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Recently, dynamic reserve site selection models based on stochastic dynamic programming (SDP) have been proposed. The models consider a random development pattern in which the probability that a site will be developed is independent of the development status of other sites. However, development often takes the form of a contagion process in which the sites most likely to be developed are near sites that already have been developed. To consider site selections in such cases, we propose improved algorithms that make use of a graph representation of the sites network. The first formulation is an exact, dynamic programming algorithm, with which theoretical and experimental complexities are evaluated. The exact method can be applied only to small problems (less than ten sites), but real-world problems may have hundreds or thousands of sites, implying that heuristic selection methods must be used. We provide a general framework for describing such heuristic solution methods, and propose a new heuristic method based on a parameterised reinforcement learning algorithm. The method allows us to compute a heuristic function by performing and exploiting many simulations of the deforestation process. We show that the method can be applied to problems with hundreds of sites, and demonstrate experimentally that it outperforms previously proposed heuristic methods in terms of the average number of species conserved.

Introduction

The primary means of reducing biodiversity loss is to create networks of conservation reserves. In most cases, the establishment of a reserve network is a gradual, accretive process, comprising a sequence of land acquisitions through time. One of the reasons for this is that not all sites are available for purchase at the same time [START_REF] Meir | Does conservation planning matter in a dynamic and uncertain world[END_REF]; another reason is that funding for site acquisitions at any given time is insufficient to acquire all sites [START_REF] Costello | Dynamic reserve site selection[END_REF]. Conservation organisations that build reserve networks over an extended period of time must contend with the risk that sites will be developed before they can be reserved [START_REF] Costello | Dynamic reserve site selection[END_REF][START_REF] Meir | Does conservation planning matter in a dynamic and uncertain world[END_REF].

Recently, dynamic models based on stochastic dynamic programming (SDP) have been used to solve reserve selection problems of this type [START_REF] Meir | Does conservation planning matter in a dynamic and uncertain world[END_REF][START_REF] Costello | Dynamic reserve site selection[END_REF]. In these models, unreserved sites are irreversibly developed each year with a given probability, but only a limited number of sites can be reserved each year, because of budgetary or site-availability constraints. The problem is to design a dynamic reservation policy that results in the maximum expected number of species conserved at the end of the problem horizon. These models are used to investigate the importance of the timing of selections in habitat conservation programs.

Existing models consider a random development pattern, in which the development probability for each site is independent of the development status of neighboring sites. However, development often takes the form of a contagion process in which the sites most likely to be developed are near sites that already have been developed. This pattern is evident, for example, in Rondonia in Brazil, where the proximity of a site to the nearest deforested area is a strong determinant of the site's probability of being cleared [START_REF] Arellano-Neri | Image-based logistic regression parameters of deforestation in rondonia, brazil[END_REF]. The strong dependence of site development risk on the site's proximity to cleared forest has also been found in more heavily developed countries such as Costa Rica [START_REF] Robalino | Deforestation is contagious evidence of spatial interactions from forest clearing in costa rica[END_REF]. Importantly, this "spreading contagion" form of deforestation is found in much of the Brazilian Amazon [START_REF] Laurance | Deforestation in amazonia[END_REF]) and other "frontier forests", which are the last remaining large tracts of ecologically intact forest. If such forests are to be conserved in efficient fashion, it is essential that interdependencies in site development risks be considered. To address site selection problems in habitats threatened by contagion development, we propose new SDP algorithms which make use of a graph representation of the sites network, with each node of the graph being a site. [START_REF] Green | Complexity in ecology and conservation: Mathematical, statistical and computational challenges[END_REF] identified graph-theoretic models as an important method for addressing ecological management problems in which connectivity among sites and their dynamic properties need to be considered. We begin, in Sections 2 and 3, by developing an exact, dynamic programming algorithm, with which theoretical and experimental complexities of dynamic site selection problems are evaluated. As in previously developed dynamic programming-based optimization models of reserve site selection, the exact method can only be applied to small problems (less than ten sites). Given that real-world problems may have hundreds or thousands of sites, heuristic selection methods must be used. After providing a general framework for describing such heuristic solution methods in Section 4, we propose in Section 5 a new heuristic method based on a parameterised reinforcement learning (RL) algorithm. In Section 6, we compare the performance of the exact and heuristic DP methods with previously proposed heuristic methods. Conclusions are presented in the final section.

