aragno, and N. Fromin, Examination of Gould's modified S1 (mS1) selective medium and Angle's non-selective medium for describing the diversity of Pseudomonas spp. in soil and root environments, FEMS Microbiol Ecol, vol.45, pp.97-104, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02126966

P. Browne, O. Rice, S. H. Miller, J. Burke, D. N. Dowling et al., Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluoresence complex, Appl Soil Ecol, vol.43, pp.131-138, 2009.

S. Rajmohan, C. Dodd, and W. Waites, Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage, J Appl Micro, vol.93, pp.205-213, 2002.

H. Mulcahy, J. O'callaghan, O. Grady, E. P. Maciá, M. D. Borrell et al., Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence and pulmonary inflammation, Infect Immun, vol.76, pp.632-638, 2008.

A. Haritash and C. Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review, J Hazard Mater, vol.169, pp.1-15, 2009.

U. F. Walsh, J. P. Morrissey, O. Gara, and F. , Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation, Curr Opin Biotechnol, vol.12, pp.289-295, 2001.

D. Cronin, Y. Moënne-loccoz, A. Fenton, C. Dunne, D. N. Dowling et al., Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis, Appl Environ Microbiol, vol.63, pp.1357-1361, 1997.

D. Haas and G. Défago, Biological control of soil-borne pathogens by fluorescent pseduomonads, Nat Rev Microbiol, vol.3, pp.307-319, 2005.

S. H. Miller, P. Browne, C. Prigent-combaret, E. Combes-meynet, J. P. Morrissey et al., Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species, Environ Microbiol Rep, vol.2, pp.403-411, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00525643

M. Villacieros, C. Whelan, M. Mackova, J. Molgaard, M. Sánchez-contreras et al., Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti system to drive bph gene expression, Appl Environ Microbiol, vol.71, pp.2687-2694, 2005.

J. Deutscher, The mechanisms of carbon catabolite repression in bacteria, Curr Opin Microbiol, vol.11, pp.87-93, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315464

B. Görke and J. Stülke, Carbon catabolite repression in bacteria: many ways to make the most out of nutrients, Nat Rev, vol.6, pp.613-624, 2008.

, Rojo F: Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment, FEMS Microbiol Rev, vol.34, pp.658-684, 2010.

D. Collier, P. Hager, and P. Phibbs, Catabolite repression control in the Pseudomonads, Res Microbiol, vol.147, pp.551-561, 1996.

S. J. Suh, L. J. Runyen-janecky, T. C. Maleniak, N. A. Zielinski-monzy, P. Phibbs et al., Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa, Microbiology, vol.148, pp.1561-1569, 2002.

R. Moreno, A. Ruiz-manzano, L. Yuste, and F. Rojo, The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator, Mol Micro, vol.64, pp.665-657, 2007.

E. Sonnleitner, L. Abdou, and D. Hass, Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa, PNAS, vol.106, pp.21866-21871, 2009.

. Browne, BMC Microbiology, vol.10, 2010.

R. Moreno, S. Marzi, P. Romby, and F. Rojo, The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation, Nucl Acids Res, vol.37, pp.7678-7690, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00561421

T. Nishijyo, D. Haas, and Y. Itoh, The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa, Mol Microbiol, vol.40, pp.917-931, 2001.

W. Li and C. D. Lu, Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa, J Bacteriol, vol.189, pp.5413-5420, 2007.

X. X. Zhang and P. B. Rainey, Dual involvement of CbrAB and NtrBC in the regulation of histidine utilization in Pseudomonas fluorescens SBW25, Genetics, vol.178, pp.185-195, 2008.

J. Potts and P. Clarke, The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa, J Gen Microbiol, vol.93, pp.377-387, 1976.

I. Aranda-olmedo, J. L. Ramos, and S. Marqués, Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL Plasmid pWW0, Appl Environ Microbiol, vol.71, pp.4191-4198, 2005.

A. Ruiz-manzano, L. Yuste, and F. Rojo, Levels an activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions, J Bacteriol, vol.187, pp.3678-3686, 2005.

J. Wolff, C. Macgregor, R. Eisenberg, and P. Phibbs, Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO, J Bacteriol, vol.173, pp.4700-4706, 1991.

