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The insulin-sensitive glucose transporter Glut4 is expressed
in brain areas that regulate energy homeostasis and body
adiposity. In contrast with peripheral tissues, however, the
impact of insulin on Glut4 plasma membrane (PM) transloca-
tion in neurons is not known. In this study, we examined the
role of two anorexic hormones (leptin and insulin) on Glut4
translocation in a human neuronal cell line that express en-
dogenous insulin and leptin receptors. We show that insulin
and leptin both induce Glut4 translocation to the PM of neu-
ronal cells and activate glucose uptake. Wortmannin, a spe-
cific inhibitor of phosphatidylinositol 3-kinase, totally abol-
ished insulin- and leptin-dependent Glut4 translocation and
stimulation of glucose uptake. Thus, Glut4 translocation is a
phosphatidylinositol 3-kinase-dependent mechanism in neu-
ronal cells. Next, we investigated the impact of chronic insulin
and leptin treatments on Glut4 expression and translocation.

Chronic exposure of neuronal cells to insulin or leptin down-
regulates Glut4 proteins and mRNA levels and abolishes the
acute stimulation of glucose uptake in response to acute in-
sulin or leptin. In addition, chronic treatment with either
insulin or leptin impaired Glut4 translocation. A cross-desen-
sitization between insulin and leptin was apparent, where
exposure to insulin affects leptin-dependent Glut4 transloca-
tion and vice versa. This cross-desensitization could be attrib-
uted to the increase in suppressor of cytokine signaling-3 ex-
pression, which was demonstrated in response to each
hormone. These results provide evidence to suggest that Glut4
translocation to neuronal PM is regulated by both insulin and
leptin signaling pathways. These pathways might contribute
to an in vivo glucoregulatory reflex involving a neuronal net-
work and to the anorectic effect of insulin and leptin. (Endo-
crinology 147: 2550-2556, 2006)

GLUCOSE IS AN essential substrate for cerebral oxida-
tive metabolism and is transported into neurons and
glial cells via facilitative glucose transporters (1-4). Glucose
transporters are membrane-spanning proteins constituted,
so far, by 14 isoforms (Glutl-Glut14), and at least three iso-
forms are expressed in neuronal cells. The predominant iso-
forms in neuronal cells are Glut3 (5, 6), the insulin-responsive
Glut4 (7-10), and the recently cloned Glut8 (11-13). Glut 2
has been also identified in several brain nuclei and was
mostly located on glial cells and to a lesser extent in neurons
(14, 15).

Glut3 and Glutl are considered the main glucose trans-
porter isoforms in the brain. Glutl is mostly located at the
blood-brain barrier, including in the choroids plexus and in
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microvessels (16). Glut3 is mainly expressed in neurons of the
cortex, hippocampus, and cerebellum and facilitates a con-
tinuous supply of glucose to neurons (17).

Glut4 and Glut8 isoforms are insulin-responsive glucose
transporters in the peripheral tissues (11, 18). Their expres-
sion was also reported in the brain, but their plasma mem-
brane (PM) translocation in response to insulin is still a
matter of controversy. Glut8 is localized in the intracellular
cytosolic compartment, and glucose or insulin stimulation
induced its translocation to endoplasmic reticulum but not to
PM (19, 20). It has been also recently demonstrated that Glut8
translocation is not responsive to insulin in neuronal cells
(21).

Several studies have reported Glut4 mRNA and protein
expression in various regions of the brain including the ol-
factory bulb, hippocampus, cortex, cerebellum, and hypo-
thalamus (8, 22, 23). Glut4 translocation to the PM of neu-
ronal cells in response to insulin is not yet demonstrated.

Glucose uptake from blood to the brain parenchyma in-
volves Glutl (24, 25) and enters neuron through Glut3 and
Glut4 (and may be Glut8). Glut3 transporter is essential for
providing the glucose to the brain in a hormonal-indepen-
dent manner to ensure its metabolic function, and this has
been largely documented (5, 6). In contrast, the role of Glut4,
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which is considered to be insulin dependent in peripheral
tissues, is still unclear, and its possible involvement in the
neuronal glucosensing is a reasonable hypothesis.