2 A model for dynamic reserve site selection problems under contagion risk of deforestation

State variables

In [START_REF] Costello | Dynamic reserve site selection[END_REF], the following model, based on habitat suitability, is proposed for dynamic reserve site selection. Assuming that there exist J sites indexed by j = 1, 2, . . . , J and I species indexed by i = 1, 2, . . . , I, a J × I matrix A is given, where an element A ji equals 1 if site j is suitable for species i, and 0 if not. At a given time period t, any site j can be in one of the three following states : developed, reserved or unreserved. It is assumed that a species i exists in site j if and only if site j is not developed (i.e. is in state reserved or unreserved). Thus, the state S t of sites can be unambiguously described by the means of two of the three vectors D t , R t , U t where D t (j) = 1 means that site j is developed, and D t (j) = 0 means that it is not. R t and U t model whether sites are reserved or unreserved. It is clear that for any site j, exactly one of D t (j), R t (j), U t (j) equals one, and the two others equal zero. Thus we define S t = (D t , R t ).

Control variable and process dynamics

The state of sites will evolve over time under the influence of two types of factors: controlled and uncontrolled factors.

-Controlled factor. At any time period, it is possible to select one unreserved site for reservation, thus changing its state from unreserved to reserved1 .

-Uncontrolled factor. At any time period t, it is assumed that any unreserved site j which is not selected for reservation can become developed at the end of the period with a known probability p j . In the most general case, the probability of development of each site j can depend on the whole current pattern of development of the sites.

At each time step t, a selection action is chosen, consisting of a site number a t ∈ {1 . . . J}, selected for reservation. Then, if U t (a t ) = 1 (site number a t is unreserved), we get R t+1 (a t ) = 1 and U t+1 (a t ) = 0. Then, development can occur, and we consider it as a contagion process : the probability that an undeveloped site j becomes developed depends on the development status of neighbour sites of j. The neighbourhood relation between sites is represented by a symmetric matrix G such that G(j, j ) = 1 if sites j and j are neighbours, and G(j, j ) = 0 if not. G(j, j) = 0 for all sites by definition. Then, we define the neighbourhood of a site j as N(j) = {j ∈ 1 . . . J, G(j, j ) = 1}.

The development probabilities of a site j which is currently undeveloped are: p j (S t+1 (j) = D|S t (j) = U, S t (N(j)), a t ) where S t (N(j)) = {S t (j ), j ∈ N(j)}.

The global transition probabilities between states are defined as:

P r(S t+1 |S t , a t ) = j,St(j)=U p j (S t+1 (j)|S t (j) = U, S t (N(j)), a t )
and δ(S t+1 , S t ) if ∃j, S t (j) = U.

At this point, it should be noticed that development and reservation are assumed to be irreversible : a developed or reserved site remains in this state forever. Thus, the development/reservation process will always end in an absorbing state in which no unreserved sites persist. Such an absorbing state will be reached in a number of time steps bounded by the number of sites since at each time step one undeveloped site becomes irreversibly reserved.

Reserve selection policy, objective function

We have described the stochastic controlled process model of the evolution of global states. Let us now describe the objective function of the control problem. The objective of a reserve selection problem is of course to minimise species losses, or equivalently to maximise the number of species present in reserved sites when the process has reached an absorbing state. Our goal is to find a policy π assigning to every possible state S t a site to reserve. Such a policy should be defined so as to maximise the expected value of the number of species in reserves when an absorbing state of the process is reached. From now on, we remove the subscript t in the notations of the state and action variables for the sake of simplicity since i) the process is assumed to be stationary (transitions and rewards do not depend on time) and ii) it can be shown (see [START_REF] Puterman | Markov Decision Processes[END_REF]) that optimal policies are in this case stationary. Let us now define a reward function r(S, a) as the number of additional species which are protected when site a is reserved in state S:

∀S = (R, D), a, r(S, a) = |{i, (A ai = 1) ∧ ( ∃j, R(j) = 1 ∧ A ji = 1).}| (A ai = 1) ∧ ( ∃j, R(j) = 1 ∧ A ji = 1
) means that species i is in site a, and does not belong to any site already reserved. Now, let us consider a trajectory τ , that is an alternate sequence of states and actions, starting in an arbitrary state S 0 and ending in an absorbing state S k : τ = (S 0 , a 0 , S 1 , a 1 , . . . , S k-1 , a k-1 , S k ). We define the value V (τ ) of such a trajectory τ as the number of species eventually protected at the end of the trajectory. Thus, V (τ ) is exactly the number of species protected in state S k .