R. Moreno, M. Martínez-gomariz, L. Yuste, C. Gil, and F. Rojo, The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: Evidence from proteomic and genomic analyses, Proteomics, vol.9, pp.2910-2928, 2009.

J. Linares, R. Moreno, A. Fajardo, L. Martínez-solano, R. Escalante et al., The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa, Environ Microbiol, 2010.

C. Daniels, P. Godoy, E. Duque, M. A. Molina-henares, J. De-la-torre et al., Global regulation of food supply by Pseudomonas putida DOT-T1E, J Bacteriol, vol.192, pp.2169-2181, 2010.

S. West, A. Sample, and L. Runyen-janecky, The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor portein family, J Bacteriol, vol.176, pp.7532-7542, 1994.

L. Yuste and F. Rojo, Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway, J Bacteriol, vol.183, pp.6197-6206, 2001.

M. Putrin?, A. Tover, R. Tegova, Ü. Saks, and M. Kivisaar, Study of factors which negatively affect expression of the phenol degardation operon pheBA in Pseudomonas putida, Microbiology, vol.153, pp.1860-1871, 2007.

G. Morales, J. F. Linares, A. Beloso, J. P. Albar, J. L. Martínez et al., The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds, J Bacteriol, vol.186, pp.1337-1344, 2004.

R. Moreno and F. Rojo, The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator, J Bacteriol, vol.190, pp.1539-1545, 2008.

R. Moreno, P. Fonseca, and F. Rojo, The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes, J Biol Chem, vol.285, pp.24412-24419, 2010.

K. Hester, K. Madhusudhan, and J. Sokatch, Catabolite repression control by Crc in 2xYT medium is mediated by posttranscriptional regulation of bkdR expression in Pseudomonas putida, J Bacteriol, vol.182, pp.1150-1153, 2000.

G. O'toole, K. Gibbs, P. Hager, P. Phibbs, and R. Kolter, The global carbon metabolism regulator Crc is a component of a singnal transduction pathway required for biofilm development by Pseudomonas aeruginosa, J Bacteriol, vol.182, pp.425-431, 2000.

R. Kaur, J. Macleod, W. Foley, and M. Nayudu, Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all, Phytochemistry, vol.67, pp.595-604, 2006.

P. De-werra, M. Péchy-tarr, C. Keel, and M. Maurhofer, Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0, Appl Environ Microbiol, vol.75, pp.4162-4174, 2009.

K. Takeuchi, P. Kiefer, C. Reimmann, C. Keel, J. Rolli et al., Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens, J Biol Chem, vol.284, pp.34976-34985, 2009.

M. Thomas-chollier, O. Sand, J. V. Turatsinze, R. Janky, M. Defrance et al., RSAT: regulatory sequence analysis tools, Nucleic Acids Res, vol.36, pp.119-127, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01624302

M. W. Silby, A. M. Cerdeño-tárraga, G. S. Vernikos, S. R. Giddens, R. W. Jackson et al., Genomic and genetic analysis of diversity and plant interactions of Pseudomonas fluorescens, Genome Biol, vol.10, p.51, 2009.

K. Mathee, G. Narasimhan, C. Valdes, X. Qiu, J. M. Matewish et al., Dynamics of Pseudomonas aeruginosa genome evolution, Proc Natl Acad Sci, vol.105, pp.3100-3105, 2008.

J. A. Moynihan, J. P. Morrissey, E. R. Coppoolse, W. J. Stiekema, O. Gara et al., Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens, Appl Environ Microbiol, vol.75, pp.2122-2131, 2009.

P. H. Roy, S. G. Tetu, A. Larouche, L. Elbourne, S. Tremblay et al., Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA14, PLoS One, vol.5, p.8842, 2010.

S. Sarkar and D. Guttman, Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen, App Env Microbiol, vol.70, pp.1999-2012, 2004.

F. Rojo and A. Dinamarca, Catabolite repression and physiological control, Pseudomonas: virulence and gene regulation, vol.2, pp.365-387, 2004.

J. E. Schultz and A. Matin, Molecular and functional characterization of a carbon starvation gene of Escherichia coli, J Mol Biol, vol.218, pp.129-140, 1991.

J. E. Schultz, G. I. Latter, and A. Matin, Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli, J Bacteriol, vol.170, pp.3903-3909, 1988.