Recent reports have colocalized Glut4 and insulin receptor
in glucose-excited neurons of the hypothalamic ventrome-
dial nucleus, which are considered glucosensing neurons
(26). Asin peripheral tissue, insulin activates insulin receptor
substrate (IRS)/phosphatidylinositol 3-kinase (PI 3-kinase)
signaling pathway in the hypothalamus. The inhibition of
this signaling cascade abolished the anorexic effect of insulin
(27). In insulin-sensitive tissues such as adipose tissue or
skeletal muscles, Glut4 responds to insulin signaling by
translocation to the PM allowing increased glucose uptake
(28, 29). Although Glut4 is colocalized with the insulin re-
ceptor in the hypothalamus and other areas of brain, Glut4
association with hypothalamic action of insulin is still
unknown.

We have recently shown that both insulin and leptin re-
ceptors are expressed in a human neuronal cell line, SH-SY5Y
(30-32), and thatleptin and insulin both activate Janus kinase
(JAK) 2/signal transducer and activator of transcription
(STAT)-3 and IRS/PI 3 kinase signaling pathways (33). To
investigate whether insulin and leptin affect Glut4 translo-
cation and glucose transport, we have used SH-SY5Y human
neuronal cells. Here we show that both insulin and leptin
activate the translocation of Glut4 to the PM but are without
effect on translocation of Glut3. Furthermore, we show that
Glut4 translocation and glucose uptake are PI 3 kinase-
dependent in this cellular model. To our knowledge, this is
the first study in a neuronal cell system demonstrating that
Glut4 is translocated to the PM in response to two anorexic
hormones: insulin and leptin. This finding might contribute
to the understanding of the role of neuronal Glut4 in in vivo
glucoregulatory reflex involving a neuronal network and the
anorectic hormones: insulin and leptin.

Materials and Methods
Chemicals

DMEM, fetal bovine serum, L-glutamine, penicillin, streptomycin,
and other cell culture reagents were obtained from Life Technologies,
Inc. (Invitrogen, Cergy Pontoise, France). BSA (fraction V radio immu-
noassay grade), leupeptin, aprotinin, wortmannin, all trans-retinoic acid,
and other chemicals were purchased from Sigma Chemical Co. (St.
Louis, MO). Premade polyacrylamide solution Protogel was from Na-
tional Diagnostics (Prolabo, Paris, France). Antibodies raised against
Glut-4 and Glut-3 from human origin were from Santa Cruz Biotech-
nology (Tebu, France). 2-Deoxy-p-[1, 2-*H]glucose was purchased from
ICN (Vannes, France). Nitrocellulose membranes were from Euromedex
(Mundolsheim, France). Human leptin was produced as previously
described (34). Briefly, a plasmid encoding human leptin was prepared
and over-expressed in Escherichia coli as insoluble inclusion bodies.
Those were isolated and refolded, and the human leptin was subse-
quently purified to homogeneity by ion-exchange chromatography
yielding electrophoretically pure, over 95% monomeric biologically ac-
tive protein.

Cell culture and stimulation

SH-SY5Y human neuroblastoma cells (kindly provided by Dr. B.
Dufy, Centre National de la Recherche Scientifique, Bordeaux II, France)
were grown in DMEM supplemented with 10% heat-inactivated fetal
calf serum, 2 mmM L-glutamine, 100 U/ml penicillin, and 100 ug/ml
streptomycin in 5% CO, atmosphere at 37 C; differentiation of SH-SY5Y
cells was achieved by treatment with retinoic acid. Differentiated cells
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were used after 15 d of retinoic acid treatment to obtain a high percentage
of cells that showed a clear morphological differentiation. Chronic in-
sulin and leptin treatment of differentiated SH-SY5Y was performed as
previously described previously (33) with minor modifications. Briefly,
serum-starved cells were incubated for 16 h at 37 C in serum-free DMEM
in presence or absence of leptin (15 nm) or insulin (100 nm). After
washing, cells were stimulated for 15 min at 37 C with or without insulin
(100 nm), leptin (15 nm), or the combination of both hormones. Where
indicated, wortmannin (1 um) was added to the medium during 30 min
and 15 min before the beginning of hormonal stimulation.