The following equality can be easily shown, which will be used in the dynamic programming solution method for the reserve selection problem :

∀τ = (S 0 , a 0 , S 1 , a 1 , . . . , S k-1 , a k-1 , S k ), V (τ ) = k-1 i=0 r(S i , a i ).
A fixed policy π does not define a single trajectory τ , when applied in a start state S, but rather a probability distribution over a set of possible trajectories. The value V π (S) of this policy is defined as the expected number of new species which can be protected by applying π, from start state S :

V π (S) = E[V (τ )|S, π] (1) 
where E[V (τ )|S, π] is defined over the set of possible trajectories generated by policy π applied in initial state S. In the next Section, we are going to show how to compute this value and how to find π maximising V π (S) for any possible initial state S.

An exact dynamic programming solution method

We first define the following subsets of the global states space:

∀k = 0, . . . , J, U k = {S = (R, D), |{j, max(R(j), D(j)) = 0}| = k}.
U k is the set of states in which exactly k sites remain undeveloped. Obviously, any state S ∈ U 0 is an absorbing state, for which no site can be reserved (and no new species protected). The value of such states should be zero :

∀S ∈ U 0 , V (S) = 0.
Now, given a fixed policy π, the value V π (S) of this policy, defined in equation 1 can be computed recursively over all states :

Algorithm 1: Policy evaluation Data: < S, π, r, p > Result:

V π begin for S ∈ U 0 do V π (S) = 0 for k = 1 . . . J do for S ∈ U k do V π (S) = r(S, π(S))+ S ∈U 0 ∪...∪U k-1 p(S |S, π(S)) • V π (S ) return V π end
This recursive computation of V π (S) is made possible since the number of unreserved sites can only decrease whenever a selection action is applied. Thus, we can start by computing the value of states with no site unreserved, then for states with only one unreserved site, then two, etc. In this way, states S(R, D) are visited at most once.

It can then be shown by classical arguments from stochastic dynamic programming [START_REF] Puterman | Markov Decision Processes[END_REF] that there exists a dominating policy π * , such that ∀S, V π * (S) ≥ V π (S). Such an optimal policy, as well as its value in every state can be computed exactly, using the following dynamic programming algorithm :

The following complexity result can be shown :

Proposition 1 Space complexity of Algorithm 2 is in O(J4 J ), while its space complexity is in O(3 J ).
Proof: First, consider the inner loop of the algorithm. A max and an argmax operations are performed over exactly k actions (there are k undeveloped sites). In addition, a summation is performed over the 2 k-1 possible successor states (each of the k -1 sites remaining undeveloped after the current site to reserve is chosen can become developed or stay undeveloped). So, the complexity of the inner loop is in O(k2 k-1 ). Now, one can check that U k contains exactly C k J 2 J-k possible states : there are C k J possibilities to chose k undeveloped sites among J sites, and there

Algorithm 2: Optimal policy computation

Data: < S, π, r, p > Result: {π * , V π * } begin for S ∈ U 0 do V π * (S) = 0 for k = 1 . . . J do for S ∈ U k do V π * (S) = max a undeveloped [r(S, a)+ S ∈U 0 ∪...∪U k-1 p(S |S, a) • V π * (S )]; π * (S) = arg max a undevelop [r(S, a)+ S ∈U 0 ∪...∪U k-1 p(S |S, a) • V π * (S )];
return {π * , V π * } end are 2 J-k possible combinations of reserved and developed sites over the remaining Jk sites. Finally, the outer loop is performed for k = 0 to J, so that the overall complexity of the algorithm is in

O( J k=0 C k J 2 J-k (k2 k-1
)). But it can be shown that

J k=0 C k J 2 J-k (k2 k-1 ) = J2 2J-2 = J4 J-1 ,
hence the overall complexity is in O(J4 J ). Concerning the space complexity, it is easily seen that the algorithm only stores two values for each of the 3 J states, so that obviously space complexity is in O(3 J ).

From these complexity results, it follows that the exact computation of optimal policies for large reserve selection problems is not feasible, except for very small problems (less than ten sites). Accordingly, in the following Section we will introduce a heuristic-based approach to the reserve selection problem. We will present two simple heuristic methods proposed by [START_REF] Costello | Dynamic reserve site selection[END_REF]. Then, in Section 5, we will present an alternative heuristic method, which is adaptive, and makes use of simulations to compute the heuristic function value. We will see that this family of methods outperforms the simpler heuristic methods in terms of the quality of the returned policies, and is still applicable for very large problems (hundreds of sites).

