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Abstract
Background: The hormonal control of oocyte maturation and ovulation as well as the molecular
mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular
events occurring in the ovary during post-vitellogenesis have received far less attention.

Methods: Nylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples
originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte
maturation. Differentially expressed genes were identified using a statistical analysis. A supervised
clustering analysis was performed using only differentially expressed genes in order to identify gene
clusters exhibiting similar expression profiles. In addition, specific genes were selected and their
preovulatory ovarian expression was analyzed using real-time PCR.

Results: From the statistical analysis, 310 differentially expressed genes were identified. Among those
genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern.
After clustering analysis, 90 clones belonging to 3 gene clusters exhibiting the most remarkable expression
patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation
of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic
up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2
(ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-
regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic
down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-
N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation.

Conclusion: We showed the over or under expression of more that 300 genes, most of them being
previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation
of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4
and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring
at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2,
adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and
expression patterns of those genes support the theory comparing ovulation to an inflammatory-like
reaction.
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Background
In fish, as in other lower vertebrates, the post-vitellogenic
period is very important for the completion of the ooge-
netic process. During this step, the follicle-enclosed post-
vitellogenic oocyte undergoes several key events such as
the final acquisition of the ability to resume meiosis in
response to the maturation-inducing steroid (MIS), the
resumption of the meiotic process and, finally, its release
from the surrounding follicular layers. In addition, the
whole follicle (oocyte and surrounding follicular cells)
undergoes a progressive differentiation ultimately leading
to the release of a metaphase 2 oocyte. The key hormonal
and molecular events involved in the control of meiosis
resumption have been thoroughly studied and many
studies have been dedicated to the action of gonadotro-
pins, the regulation of steroidogenenic events and the
action of the MIS (see [1-6] for review). However, the
associated follicular or extra-follicular events involved in
concomitant processes such as oocyte-follicular cells cross
talk and ovulationmechanisms have received far less
attention. Nevertheless, several researchgroups have stud-
ied the periovulatory ovarian physiology using classical
biochemical or histological tools and, later, molecular
approaches. Thus, several studies have dealt with ovarian
proteases in their participation in the ovulatory process
[7-9]. Differential display PCR and suppressive subtractive
hybridization (SSH) approaches have also been devel-
oped in order to identify new differentially regulated
genes in the fish periovulatory ovary [10-13]. In addition,
numerous candidate gene studies have also been per-
formed in the fish periovulatory ovary. Apart from genes
related to hormonal controls, these studies were mostly
dedicated to some specific gene families such as TGF beta
family [14,15] or connexins [16,17]. Finally, fewer studies
have simultaneously analyzed the expression profiles of
several genes belonging to different families [18,19].
However, in contrast to other biological processes, such as
immune response [20], the post-vitellogenic period has
never benefited from genome-wide transcriptomic studies
that could provide a global view of the molecular events
occurring in the post-vitellogenic ovary undergoing
oocyte maturation. In this context, the present study
aimed at performing a transcriptomic analysis of the post-
vitellogenic rainbow (Oncorhynchus mykiss) trout ovary. In
order to do so, 9152-gene rainbow trout cDNA microar-
rays were hybridized using RNA samples originating from
rainbow trout ovarian tissue collected during late vitello-
genesis, post-vitellogenesis and oocyte maturation. A sta-
tistical analysis was performed in order to identify all the
genes exhibiting a differential expression over this period.
In addition, a supervised clustering analysis was per-
formed using only the differentially expressed genes in
order to identify groups (or clusters) of genes exhibiting
similar expression profiles. Furthermore, as a first step in
a long-term transcriptomic analysis of the rainbow trout

post-vitellogenic ovary, we deliberately chose to focus on
3 gene clusters exhibiting the most remarkable expression
patterns. Finally, specific genes were selected in each clus-
ter based on the novelty of their putative identity and/or
function. For each gene, a real-time PCR analysis of their
ovarian expression profiles was performed using addi-
tional ovarian RNA samples.

Methods
Animal and tissue collection
Investigations were conducted according to the guiding
principles for the use and care of laboratory animals and
in compliance with French and European regulations on
animal welfare. Two year old female rainbow trout (Onco-
rhynchus mykiss) were obtained during their first reproduc-
tive season from our experimental fish farm (Sizun,
France) and held under natural photoperiod in a re-circu-
lated water system in INRA experimental facilities
(Rennes, France). The water temperature was kept con-
stant at 12°C. Ovaries were sampled from individual
females during late vitellogenesis (N = 6), post-vitellogen-
esis (N = 6) and during oocyte maturation (N = 6). Oocyte
developmental stage was assessed under binocular micro-
scope according to previously described criteria [21,22].
Late vitellogenic samples were collected at the end of the
vitellogenic process, approximately 3–4 weeks before
expected ovulation. At this stage, germinal vesicle is not
visible and no polarized cytoplasm area can be observed.
Post-vitellogenic samples were collected 2–3 weeks later
but before any noticeable morphological changes in yolk
structure due to the process of meiosis resumption. At this
stage, oocytes can display a subperipheral or peripheral
germinal vesicle. When germinal vesicle is not visible, a
dark mass of polarized cytoplasm can be observed.
Oocyte maturation samples were collected after meiosis
resumption. Those samples were thus collected after yolk
clarification and around the time of germinal vesicle
breakdown (GVBD). For tissue collection, trout were
deeply anesthetized in 2-phenoxyethanol, killed by a
blow on the head and bled by gill arch section. Ovaries
were then dissected out of the body cavity under sterile
conditions. Ovarian aliquots were frozen in liquid nitro-
gen and stored at -80°C until RNA extraction.