2-Deoxyglucose uptake measurement

The SH-SY5Y cells were seeded in six-well dishes and differentiated
as described previously (33). Differentiated SH-SY5Y cells were serum
starved for 16 h, and then incubated in presence or absence of insulin
(100 nm) or leptin (15 nm) for 16 h. Cells were then rinsed twice with
modified DMEM lacking glucose, pyruvate, and serum and incubated
in the same medium for 30 min at 37 C with or without insulin (100 nm),
leptin (15 nm) or the combination of both hormones. Glucose transport
was initiated by the addition of 100 pm 2-deoxy-p-[?H]glucose (0.33
uCi/dish) for the last 10 min; and wortmannin (1 uwm) was added 15 min
before the addition of 2-deoxy [*H]glucose. Finally, cells were washed
three times with ice-cold PBS, lysed in 1 N NaOH, and the cell-associated
radioactivity was counted using liquid scintillation counter. Aliquots of
cell lysates were saved for the determination of proteins content.

Immunocytochemistry

Differentiated SH-SY5Y cells were starved in serum-free DMEM for
16 h and stimulated for 15 min at 37 C with or without insulin (100 nm),
leptin (15 nm), or the combination of both hormones. After washing in
PBS, the cells were fixed for 30 min in 2% paraformaldehyde-PBS,
washed three times in PBS, and blocked in 5% normal rabbit serum and
0.2% gelatin fish. Cells were then incubated with goat polyclonal anti-
bodies raised against the extracellular domain of human Glut-4 or
Glut-3. The negative control was prepared by omitting the primary
antibody. After extensive washing with PBS, cells were incubated with
fluorescein thiocyanate rabbit antigoat IgG (1:500; Vector Laboratories,
Burlingame, CA). All samples were briefly counterstained with 4,6-
diamine-2-phenylindole at 1:300 dilution to count the number of nuclei
per field of view. Cells were mounted and cover slipped with anti-fade
medium (Vector Laboratories). Cell analysis was carried out using a
DMRB microscope (Leica Microsystems, Wetzlar, Germany) equipped
with a mercury light source and filter system to visualize the green
fluorescence. The microscope settings were consistently maintained
when comparisons were made.

PM preparation and immunoblotting

After hormonal treatment, differentiated SH-SY5Y cells were washed
twice in ice-cold PBS and membrane preparation was performed as
previously described (35). Briefly, cells were scraped in buffer A con-
taining 10 mMm NaHCOj; (pH 7.0), 250 mm sucrose, 5 mm NaNj3, and 100
uM phenylmethylsulfonylfluoride. The resulting homogenates were
clarified at 1300 X ¢ for 10 min. The supernatant was centrifuged at
9000 X g for 10 min and then at 190,000 X g for 1 h. The resulting pellet
(total membrane or TM) was homogenized in buffer A, one aliquot of
TM was saved (to estimate total Glut3 and Glut4) and remaining applied
on discontinuous sucrose gradients (25, 32, and 35%, wt/wt), and ul-
tracentrifuged at 150,000 X ¢ for 16 h at 4 C. PMs at the 25/32% inter-
phases were recovered, diluted with sucrose-free buffer A and ultra-
centrifuged at 190,000 X g for 1 h. Pellets of fractions were resuspended
in buffer A, and protein content was determined by bicinchoninic acid
(BCA)-based method (BCA protein assay; Pierce, Rockford, IL), with
BSA as standard. Proteins from the different fractions (50-100 u.g) were
solubilized for 1 h at room temperature in buffer B (3% sodium dodecyl
sulfate, 2 M urea, 1 mm EDTA), treated with Laemmli buffer and sep-
arated by SDS-PAGE with 12% resolving gel. The same treatment was
applied on TM. Proteins were transferred to nitrocellulose membranes,
and immunoblots were blocked with 3% BSA for 1 h at room temper-
ature. After incubation with the appropriate primary and secondary
antibodies, nitrocellulose membranes were washed, and targeted pro-
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teins were detected using enhanced chemiluminescence reagents (ECL;
Amersham Biosciences, Amersham, Buckinghamshire, UK).