Heuristic solution methods

In the previous Section it was shown that the computation of an exact optimal policy is infeasible, except for small problems. There are two sources of difficulties for this exact computation, which are :

• the computation of the exact optimal value function, V π * and • the computation of π * (S) which involves a sum over the 2 k-1 possible successors of S.

We will overcome the first limitation by computing a simple heuristic approximation of the optimal value function, while the second limitation will be overcome by summing over a sample of the set of successor states. These two "tricks" will allow us to compute heuristic reserve selection policies, whose performance can, in turn, be estimated using Monte Carlo simulation.

Heuristic approximation of the value function

Recall that once the optimal value function V π * is known, we get an optimal policy π * by :

∀S, π * (S) = arg max a undeveloped in S [r(S, a) + S p(S |S, a) • V π * (S )].
Now, when it is too costly to compute V π * and when a heuristic approximation Ṽ is available, we can compute an approximately optimal policy π : (2) [START_REF] Costello | Dynamic reserve site selection[END_REF] proposed two approximation methods for computing a reserve selection policy that can be cast in this heuristic framework, which they referred to as myopic and informed myopic policies. The two policies correspond to the two following choices for the heuristic value function Ṽ :

∀S, π ( 
• Myopic. In this case, Ṽ (S ) = 0, ∀S , so that π is defined by

∀S, π(S) = arg max

a undeveloped in S r(S, a).

• Informed myopic. In this case, Ṽ (S ) = max a undeveloped in S r(S , a), so that equation 2 becomes ∀S, 

Sample-based computation of a heuristic policy

Now, let us assume that a heuristic function Ṽ has been chosen. The heuristic policy π remains to be computed through equation 2. But computing π(S) for a given S requires us to compute the expectation S p(S |S, a, ) • Ṽ (S ) over the whole set of possible successors of S, the size of which is 2 n-|D|-|R| , which can be too large, if many sites remain undeveloped in S. To overcome this limitation when the number of undeveloped sites is too large, the above expectation is only estimated on line through simulation. n simul successor sites S i are drawn at random according to the law p(S |S, a) and the expectation in equation 2 is replaced with an empirical average. Thus, π is computed by the following equation instead of equation 2 :

∀S, π(S) = arg max a undeveloped in S [r(S, a) + 1 n simul • n simul i=1 Ṽ (S i )].
In this way, a policy is never explicitly computed and stored, but rather comon line and only the heuristic function Ṽ needs to be stored.

Monte Carlo estimation of heuristic policies

The computation of a heuristic-derived policy π can be onerous, due to the need to explore the whole set of possible successors of a given state S. The estimation of the value of any policy π can also be prohibitively costly. As for the computation of π, it can be computed through simulation :

Ṽπ (S) = 1 n simul • n simul i=1 V (τ i ) (3)
where τ i is a randomly generated trajectory obtained by applying π in S.

Ṽπ (S) is of course an unbiased estimation of V π (S) = E[V (τ |S, π)].
In the following Section, we are going to show a method improving in practice the method based on the myopic heuristic, which is the only one applicable to very large problems (we observed that in reserve selection problems with contact development, informed myopic does not significantly improve the performance of the myopic heuristic, but is computationally more expensive). This improved heuristic method uses a parameterised representation of the heuristic function Ṽ and the parameters are automatically tuned and optimised through repeated simulations.

Parameterised reinforcement learning solution method

Reinforcement learning is a set of simulation-based methods which allow for the solution of large-scale Markov Decision Problems [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF], such as the reserve site selection problem we are interested in. In this framework, the optimal value function V π * is approached by a (linear) parameterised value function V ε * which is computed through repeated simulations of trajectories. Then, a policy π ε * , greedy with respect to V ε * is computed (using a sample-based method). π ε * approaches the optimal policy π * . The value of π ε * in the initial state (every site undeveloped) is then estimated using Monte Carlo methods and compared to the heuristics previously described.