RNA extraction and reverse transcription
Ovarian tissue was homogenized in Trizol reagent (Invit-
rogen, Cergy Pontoise, France) at a ratio of 100 mg per ml
of reagent and total RNA was extracted according to man-
ufacturer's instruction. Due to yolk abundance in rainbow
trout full-grown oocytes, total RNA was subsequently re-
purified using a Nucleospin RNA 2 kit (Macherey Nagel,
Germany) to obtain genomic grade RNA quality.
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cDNA microarrays
Nylon micro-arrays (7.6 × 2.6 cm) were obtained from
INRA-GADIE (Jouy-en-Josas, France) [23]. A set of 9152
distinct rainbow trout cDNA clones originating from a
pooled-tissues library [24] were spotted in duplicates after
PCR amplification. PCR products were spotted onto
Hybond N+ membranes as described by Nguyen et al.
[25]. This rainbow trout generic array was deposited in
Gene Expression Omnibus (GEO) database (Platform#
GPL 3650) [26].

Hybridization
RNA samples originating from 13 ovarian samples (late
vitellogenesis, N = 3; post-vitellogenesis, N = 4 and oocyte
maturation N = 6) were used for microarray hybridization
according to the following procedure. Hybridizations
were carried out as described by Bertucci et al. [27], with
minor modifications, at INRA AGENAE genomic facility
(Rennes). A first hybridization was performed using a
33P-labelled oligonucleotide (TAATACGACTCACTAT-
AGGG which is present at the extremity of each PCR prod-
uct) to monitor the amount of cDNA in each spot. After
stripping (3 hours 68°c, 0.1× SSC, 0.2% SDS), arrays were
prehybridized for 1 h at 65°C in hybridization solution
(5× Denhardt's, 5× SSC, 0.5% SDS). Complex probes were
prepared from 3 μg of RNA of each sample by simultane-
ous reverse transcription and labeling for 1 hour at 42°C
in the presence of 50 μCi [alpha-33P] dCTP, 5 μM dCTP,
0.8 mM each dATP, dTTP, dGTP and 200 units M-MLV
SuperScript RNase H-reverse transcriptase (GIBCO BRL)
in 30 μL final volume. RNA was degraded by treatment at
68°C for 30 min with 1 μl 10% SDS, 1 μl 0.5 M EDTA and
3 μl 3 M NaOH, and then equilibrated at room tempera-
ture for 15 min. Neutralization was done by adding 10 μl
1 M Tris-HCl plus 3 μl 2N HCl. Arrays were incubated
with the corresponding denatured labeled cDNAs for 18 h
at 65°C in hybridization solution. After 3 washes (1 hours
68°C, 0.1× SSC 0.2% SDS), arrays were exposed 65 hours
to phosphor-imaging plates before scanning using a FUJI
BAS 5000. Signal intensities were quantified using
ArrayGauge software (FujifilmMedical Systems, Stanford,
CT) and deposited in GEO database (Series# GSE 4871).

Microarray signal processing
Low oligonucleotide signals (lower than three times the
background level) were excluded from the analysis. After
this filtering step, signal processing was performed using
the vector oligonucleotide data to correct each spot signal
by the actual amount of DNA present in each spot. After
correction, signal was normalized by dividing each gene
expression value by the median value of the array.

Microarray data analysis
A statistical analysis was performed in order to identify
differentially expressed genes between late vitellogenic,

post-vitellogenic and maturing groups using SAM soft-
ware[28]. Three 2-by-2 statistical analyses were performed
in order to compare each group with the two other ones.
In addition, a comparison was performed between sam-
ples taken prior to meiosis resumption (from late and
post-vitellogenic females, N = 7) and during oocyte matu-
ration (N = 6). For each comparison, the lowest false dis-
covery rate (FDR) was used to identify differentially
abundant genes. All genes identified in at least one of the
above comparisons were kept for clustering analysis in
order to characterize the expression profiles of statistically
relevant genes. For supervised clustering analysis [29],
data was log transformed, median-centered and an aver-
age linkage clustering was performed using CLUSTER soft-
ware [29]. Clusters were visualized using TREEVIEW
software [29].

Data mining
Rainbow trout sequences originating from INRA Agenae
[24] and USDA [30] EST sequencing programs were used
to generate publicly available contigs [31]. The 8th ver-
sion (Om.8, released January 2006) was used for BlastX
[32] comparison against the Swiss-Prot database (January
2006) [33]. The score of each alignment was retrieved
after performing a BlastX comparison. In addition, for
each EST spotted onto the membrane, the accession
number of the corresponding rainbow trout cluster (Uni-
gene Trout, January 2006), if any, was retrieved from the
UniGene database [34].