T. A. Azam and A. Ishihama, Twelve species of nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affininty, J Biol Chem, vol.274, pp.33105-33113, 1999.

I. Cases and V. De-lorenzo, The genomes of Pseudomonas encode a third HU protein. Micriobiology Comment, vol.148, pp.1243-1245, 2002.

J. Pérez-martín and V. De-lorenzo, The ? 54 -dependent promoter Ps of the TOL plasmid of Pseudomonas putida requires HU for transcriptional activation in vivo by xylR, J Bacteriol, vol.177, pp.3758-3763, 1995.

L. Yuste, A. B. Hervás, I. Canosa, R. Tobes, J. Nogales et al., Growth phasedependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray, Environ Microbiol, vol.8, pp.165-177, 2006.

M. Valls, M. Buckle, and V. De-lorenzo, In vivo UV laser footprinting of the Pseudomonas putida ? 54 promoter reveals that integration host factor couples transcriptional activity to growth phase, J Biol Chem, vol.277, pp.2169-2175, 2002.

P. G. Ward, G. De-roo, O. Connor, and K. E. , Accumulation of polyhydroxyalkanoate from sytrene and phenylacetic acid by Pseudomonas putida CA-3, Appl Environ Microbiol, vol.71, pp.2046-2052, 2005.

D. M. Ramsey and D. J. Wozniak, Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis, Mol Microbiol, vol.56, pp.309-322, 2005.

M. Ahmed and N. , Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria, Curr Genomics, vol.8, pp.191-202, 2007.

W. M. Konyecsni and V. Deretic, DNA sequence and expression of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats, J Bacteriol, vol.172, pp.2511-2520, 1990.

. Browne, BMC Microbiology, vol.10, 2010.

U. Remminghorst and B. Rehm, In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa, Appl Environ Microbiol, vol.72, pp.298-305, 2006.

L. L. Oglesby, J. Sumita, and D. E. Ohman, Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization, Microbiology, vol.154, pp.1605-1615, 2008.

M. J. Franklin and D. E. Ohman, Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is requried for alginate acetylation, J Bacteriol, vol.175, pp.5057-5065, 1993.

S. Wilhelm, J. Tommassen, and K. Jaeger, A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa, J Bacteriol, vol.181, pp.6977-6986, 1999.

S. Wilhelm, A. Gdynia, P. Tielen, F. Rosenau, and K. Jaeger, The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation, J Bacteriol, vol.189, pp.6695-6703, 2007.

M. E. Davey, N. C. Caizza, O. 'toole, and G. A. , Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1, J Bacteriol, vol.185, pp.1027-1036, 2003.

G. Soberón-chávez, F. Lépine, and E. Déziel, Production of rhamnolipids by Pseudomonas aeruginosa, Appl Microbiol Biotechnol, vol.68, pp.718-725, 2005.

T. H. Pham, J. S. Webb, and B. Rehm, The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation, Microbiology, vol.150, pp.3405-3413, 2004.

M. J. De-smet, G. Eggink, B. Witholt, J. Kingma, and H. Wyngerg, Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on Octane, J Bacteriol, vol.154, pp.870-878, 1983.

N. D. O'leary, O. Connor, K. E. Ward, P. Goff, M. Dobson et al., Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3, Appl Environ Microbiol, vol.71, pp.4380-4387, 2005.

M. A. Prieto, B. Bühler, K. Jung, B. Witholt, and B. Kessler, PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes, J Bacteriol, vol.181, pp.858-868, 1999.

S. J. Sim, K. D. Snell, S. A. Hogan, J. Stubbe, C. Rha et al., PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo, Nat Biotechnol, vol.15, pp.63-67, 1997.

G. Winsor, G. L. Van-rossum, R. Lo, B. Khaira, M. D. Whiteside et al., Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes, Nucl Acids Res, vol.37, pp.483-488, 2009.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC Bioinformatics, vol.10, pp.421-429, 2009.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, pp.403-410, 1990.

I. Cases, D. W. Ussery, and V. De-lorenzo, The ? 54 regulon (stimulon) of Pseudomonas putida, Environ Microbiol, vol.5, pp.1281-1293, 2003.

A. Conesa, S. Götz, M. García-gómez, J. Terol, J. Talón et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

. Browne, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution, BMC Microbiology, vol.10, p.300, 2010.