Parameterised linear approximation of the optimal value function

For very large SDP problems, such as the reserve selection problem, when the number of sites is large, it is not convenient to compute the exact optimal value function V π * in tabular form. It may be more reasonable to look for an approximate, parameterised, value function V ε * , which can be expressed much more concisely than V π * itself. A linear approximation of V π * is often used, where an approximation of V π * is searched in the set of parameterised value functions of the form

V ε (S) = ε(1)ψ 1 (S) + . . . + ε(k)ψ k (S).
The ε(i), i ∈ {1, . . . , k} are parameters which will be computed by simulation and the ψ i are arbitrarily given real-valued functions called features [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF].

The objective of feature-based reinforcement learning algorithms is to compute a parameters vector ε * such that V ε * is a reasonable approximation of V π * . The general approach is to use a simulation of the controlled process in order to compute a sequence of parameters vectors (ε n ), in the form

ε n+1 = ε n + ∆(S n , a n , S n+1 , r(S n , a n ))
where ∆(S n , a n , S n+1 , r n (S n , a n )) is a correction factor computed from the output of the current simulation trial. The most common implementation of the above principle is the gradient descent method, where updates take the form [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF])

ε n+1 = ε n + α n (R n -V εn (S n ))∇ εn V εn (S n ).
where R n is a direct estimation of the value of V π * drawn from the current trial and past experience. A simple such estimation consists in using

R n = max a r(S n , a) + V εn (S n+1 ).
One simple case of features is of particular interest [START_REF] Tsitsiklis | Feature-based methods for large-scale dynamic programming[END_REF]. This is the case in which the ψ n take their values in the set {0, 1}. In this case, the above equation simplifies ∀i ∈ 1, . . . , k into

ε n+1 (i) = ε n (i) + α n (max a {r(S n , a) + V εn (S n+1 )} -V εn (S n ))ψ i (S n ).
This will be the parameters update function which we will use to solve the reserve selection problem.

Features in the reserve selection problem

Let us first describe the parameterised approximation of the optimal value function in the reserve selection problem. In this problem, we choose to use the following J features: ψ i (S) = 1 if site i is not developed, and ψ i (S) = 0 if it is developed, for i = 1 . . . J. Thus, ψ i (S) = ψ i (S(i)) only depends on the state of site i, and not on the global state of the problem. In addition, concerning the learning rate parameter α n , which should simply decrease to 0 as n grows, we choose to define it as α n = 1 n(a) , i.e. the number of times site a has been reserved so far, during the learning phase of the algorithm.

Computation of an approximately optimal policy

The following steps are performed in order to choose which site to reserve, when a new state is encountered.

• First of all, ε * = lim n→+∞ ε n is computed. • Ṽ = V ε * is chosen as the heuristic function.
• Then, for any given state S encountered on line, site π(S) computed through equation 8 is chosen for reservation.

Such a policy can be estimated by applying procedure 3 to the initial state (every sites undeveloped) of randomly generated problems. A comparison of the simple heuristic-based solutions described in the previous Sections and of the RL-based heuristic is shown in the next Section.

6 Empirical results

Benchmark problems

We analysed empirically the results of the three above-described methods (exact, myopic-heuristic and parameterised reinforcement-learning) on a randomly generated set of reserve site selection problems of various sizes. Problems were randomly generated, using the following set of parameters :

• J is the chosen number of sites,

• I is the number of species considered,

• δ is the degree of the graph, i.e. the maximum number of neighbours for a given node, • T S is the maximum number of threatened sites, i.e. sites which can become developed without having any developed neighbour site, • SS is the maximum number of suitable sites for any given species.

The outputs of the generator are the following:

• the neighbourhood graph matrix G, • the site / species matrix A, • the development diffusion probabilities used for building the development probabilities for each site j (p dif f (j) ∈ U[0.3; 0.5]), • the development probabilities for threatened sites j (p dev (j) ∈ U[0.2; 0.3]).

Small problems

For small problems (J ≤ 10), the exact method described in Section 3 could be applied, and we checked experimentally the CPU time needed for solving each problem (Figure 1). The parameters values we used were the following : J ∈ {4 . . . 10}; I = 15; δ = 4; SS = 3 and T S = 2. The computation times were obtained by averaging over 30 randomly generated problems for each value of J.