Real-time PCR analysis
Real-time PCR was performed using all RNA (N = 18)
samples including those used for microarray analysis. Sev-
eral over and under expressed clones belonging to three
selected remarkable clusters, were selected according to
their putative identity and/or function for analysis.
Reverse transcription and real time PCR were performed
as previously described [19]. Briefly, 3 μg of total RNA
were reverse transcribed using 200 units of Moloney
murine Leukemia virus (MMLV) reverse transcriptase
(Promega, Madison, WI) and 0.5 μg random hexamers
(Promega) per μg of total RNA according to manufac-
turer's instruction. RNA and dNTPs were denatured for 6
min at 70°C, then chilled on ice for 5 min before the
reverse transcription master mix was added. Reverse tran-
scription was performed at 37°C for 1 hour and 15 min
followed by a 15 min incubation step at 70°C. Control
reactions were run without MMLV reverse transcriptase
and used as negative controls in the real-time PCR study.
Real-time PCR experiments were conducted using an
I-Cycler IQ (Biorad, Hercules, CA). Reverse transcription
products were diluted to 1/25, and 5 μl were used for each
real-time PCR reaction. Triplicates were run for each RT
product. Real-time PCR was performed using a real-time
PCR kit provided with a SYBR Green fluorophore (Euro-
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gentec, Belgium) according to the manufacturer's instruc-
tions and using 600 nM of each primer. After a 2 min
incubation step at 50°C and a 10 min incubation step at
95°C, the amplification was performed using the follow-
ing cycle: 95°C, 20 sec; 60°C, 1 min, 40 times. For all
primer pairs, the relative abundance of target cDNA
within sample set was calculated from a serially diluted
ovarian cDNA pool using the I-Cycler IQ software. This
dilution curve was used to ensure that PCR efficiency was
within an 80–100% range and that amplification was lin-
ear within sample set. After amplification, a fusion curve
was obtained using the following protocol: 10 sec holding
followed by a 0.5°C increase, repeated 80 times and start-
ing at 55°C. The level of 18S RNA in each sample was
measured and used for target genes abundance normaliza-
tion within sample set. In addition to the genes identified
from the transcriptomic analysis, a widely used standard
gene, elongation factor 1 alpha (ef1α), was monitored
using the same sample set to validate the normalization
procedure. GenBank accession number and primer
sequences are shown in table 1. Statistical analyses were
performed using Statistica 7.0 software (Statsoft, Tulsa,
OK). Differences between ovarian developments stages
were analyzed using non parametric U tests.

Results
Statistical analysis and supervised clustering
After signal processing, 8263 clones out of 9152 were kept
for further analysis. From the statistical analysis, 310
clones were found to exhibit a differential abundance
between at least 2 of the studied ovarian stages (late vitel-
logenesis, post-vitellogenesis and oocyte maturation). For
all SAM analyses performed, the false discovery rate (FDR)
was always lower than 0.7%. Among the 310 identified
clones, 90 were up-regulated during oocyte maturation
while 220 exhibited an opposite pattern. A clustering
analysis was performed using only expression data of the
310 identified clones in order to characterize the expres-
sion profiles of those genes. The clustering analysis clearly
separated the over from the under expressed genes (Figure
1). The number of each clone (1–310) in the clustering
analysis (Figure 1) was kept in subsequent tables 1, 2, 3, 4
and in the text. Within down-regulated genes, a cluster of
32 genes (cluster 1, Figure 1) was characterized by high
expression levels during late vitellogenesis, low levels dur-
ing oocyte maturation and intermediate or variable levels
during post-vitellogenesis (Figure 1). Within up-regulated
clones, a cluster of 44 genes (cluster 2, Figure 1) was char-
acterized by a strong over expression at the time of meio-
sis resumption while a cluster of 14 genes (cluster 3,
Figure 1) exhibited a very low expression during late and
post-vitellogenesis and an up-regulation before meiosis
resumption (Figure 1).

Table 1: Primer used for the real-time PCR study. For each target gene, full and abbreviated names, GenBank accession number of the 
corresponding rainbow trout sequence and primer sequences are shown. The clone # is consistent with clone numbering in Figure 1 
and Tables 2–4.

Target gene Abbreviated
name

GenBank # Clone # Forward sequence Reverse sequence

ovarian aromatase cyp19a1 BX083177 196
198

CTCTCCTCTCATACCTCAGGTT AGAGGAACTGCTGAGTATGAAT

vitamin K dependent 
protein S precursor

protein S BX320624 199
200

ACATGTGGGGGATGTTCATT GAGGCCATGTTACGGTTTTG

Cytidine 
monophosphate-N-

acetylneuraminic acid 
hydroxylase

cmah BX878414 212 GGAGGCCTGTTCATCAAAGA CCTGTGTGAAGCTGTCAGGA

coagulation factor V cf5 BX879767 235 AGGGACACACACACACATCC GAGTTACTGCACGCACCTGA
pendrin or solute 
carrier family 26

slc26 BX873066 236 CATGCATGGATTCATGGAATAA TGGATTGGGTGACATCAACA

vasotocin avt CA375992 238 GAGGCTGGAGGAAGAGTGTG TTCTGTTTGCTGGGTGACTG
angiotensin-converting 

enzyme 2
ace2 BX867294 245 AACAACAGGAAGCCAGGATG CGTTCCACATGTATGCCTTG

CXC chemokine L14 cxcl14 BX868653 250 CAAAGGGAACGAGTGAGAGAA GCCTGATGGCCAACTTAAAC
A Disintegrin And 