Quantification of suppressor of cytokine signaling (SOCS)-3
and Glut4 mRNA expression by quantitative RT-PCR
(Q-RT-PCR)

Total RNA from differentiated SH-SY5Y cells was extracted using
RNA Insta pure kit (Eurogentec, Seraing, Belgium) according to man-
ufacturer’s recommendations. A 1-ug portion of total denatured RNA
was reverse transcribed with 50 U of Moloney murine leukemia virus
reverse transcriptase (Ozymes, Saint Quentin en Yvelines, France) as
previously described (33), and the resulting cDNAs were submitted to
quantitative PCR analysis. The PCR primers were as follows: SOCS3
sense, 5’ AGGAATGTAGCAGCGATGGAAS3; SOCS3 antisense, 5'GC-
CCTGTCCAGCCCAATACS'; Glut4 sense, 5'GGAGCTGGTGTGGT-
CAACACA3'; Glut4 antisense, 5" GGAGCAGAGCCACAGTCATCAS3/;
rpL19 sense, 5’ CAATGCCAACTCCCGTCAS3’; rpL19 antisense, 5'GCT-
GTACCCTTCCGCTTACCTAT3'. Real-time PCR was carried out using
the Roche LightCycler apparatus and the Fast Start DNA Master SYBER
Green I kit (Roche Diagnostics, Mannheim, Germany). PCR amplifica-
tion was performed in triplicates using the following conditions: initial
activation of the hot start DNA polymerase for 15 min at 94 C followed
by denaturation for 10 sec at 94 C, annealing for 10 sec at 60 C and
extension for 10 sec at 72 C. Forty cycles of PCR were programmed to
ensure that the threshold crossing point (cycle number) was attained.
Fluorescence emission was monitored continuously during cycling. At
the completion of cycling, melting curve analysis was carried out to
establish the specificity of the amplified product. The level of expression
of each mRNA and their estimated crossing point in each samples were
determined relative to the standard preparation using the LightCycler
computer software (Roche). A ratio of specific mRNA /rpL19 amplifi-
cation was then calculated, to correct for any differences in efficiency at
RT.

Statistical analysis

Statistical analysis was performed using ANOVA (Statview Software
program, version 5) (ASAP Software, St. Ouen, France) to detect sig-
nificant intergroup differences. Values are expressed as means * Sem,
and P < 0.05 was considered statistically significant.

Results

Glut-4 but not Glut-3 translocation is insulin and
leptin sensitive

The presence of Glut-4 and Glut-3 proteins was detected
in SH SY5Y cells by Western blotting (Fig. 1, A and B) and
immunohistochemical analyses (Fig. 2, A and B). In non-
stimulated SH-SY5Y cells, Glut 3 was present in the PM and
Glut 4 in the cytoplasm. Changes in Glut4 and Glut3 sub-
cellular localization in response to acute stimulation with
leptin (15nM) and/or insulin (100 nm) was next assessed. The
presence of GLUT 4 in the PM fraction was significantly
increased in response to both hormones alone or combined
(Fig. 1A), whereas Glut 3 was unaffected (Fig. 1B). These
changes occurred with no alteration of total Glut 3 or Glut 4
proteins in SH-SY5Y cell extracts. Glut 4 translocation from
cytoplasm to the PM in response to insulin and /or leptin was
confirmed by immunohistochemical analysis (Fig. 2A). By
contrast, Glut 3 localization at the PM was similar in un-
stimulated and stimulated cells (Fig. 2B).

Long-term exposure of SH-SY5Y cells to insulin or leptin
down-regulates Glut 3 and Glut 4 expression and abolishes
insulin- and leptin-dependent Glut4 translocation

To study the chronic effect of insulin and leptin on Glut3
and Glut4 expression, SH-SY5Y cells were treated with in-
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Fic. 1. Glut4 and Glut3 characterization and translocation to PM of
SH-SY5Y neuronal cells. Serum-deprived cells were incubated in the
absence (Con) or presence of 100 nM insulin (Ins), 15 nM leptin (Lep),
or 100 nM insulin plus 15 nM leptin (Ins/Lep) for 15 min. Cells were
lysed, and then TM and PM were prepared. Western blots were per-
formed using specific Glut4 (A) or Glut3 (B) antibodies. The blotted
proteins were revealed by ECL, the results were expressed as PM/TM
ratio for Glut4 and Glut3, and presented as means * SEM (n = 3). **,
P < 0.001.

