R. Alberio, K. Campbell, and A. D. Johnson, Reprogramming somatic cells into stem cells, Reproduction, vol.132, pp.709-720, 2006.

K. Campbell, R. Alberio, I. Choi, P. Fisher, R. Kelly et al., Cloning: eight years after Dolly, Reproduction in Domestic Animals, vol.40, pp.256-268, 2005.

Y. Dai, C. Lee, A. Hutchings, Y. Sun, and R. Moor, Selective requirement for Cdc25C protein synthesis during meiotic progression in porcine oocytes, Biology of Reproduction, vol.62, pp.519-532, 2000.

S. N. Dalal, C. M. Schweitzer, J. Gan, and J. A. Decaprio, Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site, Molecular and Cellular Biology, vol.19, pp.4465-4479, 1999.

B. C. Duckworth, J. S. Weaver, and J. V. Ruderman, G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. PNAS 99, pp.16794-16799, 2002.

W. G. Dunphy and A. Kumagai, The cdc25 protein contains intrinsic phosphatase activity, Cell, vol.67, pp.189-196, 1991.

K. Galaktionov, C. Jessus, and D. Beach, Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation, Genes and Development, vol.9, pp.1046-1058, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02710526

L. Gall, S. Ruffini, L. Bourhis, D. Boulesteix, and C. , Cdc25C expression in meiotically competent and incompetent goat oocytes, Molecular Reproduction and Development, vol.62, pp.4-12, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02669463

J. Gautier, M. J. Solomon, R. N. Booher, J. F. Bazan, and M. W. Kirschner, Cdc25 is a specific tyrosine phosphatase that directly activate p34cdc2, Cell, vol.67, pp.197-211, 1991.

P. R. Graves, J. K. Schwarz, J. Gales, E. A. Sausville, P. M. O'connor et al., The chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01, Journal of Biological Chemistry, vol.275, pp.5600-5605, 2000.

R. Heald, M. Mcloughlin, and F. Mckeon, Human Wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase, Cell, vol.74, pp.473-474, 1993.

Y. Heyman, P. Chesné, L. Bourhis, D. Peynot, N. Renard et al., Developmental ability of bovine embryos after nuclear transfer based on the nuclear source in vivo versus in vitro, Theriogenology, vol.42, pp.695-702, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02706118

I. Hoffmann and E. Karsenti, The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle, Journal of Cell Science, vol.18, pp.75-79, 1994.

I. Hoffmann, P. R. Clarke, M. J. Marcote, E. Karsenti, and G. Draetta, Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis, EMBO Journal, vol.12, pp.53-63, 1993.

T. Izumi and J. Maller, Elimination of cdc2 phosphorylation in the cdc25 phosphatase blocks initiation of M-phase, Molecular Biology of the Cell, vol.4, pp.1337-1350, 1995.

T. Izumi, D. H. Walker, and J. L. Maller, Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity, Molecular Biology of the Cell, vol.3, pp.927-939, 1992.

J. M. Jones, First NL 1995 Expression of the cell cycle control protein cdc25 in cleavage stage bovine embryos, Zygote, vol.3, pp.133-139

A. Karaïskou, X. Cayla, and O. Haccard, Jessus C & Ozon R 1998 MPF amplification in Xenopus oocyte extracts depends on a two-step activation of Cdc25 phosphatase, Experimental Cell Research, vol.244, pp.491-500

T. Kishimoto, Activation of MPF at meiosis reinitiation in starfish oocytes, Developmental Biology, vol.214, pp.1-8, 1999.

A. Kumagai and W. G. Dunphy, Regulation of the cdc25 protein during the cell cycle in Xenopus extracts, Cell, vol.70, pp.39-151, 1992.

A. Kumagai and W. G. Dunphy, Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25, Genes and Development, vol.13, pp.1067-1072, 1999.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

J. H. Lee and K. H. Cambell, Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer, Biology of Reproduction, vol.74, pp.691-698, 2006.

A. Lopez-girona and B. Furnart, Montdesert O & Russel P 1999 Nuclear localization of Cdc25 is regulated by DNA damage and 14-3-3 protein, Nature, vol.397, pp.172-175

M. C. Menck, C. Guyader-joly, N. Peynot, D. Lebourhis, R. B. Lobo et al., Beneficial effect of vero cells for developing IVF bovine eggs in two different coculture systems, Nutrition, Development, vol.37, pp.141-150, 1997.

J. Millar, J. Blevitt, L. Gerace, K. Sadhu, C. Featherstone et al., P55cdc25 is a nuclear protein required for the initiation of mitosis in human cells, PNAS, vol.88, pp.10500-10504, 1991.

A. R. Nebrada and I. Ferby, Regulation of the meiotic cell cycle in oocytes, Current Opinion in Cell Biology, vol.12, pp.666-675, 2000.

P. Nurse, Universal control mechanism regulating onset of M-Phase, Nature, vol.344, pp.503-508, 1990.

D. Pérez-mongiovi, C. Beckhelling, P. Chang, C. C. Ford, and E. Houliston, Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts, Journal of Cell Biology, vol.150, pp.963-974, 2000.

F. Revel, P. Mermillod, N. Peynot, J. P. Renard, and Y. Heyman, Low development capacity of in vitro matured and fertilized oocytes from calves compared with that of the cows, Journal of Reproduction and Fertility, vol.103, pp.115-120, 1995.

, Cdc25C and early development of bovine embryos