Metalloproteinases 22
adam22 CA363158 258 CCCGACTAGGAGAGTTGCAG ATCATCACATGACCCCCACT

serine protease 23 sp23 BX087643 296 ACTGCCGAGAAGGATGAAGA CCTCAGCAAGGGAAGTGAAG
aquaporin 4 aqp4 BX885214 305

306
TGTCATTACCAGCCAACTGC TGAGACAGCCCTCCAGAAGT

elongation factor 1 
alpha

ef1α AF498320 AGCGCAATCAGCCTGAGAGGTA GCTGGACAAGCTGAAGGCTGAG

18S ribosomal RNA 18S AF308535 CGGAGGTTCGAAGACGATCA TCGCTAGTTGGCATCGTTTAT
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Supervised average linkage clustering analysis of 310 genes in the rainbow trout ovary during late vitellogenesis (Late Vit), post vitellogenesis (post-Vit) and oocyte maturationFigure 1
Supervised average linkage clustering analysis of 310 genes in the rainbow trout ovary during late vitellogenesis (Late Vit), post 
vitellogenesis (post-Vit) and oocyte maturation. Each row represents a gene and each column represents an ovarian RNA sam-
ple. The dendrogram on the left represents correlation distances between the profiles of studied genes. The 17 samples are 
supervised according to the natural time-course of oogenesis. For each gene the expression level within sample set is indicated 
using a color intensity scale. Red and green are used for over and under expression respectively while black is used for median 
expression.
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Table 2: Differentially regulated clones belonging to cluster 1.

Clone name # GenBank Sigenae contig Swissprot_hit_description Score Unigene

tcac0002.b.13 189 BX081818 tcac0002c.b.13_3.1.s.om.8 YBOX1_RAT (P62961) Nuclease sensitive element 
binding protein 1 (Y-box binding protein 1) (YB-1)

528 Omy.6894

tcay0023.c.11 190 BX311374 tcav0002c.e.18_3.1.s.om.8 IF2B_HUMAN (P20042) Eukaryotic translation 
initiation factor 2 subunit 2 (eIF-2-beta)

1096 Omy.8419

tcay0023.a.19 191 BX310198 tcay0023b.a.19_3.1.s.om.8
tcay0002b.h.16_3.1.s.om.8

ST1S3_BRARE (Q7T2V2) Cytosolic 
sulfotransferase 3 (EC 2.8.2.-) (SULT1 ST3)

1267 Omy.9054

tcba0022.f.09 192 BX868083 tcay0021b.l.08_3.1.s.om.8 NCPR_SALTR (P19618) NADPH – cytochrome 
P450 reductase (EC 1.6.2.4) (CPR) (P450R) 
(Fragments)

1536 Omy.22976

tcay0017.l.02 193 BX307506 tcay0017b.l.02_3.1.s.om.8
tcay0017b.l.02_5.1.s.om.8

NIPM_HUMAN (O43920) NADH-ubiquinone 
oxidoreductase 15 kDa subunit (EC 1.6.5.3) (EC 
1.6.99.3)

382 Omy.3888

tcac0006.f.17 194 BX085016 tcac0006c.f.17_5.1.s.om.8
tcac0001c.e.23_3.1.s.om.8

CP2J3_RAT (P51590) Cytochrome P450 2J3 (EC 
1.14.14.1) (CYPIIJ3)

712 Omy.18165

tcba0023.m.01 195 BX867932 tcay0010b.o.13_3.1.s.om.8 EXOS3_HUMAN (Q9NQT5) Exosome complex 
exonuclease RRP40 (EC 3.1.13)

668 Omy.7234

tcac0004.f.21 196 BX083177 tcac0004c.f.21_5.1.s.om.8
tcac0004c.f.21_3.1.s.om.8

CP19A_ORYLA (Q92087) Cytochrome P450 
19A1 (EC 1.14.14.1) (Aromatase) (CYPXIX) 
(Estrogen synthetase) (P-450AROM)

879 Omy.241

tcac0002.f.11 197 BX081889 tcac0002c.f.11_3.1.s.om.8 RNPC2_HUMAN (Q14498) RNA-binding region 
containing protein 2 (Hepatocellular carcinoma 
protein 1) (Splicing factor HCC1)

1708 Omy.1045

tcbk0013.n.16 198 BX876154 tcac0004c.f.21_3.1.s.om.8 CP19A_ORYLA (Q92087) Cytochrome P450 
19A1 (EC 1.14.14.1) (Aromatase) (CYPXIX) 
(Estrogen synthetase) (P-450AROM)

879 Omy.241

tcbk0006.j.01 199 BX874921 tcav0003c.p.16_5.1.s.om.8 PROS_BOVIN (P07224) Vitamin K-dependent 
protein S precursor