Ins/Lep

sulin (100 nm) or leptin (15 nm) for 16 h before measuring
Glut4 and Glut3 contents in total cell lysates by Western blot.
Both insulin and leptin treatment significantly down-regu-
lates Glut4 and Glut3 protein expression (Fig. 3, A and B), by
roughly 2-fold whatever the isoform. The impact of the
chronic exposure to insulin or leptin on Glut4 PM translo-
cation in response to acute stimulation was investigated.
Insulin- and leptin-dependent Glut4 appearance on the PM
was abolished, in cells pretreated by leptin or insulin pre-
treatment (Fig. 4). This indicates that, in addition to a pro-
found down-regulation of the total Glut4 cellular content,
chronic exposure to insulin or leptin deactivates the mech-
anisms involved in Glut4 translocation to the PM.
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Fia. 2. Localization of Glut4 and Glut3 in SH-SY5Y cells in response
to insulin or leptin using immunochemistry. Starved SH-SY5Y cells
were incubated in the absence (basal) or presence of 100 nM insulin
(Ins), 15 nM leptin (Lep) or 100 nM insulin plus 15 nM leptin (Ins/Lep)
for 15 min, and then incubated in the presence of specific antibodies
directed toward Glut4 (A) or Glut3 (B) shown at the right part of each
box. 4,6-Diamidino-2-phenylindole staining was used to reveal cell
nuclei (left part of each box). The negative control was prepared by
omitting the primary antibody (Con). The microscope settings were
consistently maintained.

Glut 4 translocation to PM and glucose transport in
response to insulin or leptin are PI 3 kinase-dependent in
SH-SY5Y neuronal cells

To determine whether Glut 4 translocation in response to
insulin or leptin in SH-SY5Y neuronal cells is dependent
upon the activation of PI 3-kinase signaling pathway, Glut4
translocation was measured in absence or presence of wort-
mannin, a specific PI 3-kinase inhibitor. The presence of
wortmannin precluded the appearance of Glut 4 in the PM
fraction in response to either insulin, leptin, or both (Fig. 5).

To examine the impact of Glut4 translocation on glucose
uptake, glucose transport was measured in SH-SY5Y cells
by determining the incorporation labeled 2-deoxyglucose
([’H]2-DOG). Insulin and leptin significantly increased
[PH]2-DOG incorporation in SH-SY5Y cells, and this aug-
mentation was totally abolished in the presence of the PI
3-kinase inhibitor (Fig. 6A).

To determine whether [°’H]2-DOG transport is intimately
associated to Glut4 translocation, SH-SY5Y cells were pre-
treated with insulin or leptin, conditions where Glut4 is
down-regulated and not translocated to PM (as shown in Fig.
4). Both insulin (Fig. 6B) and leptin pretreatment (Fig. 6C)
completely inhibited [PH]2-DOG transport in response to
acute insulin or leptin stimulation compared with untreated
cells (Fig. 6A). In this case, wortmannin has no additional
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Fia. 3. Insulin and leptin down-regulate Glut4 and Glut3 expression
in SH-SY5Y cells. Serum-deprived cells were incubated in the absence
(W/O PreT) or presence of 100 nM insulin (Ins PreT) or 15 nM leptin
(Lep PreT) for 16 h. After TM preparation and solubilization, cell
lysates were subjected to SDS-PAGE and Western blot using anti-
bodies directed toward Glut4 (A) or Glut3 (B). The experiment was
conducted in triplicates. The blotted proteins were revealed by ECL,
the results were expressed as total content of Glut4 and Glut3 and
presented as means *= SEM (n = 3). x, P < 0.01; %, P < 0.001.

effect, indicating that the residual glucose transport is not
dependent upon PI 3-kinase activation (Fig. 6, A and B).

Chronic insulin or leptin treatment increased SOCS-3 and
decreased Glut 4 expression at the mRNA level in SH-SY5Y
neuronal cells

The inhibition of Glut4 translocation and stimulated glu-
cose transport by chronic exposure to insulin or leptin may
involve alterations of insulin and leptin signaling pathways.
Indeed, we have previously shown that chronic exposure of
SH-SY5Y cells to insulin or leptin alters JAK2/STAT-3 and
IRS/PI-3kinase pathways (33). Here, we hypothesized that
chronic insulin or leptin treatment induced inhibitors of
these pathways. To corroborate this hypothesis, the expres-
sion of SOCS-3 was measured using Q-RT-PCR. Chronic
insulin and leptin treatment significantly increased SOCS-3
expression in SH-SY5Y cells by more than 2-fold (Fig. 7B).
The treatment significantly reduced the expression of Glut4
mRNA in the same cells (Fig. 7A), confirming result obtained
previously at the level of Glut4 protein (Fig. 3).