Large problems

For larger problems (J ≤ 100), we compared the RL and myopic methods in terms of species losses (Figure 2). The parameter values were : J ∈ {30, 40, 50, 60, 70, 80, 90, 100}; I = J + 50; δ = 4; SS = 3 and T S = 6. For each configuration we generated randomly one problem over which we performed 1000 pairs of trajectories (one induced by the myopic heuristic, the other by the RL method). Figure 2 shows the average loss of species experienced in each configuration for the two methods. It can be observed that on average, for problems of size 60 or more sites, the average percentage of species lost is around 8% for the myopic heuristic, and around 4.5% for the RL method. Thus, using the RL method, the number of lost species is reduced by more than 40% !

Very large problems

For very large problems (J ≤ 1000) it becomes very difficult to assess the value of policies generated by RL methods, since we need to compute online the RL policy, using sampling (equation 11), after a vector of optimal parameters ξ * has been obtained. Thus, computing a single trajectory for a given parameter is quite costly, and it is not realistic to evaluate the policy π ξ * by a Monte Carlo method. However, it is of course realistic to apply such a policy for very large problems, since the time between two decision steps is important. Furthermore, the CPU time needed for the computation of ξ * does not increase too quickly, as Figure 3 shows. In this paper we described several methods for solving the dynamic reserve site selection problem, initially described in [START_REF] Costello | Dynamic reserve site selection[END_REF]. We first described a new, exact, dynamic programming algorithm, applicable to small problems, and considered its theoretical and complexity. We then presented a general framework for heuristic selection methods and showed that the heuristic methods proposed in [START_REF] Costello | Dynamic reserve site selection[END_REF] fit within this framework. Finally, we proposed a new parameterised reinforcement learning method, which is a form of on-line heuristic method. We showed experimentally that the method improved significantly on previously proposed heuristic methods in terms of the expected number of species conserved, and could be applied to very large problems as would be encountered in practice. Our next step is to apply the latter method to a real example in Costa Rican forests for which we have historical data for the past forty years.

We emphasized the importance of interdependent development risks among sites, which exists, for example, in regions experiencing contagion development. Several other forms of site interdependencies that we did not address merit further consideration in future research. For example, an ecological source of site interdependence is the requirement of at least some species for more than one site if the species are to persist over an extended period. The persistence of such species may also depend on the spatial arrangement of sites, an issue of central importance in the fields of landscape ecology and population viability analysis. In this context, it can be noted that contagion development not only reduces habitat area but also can fragment habitat, posing a threat to species with limited dispersal capabilities. Our formulation can account for such effects with little or no increase in computational difficulty. For example, it would be possible to specify, for each species, the minimum number of sites required for their persistence as well as the required proximity of sites to each other. The computational implications of specifying such habitat requirements depend on the difficulty in determining, for any given state, whether the requirements have been satisfied. For problems involving hundreds or thousands of sites, it is likely that the additional computational cost of considering more complex species-habitat relationships will be low. The only additional cost will be linked to the evaluation of the reward functions r(S n , a) after each simulated trial.

An economic source of site interdependence not considered in this study is the possibility that the cost of acquiring a site will depend on its probability of being developed. This correlation between land price and development risk exists where the the potential profit from development is capitalized into the land price [START_REF] Costello | Dynamic reserve site selection[END_REF]. If development probabilities are strongly influenced by the "contagion factor" (that is, if they are higher for sites that are closer to developed areas), then both development probabilities and land costs may increase through time as the development process unfolds. An example of this is the case where development commences in a previously undeveloped forest. In this case, it is possible that many sites in the forest will suddenly become more expensive, depending on the graph structure; for example, if a large area will become accessible for development as soon as the first site is developed, development probabilities and land costs could rise in many sites within a short time period. The risk that large areas will suddenly become more expensive could have a major effect on the optimal conservation strategy, because land prices influence how many sites can be reserved and because some -perhaps many -species need large areas to persist. A strategy of waiting until development commences in a particular forest before reserving land there may result in much smaller reserves than a strategy of reserving land in forests with no developed sites (because the land reserved is cheaper under the latter strategy).

Our formulation can be extended to account for such interdependencies between site development risks and land acquisition costs, by introducing a budget variable. However there would be a potentially large computational cost in doing so, since the size of the action space would grow exponentially with the number of sites that can be reserved at each time step, given the available budget. We are currently exploring efficient heuristic procedures that account for this form of site interdependence.
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[START_REF] Costello | Dynamic reserve site selection[END_REF] the possibility of selecting several sites under a global budget constraint is modelled, however, in the practical cases studied, only one site at a time can be reserved. In this paper we adopt this simplification from the beginning, but the more general case could be considered as well in our approach