415 Omy.4204

tcay0036.n.19 200 BX320625 tcav0003c.p.16_3.1.s.om.8
tcav0003c.p.16_5.1.s.om.8

PROS_BOVIN (P07224) Vitamin K-dependent 
protein S precursor

415 Omy.4204

tcba0006.l.19 201 BX860777 tcay0018b.i.17_3.1.s.om.8 TFR1_CRIGR (Q07891) Transferrin receptor 
protein 1 (TfR1) (TR) (TfR) (Trfr)

968 Omy.16719

tcag0002.n.03 202 CT962587 tcag0002b.n.03_5.1.s.om.8 CP1A3_ONCMY (Q92109) Cytochrome P450 
1A3 (EC 1.14.14.1) (CYP1A3) (CYP1A1)

2563 Omy.11738

tcab0003.h.21 203 BX080053 tcab0003c.h.21_5.1.s.om.8 RT30_MOUSE (Q9D0G0) Mitochondrial 28S 
ribosomal protein S30 (S30mt) (MRP-S30)

104 Omy.16941

tcak0001.o.11 204 tcaa0001c.e.22_5.1.s.om.8 RL4A_XENLA (P08429) 60S ribosomal protein L4-
A (L1A)

1161 Omy.806

tcbk0003.k.18 205 BX874857 tcay0003b.p.21_3.1.s.om.8 RDH3_RAT (P50169) Retinol dehydrogenase 3 
(EC 1.1.1.105) (Retinol dehydrogenase type I) 
(RODH I)

834 Omy.2974

tcay0037.m.03 206 BX319609 tcay0010b.o.11_3.1.s.om.8 GCST_MOUSE (Q8CFA2) 
Aminomethyltransferase, mitochondrial precursor 
(EC 2.1.2.10) (Glycine cleavage system T protein) 
(GCVT)

1289 Omy.6341

1RT64O23_A_H12 207 CA358010 tcac0005c.k.07_3.1.s.om.8 KAD2_BOVIN (P08166) Adenylate kinase 
isoenzyme 2, mitochondrial (EC 2.7.4.3) (ATP-
AMP transphosphorylase)

979 Omy.10546

tcbk0003.b.17 208 BX873257 tcay0016b.b.23_3.1.s.om.8 UNKNOWN Omy.8692
tcay0009.k.05 209 BX302690 tcay0009b.k.05_3.1.s.om.8

tcay0009b.k.05_5.1.s.om.8
HM13_MOUSE (Q9D8V0) Minor 
histocompatibility antigen H13 (EC 3.4.99.-) (Signal 
peptide peptidase) (Presenilin-like protein 3)

1015 Omy.24131

1RT36F13_B_C07 210 CA376488 tcay0002b.c.06_3.1.s.om.8 TCPQ_PONPY (Q5RAP1) T-complex protein 1, 
theta subunit (TCP-1-theta) (CCT-theta)

2366 Omy.9154

tcaa0001.g.20 211 BX073727 tcaa0001c.g.20_3.1.s.om.8
tcaa0001c.g.20_5.1.s.om.8

TPM4_PIG (P67937) Tropomyosin alpha 4 chain 
(Tropomyosin 4)

744 Omy.20509

tcbk0034.l.08 212 BX878414 tcbk0003c.j.07_5.1.s.om.8 CMAH_BRARE (Q6GML1) Cytidine 
monophosphate-N-acetylneuraminic acid 
hydroxylase (EC 1.14.18.2)

2024 Omy.4470

tcay0031.j.13 213 BX316758 tcaa0002c.f.05_3.1.s.om.8 TPM4_PIG (P67937) Tropomyosin alpha 4 chain 
(Tropomyosin 4)

772 Omy.8952

tcbk0045.m.11 214 BX884217 tcbk0028c.k.18_5.1.s.om.8 GSTP1_CRIMI (P47954) Glutathione S-transferase 
P (EC 2.5.1.18) (GST class-pi)

636 Omy.20977
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tcbk0037.f.02 215 BX889865 tcbi0036c.o.04_5.1.s.om.8 AT11B_HUMAN (Q9Y2G3) Probable 
phospholipid-transporting ATPase IF (EC 3.6.3.1)

1193 Omy.18989

1RT146H05_B_D03 216 CA350003 tcbk0038c.p.05_5.1.s.om.8 HSP47_CHICK (P13731) 47 kDa heat shock 
protein precursor

904 Omy.24697

1RT138M15_A_G08 217 CA386530 UNKNOWN
1RT129O11_A_H06 218 CA385378 CA385378.1.s.om.8 JPH2_HUMAN (Q9BR39) Junctophilin-2 

(Junctophilin type 2) (JP-2)
554

1RT148P13_B_H07 219 CA368032 CA350754.1.s.om.8 CI010_HUMAN (Q9NZB2) Protein C9orf10 103
tcbk0039.a.06 220 BX886884 tcbk0007c.f.07_5.1.s.om.8 MDP1_PIG (P22412) Microsomal dipeptidase 

precursor (EC 3.4.13.19) (MDP) 
(Dehydropeptidase-I) (Renal dipeptidase) (RDP)