Discussion

To assess the role of Glut4 in neuronal cell glucose trans-
port and the impact of insulin and leptin on its translocation
to the PM, we used the SH-SY5Y cell line that naturally
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Fia. 4. Insulin or leptin pretreatment abolished Glut4 PM translo-
cation in response to insulin or leptin in SH-SY5Y cells. Serum-
deprived cells were incubated in the absence (W/O PreT) or presence
of 100 nM insulin (Ins PreT) or 15 nM leptin (Lep PreT) for 16 h. After
washing, cells were incubated in the absence or presence of insulin or
leptin for 15 min, and then TM and PM were prepared and solubilized.
Cell lysates were subjected to SDS-PAGE and Western blot using
antibodies directed toward Glut4. The blotted proteins were revealed
by ECL, the results were expressed as PM/TM ratio of Glut4 (% to the
control) and presented as means = SEM (n = 3). *x, P < 0.001.

expresses insulin and leptin receptors (33). In the present
paper, we demonstrate that both insulin and leptin induced
Glut4 translocation to PM in these neuronal cells, whereas
Glut3 translocation is not sensitive to such stimulation. Glut3
was showed to be mostly located at the PM, in good agree-
ment with previous reports on mouse neurons (6, 36).

The insulin-responsive Glut4 has been previously local-
ized in neurons in different areas of the brain (8, 22), but to
our knowledge this is the first study reporting Glut4 trans-
location to neuronal PM in response to insulin or leptin. To
further investigate the mechanisms involved in Glut4 trans-
location in SH-SY5Y cells, the PI 3-kinase signaling pathway
was inhibited by a specific inhibitor. Because inhibition of PI
3-kinase abolished insulin- and leptin-dependent Glut4
translocation to PM, this indicates that, as in peripheral tis-
sues such as adipose tissue or muscles, Glut4 translocation
is insulin sensitive in SH-SY5Y neuronal cells. Interestingly,
we also show that Glut4 translocation is leptin sensitive,
through a PI3-kinase-dependent pathway. The translocation
of Glut4 in response to insulin or leptin is corroborated with
2-DG uptake, which is increased after insulin or leptin stim-
ulation and completely abolished in the presence of PI 3-
kinase inhibitor. We have previously shown that leptin and
insulin receptors share the IRS/PI 3-kinase signaling path-
way in SH-SY5Y neuronal cells (33). Taken together, these
data indicate that PI 3-kinase plays a key role for the inte-
gration of leptin and insulin action at the neuronal level as
described by others in hypothalamic neurons (37). The role
of PI 3-kinase that has been so far described concerns its
involvement in insulin and leptin signaling through the ac-
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Fic. 5. Glut4 translocation to PM is wortmannin sensitive in SH-
SY5Y cells. Serum-deprived cells were incubated in the absence or
presence of wortmannin for 15 min then 100 nM insulin, 15 nM leptin
or 100 nM insulin plus 15 nM leptin was added for an additional 15
min. Cells were lysed, and then TM and PM were prepared. Western
blots were performed using specific antibodies directed toward Glut4.
The blotted proteins were revealed by ECL, the results were ex-
pressed as PM/TM ratio for Glut4 (X100) and presented as means *
SEM (n = 3). *x, P < 0.001 when comparing the effect of leptin, insulin
or leptin + insulin to untreated cells; @, P < 0.001 when comparing
the effect of leptin, insulin, or leptin + insulin in the absence or
presence of wortmannin.

tivation of pro-opiomelanocortin hypothalamic neurons
leading to the inhibition of food intake (36). Furthermore,
intrecerebroventricular administration of PI 3-kinase inhib-
itors blocks the ability of leptin and insulin to inhibit food
intake (27, 38). It has been also shown that both hormones
induced neurons hyperpolarization through a PI 3-kinase-
dependent mechanism contributing to neuropeptide release
and rapid changes in energy intake (39, 40).

In the present paper, we suggest another mechanism by
which leptin and insulin may exert their role as peripheral
indicators of energy balance and inhibitors of food intake
through an IRS/PI 3-kinase/Glut4 signaling pathway. The
insulin and leptin-dependent translocation of Glut4 and sub-
sequent increase in glucose uptake may affect the neuronal
glucokinase (GK).