1230 Omy.21182

Table 2: Differentially regulated clones belonging to cluster 1. (Continued)
Identity of differentially expressed cDNAs
The rainbow trout (Oncorhynchus mykiss) genome has not
been sequenced and the number of characterized rainbow
trout proteins and mRNAs is limited. The identity of stud-
ied transcripts was therefore based on the most significant
hit obtained after performing a BlastX search against the
SwissProt database. For the clones belonging to cluster 1–
3, the results of this blast search is presented in tables 2, 3,
4. For each clone, the identity of the best hit in SwissProt
and the score value of the BlastX comparison are given.
However, this similarity search was performed using all
EST sequences available in public databases and not using
fully characterized cDNAs displaying the full coding
sequence of the transcript. For some of the clones spotted
on the trout array, the corresponding mRNA was previ-
ously characterized and made available in public data-
bases. The identity of those clones is therefore
unambiguous. In contrast, for some other clones, the best
hit in SwissProt only gives significant, but incomplete,
information. This is especially true for protein family
members for which only a phylogenetic analysis will
allow a more relevant identification of the gene. However,
the name of the best hit was used in the text for clarity rea-
sons.

Cluster 1
This large cluster of 32 clones (# 189–220) was character-
ized by a clear under expression at the time of oocyte mat-
uration. Among those 32 clones, 29 belonged to a
UniGene cluster and 30 had a significant hit in Swiss-Prot
(Table 2). Two clones (# 196 and 198) corresponded to
rainbow trout ovarian P450 aromatase (cyp19a1) and
therefore belonged to the same UniGene cluster (Omy.
241). Similarly, clones # 199 and 200 belonged to Uni-
Gene cluster Omy.4204 and exhibited sequence similarity
with bovine vitamin K-dependent protein S precursor. In
addition, one clone (# 202) corresponding to rainbow
trout cyp1a3 (EC 1.14.14.1), was identified while another
clone (# 194) was most similar to rat CYP2J3. Finally, this
cluster also included clones exhibiting sequence similarity
with zebrafish cytidine monophosphate-N-acetyl-
neuraminic acid hydroxylase (cmah) (# 212), salmon

NADPH – cytochrome P450 reductase (# 192) and Glu-
tathione S-transferase (# 214). Within cluster 1, cyp19a1
(clones # 196 and 198), vitamin K-dependent protein S
precursor (clones # 199 and 200) and cmah (clone # 212)
genes were kept for real-time PCR analysis.

Cluster 2
This very large cluster of 44 clones (# 222–265) was char-
acterized by a sharp over expression at the time of meiosis
resumption. Among the 44 clones present in this cluster,
30 belonged to a UniGene cluster (Table 3). In addition,
39 clones exhibited a significant hit in SwissProt while 5
clones had no significant sequence similarities with
known genes (Table 3). Within this cluster, several genes
exhibited inflammation or ovulation-related functions.
Thus some of the clones exhibited sequence similarities
with human chemokine cxcl14 (clone # 250), clawed frog
adam22 (clone # 258) and coagulation factor V (cf5)
(clone # 235). In addition, one clone (# 245) exhibited
strong sequence similarity with human angiotensin-con-
verting enzyme 2 precursor (ace2). Two clones (# 238 and
239) exhibited strong sequence similarity with salmon
(Oncorhynchus keta) vasotocin-neurophysin (avt) and iso-
tocin-neurophysin respectively. Finally, cluster 3 also con-
tained clones exhibiting sequence similarity with, human
Forkhead box protein O3A and human pendrin, also
know as solute carrier family 26 member 4 (slc26) (clone
# 236). Within cluster 2, cxcl14, adam22, slc26, avt, ace2
and cf5 genes were kept for real-time PCR analysis.

Cluster 3
This small cluster of 14 clones (# 296–309) was character-
ized by an over expression occurring earlier than for the
genes belonging to cluster 3. Among those 14 clones, 12
belonged to a UniGene cluster and 11 had a significant hit
in SwissProt (Table 4). Two clones (# 305 and 306) were
most similar to rat and human aquaporin 4 (aqp4) respec-
tively. These 2 clones belonged to the same UniGene clus-
ter (Omy.23866). In addition, one clone (# 296) was
most similar to mouse serine protease 23 (sp23). Within
cluster 3, aqp4 and sp23 genes were kept for real-time PCR
analysis.
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Table 3: Differentially regulated clones belonging to cluster 2

Clone name # GenBank Sigenae Contig swissprot_hit_description Score Unigene

1RT85J04_D_E02 222 CA345139 CA345139.1.s.om.8 UNKNOWN
1RT62P05_B_H03 223 CA352834 CA352834.1.s.om.8 TIM14_BRARE (Q6PBT7) Mitochondrial import 

inner membrane translocase subunit TIM14 (DnaJ 
homolog subfamily C member 19)

525 Omy.10044

1RT124G08_C_D04 224 CA359690 tcay0005b.b.16_3.1.s.om.8 CITE2_HUMAN (Q99967) Cbp/p300-interacting 
transactivator 2 (MSG-related protein 1) (MRG1 
protein) (P35srj)

208 Omy.6626

tcay0013.c.09 225 BX305023 tcay0013b.c.09_3.1.s.om.8 CALD1_HUMAN (Q05682) Caldesmon (CDM) 298 Omy.9824
1RT110O02_C_H01 226 CA366638 CA366638.1.s.om.8 FTHFD_PONPY (Q5RFM9) 10-

formyltetrahydrofolate dehydrogenase (EC 1.5.1.6) 
(10-FTHFDH) (Aldehyde dehydrogenase 1 family 
member L1)

755

tcad0009.n.15 227 BX081106 tcad0009a.n.15_3.1.s.om.8 GPX4_PIG (P36968) Phospholipid hydroperoxide 
glutathione peroxidase, mitochondrial precursor 
(EC 1.11.1.12) (PHGPx) (GPX-4)

633 Omy.18352

tcac0005.m.05 228 BX083339 tcac0005c.m.05_3.1.s.om.8 CP8B1_MOUSE (O88962) Cytochrome P450 8B1 
(EC 1.14.-.-) (CYPVIIIB1)

466 Omy.1855

tcay0037.g.24 229 BX320606 tcay0037b.g.24_3.1.s.om.8 NOE2_HUMAN (O95897) Noelin-2 precursor 
(Olfactomedin-2)

571 Omy.278

1RT148F22_D_C11 230 CA368141 CA368141.1.s.om.8 ETS2_CHICK (P10157) C-ETS-2 protein 654
1RT41I23_A_E12 231 CA376743 CA376743.1.s.om.8 UNKNOWN

tcbk0013.j.22 232 BX872432 tcbk0006c.l.19_5.1.s.om.8 GPC3_HUMAN (P51654) Glypican-3 precursor 
(GTR2-2) (MXR7)

300 Omy.25417

tcba0030.f.01 233 BX865931 tcay0001b.n.04_3.1.s.om.8 BASI_HUMAN (P35613) Basigin precursor 
(CD147 antigen) (Leukocyte activation antigen 
M6) (Collagenase stimulatory factor)

427 Omy.19589

1RT164G02_C_D01 234 CA387850 tcbk0061c.m.06_5.1.s.om.8 SGK2_HUMAN (Q9HBY8) Serine/threonine-
protein kinase Sgk2 (EC 2.7.1.37) (Serum/
glucocorticoid regulated kinase 2)

1247 Omy.9898

tcbk0057.a.03 235 BX879767 tcba0016c.m.19_5.1.s.om.8 FA5_BOVIN (Q28107) Coagulation factor V 
precursor (Activated protein C cofactor)

832 Omy.16361

tcbk0013.j.13 236 BX873066 tcbk0013c.j.13_5.1.s.om.8 PEND_HUMAN (O43511) Pendrin (Sodium-
independent chloride/iodide transporter) (Solute 
carrier family 26 member 4)

521

1RT38L12_D_F06 237 CA377239 CA377239.1.s.om.8 DMD_CANFA (O97592) Dystrophin 660
1RT34L03_B_F02 238 CA375992 tcai0003a.h.04_5.1.s.om.8 NEU3_ONCKE (P16041) Vasotocin-neurophysin 

VT 1 precursor
716 Omy.12737

1RT113L09_B_F05 239 CA365239 tcbk0019c.d.02_5.1.s.om.8 NEU1_ONCKE (Q91166) Isoticin-neurophysin IT 
1

875 Omy.13912

tcbk0048.p.10 240 BX884149 tcbk0048c.p.10_5.1.s.om.8 COLL4_MIMIV (Q5UPS7) Collagen-like protein 4 224 Omy.14306
tcbk0046.i.17 241 BX884287 tcbk0046c.i.17_5.1.s.om.8 COPT1_MOUSE (Q8K211) High-affinity copper 

uptake protein 1 (CTR1)
640

tcbk0004.a.22 242 BX876662 tcbk0004c.a.22_5.1.s.om.8 RGS18_HUMAN (Q9NS28) Regulator of G-
protein signaling 18 (RGS18)

467 Omy.15619

tcba0003.a.09 243 BX857105 tcav0003c.k.16_3.1.s.om.8 UNKNOWN Omy.11100
tcba0030.e.12 244 BX866986 tcay0011b.j.07_5.1.s.om.8 RNF24_HUMAN (Q9Y225) RING finger protein 

24
286

tcba0024.c.13 245 BX867294 tcav0002c.k.18_3.1.s.om.8 ACE2_HUMAN (Q9BYF1) Angiotensin-converting 
enzyme 2 precursor (EC 3.4.17.-)

1058 Omy.5193

1RT105A23_A_A12 246 CA363171 tcad0009a.b.12_3.1.s.om.8 GA45B_HUMAN (O75293) Growth arrest and 
DNA-damage-inducible protein GADD45

563 Omy.24221

tcbk0035.k.02 247 BX885992 tcbk0021c.h.17_5.1.s.om.8 FOXO3_HUMAN (O43524) Forkhead box 
protein O3A

880 Omy.21283

1RT148E11_A_C06 248 CA367914 tcay0003b.j.08_3.1.s.om.8 FOXO3_HUMAN (O43524) Forkhead box 
protein O3A

692 Omy.25125

tcbk0048.o.16 249 BX885768 tcbk0048c.o.16_5.1.s.om.8 SMOO_HUMAN (P53814) Smoothelin 717
tcba0028.m.20 250 BX868653 tcav0001c.p.02_3.1.s.om.8 SCYBE_HUMAN (O95715) Small inducible 

cytokine B14 precursor (CXCL14)
319 Omy.2735

tcbk0053.e.07 251 BX879710 tcbk0053c.e.07_5.1.s.om.8 LFC_TACTR (P28175) Limulus clotting factor C 
precursor (EC 3.4.21.84) (FC)