It has been described that the neuronal GK is expressed in
glucose-excited neurons in the hypothalamus and is consid-
ered as a potential glucosensing gatekeeper with similar
properties to pancreatic B-cells GK (26). GK is sensitive to
changes in intracellular glucose concentrations and plays a
key role in the glycolytic flux inducing an increase in ATP-
to-ADP ratio leading to the inactivation of K,rp (ATP-
sensitive potassium) channel and consequently to membrane
depolarization. GK is also able to use glucose transported
through Glut4 in neurons and this hypothesis is reinforced
by the colocalization of insulin receptor and Glut4 in glucose-
excited neurons in the hypothalamus (26). Another glucose
transporter, Glut 2, was suggested to play a role in neuronal
glucose sensing; however, its glial or/and neuronal cells
localization is still matter of debate (15).
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Fi1G. 6. Glucose transport is insulin and leptin sensitive in SH-SY5Y
and is PI 3-kinase dependent. Serum-deprived cells were incubated
in the absence (W/O PreT) or presence of 100 nM insulin (Ins PreT) or
15 nM leptin (Lep PreT) for 16 h. Cells were then incubated for 30 min
in a glucose-free medium in the absence or presence of insulin, leptin,
or insulin + leptin. In the last 15 min of incubation, radiolabeled
2DOG was added in the absence or presence of wortmannin. After
washing, cells were lysed in 1 N NaOH, and cell-associated radioac-
tivity measured. Results were expressed as incorporated radioactivity
per milligram of protein and presented as means * SEM (n = 3). x%,
P < 0.01; %%, P < 0.001; a and b, P < 0.05 and P < 0.01, respectively,
where treatment in absence or presence of wortmannin were com-
pared.

We have also investigated the impact of chronic leptin or
insulin exposure on Glut4 translocation and glucose uptake.
Both hormones down-regulate Glut3 and Glut4 glucose
transporters at the level of protein and significantly de-
creased Glut4 mRNA expression. The overexposure to leptin
and insulin may mimic hyperleptinemia and hyperinsulin-
emia states that are observed during the onset of leptin and
insulin resistance as previously reported (33). Chronic leptin
or insulin treatment abolished Glut4 translocation and glu-
cose transport in response to both hormones, and interest-
ingly a cross-down-regulation between insulin and leptin
signaling pathways was observed because the overexposure
to insulin affects leptin action and vice versa. We have pre-
viously reported such events in SH-SY5Y neuronal cells con-
cerning JAK2/STAT-3 and IRS/PI 3-kinase pathways (33).
The cross-down-regulation may be, at least partly, attributed
to the overexpression of SOCS-3 as we report here, where
both leptin and insulin induced the expression of SOCS-3.
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Fic. 7. Insulin or leptin pretreatment down-regulate Glut4 mRNA
and up-regulate SOCS-3 mRNA in SH-SY5Y cells. Serum-deprived
cells were incubated in the absence (Con) or presence of 100 nM insulin
(Ins) or 15 nM leptin (Lep) for 16 h, then total RNAs were prepared
and subjected to reverse transcriptase. The resulting cDNAs were
used to perform quantitative PCR as described in Materials and
Methods using specific primers for Glut4 (A) and SOCS-3 ¢cDNA (B).
RPL9 was used to normalize the expression results. Results were
expressed as ratio of specific mRNA/rlp9 and presented as means *+
SEM (n = 3). x, P < 0.01; »x, P < 0.001.

SOCS-3 affects leptin action as previously demonstrated in
SOCS-3-deficient mouse where leptin sensitivity of the brain
was clearly increased (41). In addition, by inducing the deg-
radation of IRS proteins via a ubiquitin-dependent mecha-
nism, SOCS-3 blocks insulin action (42). Thus, the chronic
leptin or insulin action is mediated by the overexpression of
SOCS-3 that reduces the responsiveness of SH-SY5Y cells to
leptin and insulin by altering IRS/PI 3-kinase/Glut4 and
JAK2/STAT-3 signaling pathways in addition to the alter-
ation of Glut4 expression.

In conclusion, we report for the first time, in our knowl-
edge, that both insulin and leptin are able to increase Glut4
translocation to neuronal PM and glucose transport in a PI
3-kinase-dependent manner. In addition, the chronic leptin
or insulin treatment induced a cross-desensitization of Glut4
translocation and glucose transport in response to both hor-
mones, which may contribute to the understanding of the
complex relationship between leptin resistance and insulin
resistance at the neuronal level.
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