183

tcba0018.p.09 252 BX864334 tcba0018c.p.09_5.1.s.om.8 SGK2_HUMAN (Q9HBY8) Serine/threonine-
protein kinase Sgk2 (EC 2.7.1.37)

1407 Omy.16859
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tcba0013.e.11 253 BX863135 tcba0013c.e.11_5.1.s.om.8 RAMP1_RAT (Q9JJ74) Receptor activity-modifying 
protein 1 precursor

400

tcba0016.h.07 254 BX863955 tcay0023b.e.18_3.1.s.om.8 ACY3_HUMAN (Q96HD9) Aspartoacylase-2 (EC 
3.5.1.15) (Aminoacylase-3) (ACY-3) (Acylase III) 
(Hepatitis C virus core-binding protein 1) 
(HCBP1)

695 Omy.12550

tcba0028.o.19 255 BX866157 tcay0013b.p.20_3.1.s.om.8 VISL1_RAT (P62762) Visinin-like protein 1 (VILIP) 967 Omy.19419
1RT106P06_D_H03 256 CA365853 tcba0005c.a.01_5.1.s.om.8 MAFB_RAT (P54842) Transcription factor MafB 

(MAF1)
210 Omy.24386

1RT98J03_B_E02 257 CA357072 tcay0038b.i.24_5.1.s.om.8 PNPH_BOVIN (P55859) Purine nucleoside 
phosphorylase (EC 2.4.2.1)

964 Omy.15824

1RT106O19_A_H10 258 CA363158 CA363158.1.s.om.8 ADA22_XENLA (O42596) ADAM 22 precursor 
(MDC11b) (MDC11.2)

889

1RT62L08_D_F04 259 CA352881 tcac0002c.j.24_3.1.s.om.8 TPP1_CANFA (Q9XSB8) Tripeptidyl-peptidase I 
precursor (EC 3.4.14.9)

599 Omy.8262

1RT44O11_A_H06 260 CA379089 tcay0014b.n.20_3.1.s.om.8 PSD2_HUMAN (Q13200) 26S proteasome non-
ATPase regulatory subunit 2 (Tumor necrosis 
factor type 1 receptor associated protein 2) (55.11 
protein)

1152 Omy.15261

1RT30D15_B_B08 261 CA372310 CA372310.1.s.om.8 KPCD_CANFA (Q5PU49) Protein kinase C, delta 
type (EC 2.7.1.-) (nPKC-delta)

932

tcbk0050.j.02 262 BX890245 tcbk0050c.j.02_5.1.s.om.8 DMD_HUMAN (P11532) Dystrophin 1196
1RT31H12_D_D06 263 CA375388 tcay0024b.g.05_3.1.s.om.8 UNKNOWN Omy.4071

tcba0014.c.14 264 BX863437 tcav0005c.h.17_3.1.s.om.8 ELOV1_MOUSE (Q9JLJ5) Elongation of very long 
chain fatty acids protein 1

187 Omy.22915

tcad0006.j.09 265 BX077787 tcad0006a.j.09_5.1.s.om.8
tcad0006a.j.09_3.1.s.om.8

UNKNOWN Omy.10230

Table 3: Differentially regulated clones belonging to cluster 2 (Continued)
Real-time PCR analysis
For all the genes selected for the real-time PCR analysis, a
similar up or down regulation was observed between
microarray and real-time PCR experiments.

Under expressed genes during oocyte maturation
We observed a dramatic under expression of aromatase
(cyp19a1, clones # 196 and 198) in the ovary during the
preovulatory period (Figure 2). The mRNA abundance of
cyp19a gene during oocyte maturation was more than 200
times lower than during late vitellogenesis. In addition,
successive decreases of cyp19a gene expression levels were
observed during post-vitellogenesis and during oocyte
maturation (Figure 2). The mRNA abundance of vitamin
K-dependent protein S precursor gene (clones # 199 and
200) was lower during oocyte maturation than during late
or post-vitellogenesis. In contrast, no significant differ-
ences were observed between late and post-vitellogenesis
(Figure 2). A similar expression profile was observed for
Cytidine monophosphate-N-acetylneuraminic acid
hydroxylase (cmah) gene (Figure 2).

Over expressed genes during oocyte maturation
We observed a strong over expression of aquaporin 4
(aqp4) gene during post-vitellogenesis and at the time of
oocyte maturation (Figure 3). The mRNA abundance of
aqp4 gene exhibited a 6-fold increase during post-vitello-
genesis and a further 12-fold increase during oocyte mat-
uration. In addition, the mRNA abundance of pendrin
(slc26) gene exhibited a 1500-fold increase during oocyte

maturation while no significant differences were observed
between late and post-vitellogenesis. Similarly, vasotocin
(avt) mRNA abundance exhibited a 500-fold increase at
the time of oocyte maturation (Figure 3). Angiotensin-
converting enzyme 2 (ace2) gene expression levels exhib-
ited a 215-fold increase between late vitellogenesis and
oocyte maturation (Figure 3). A similar profile was
observed for the chemokine cxcl14 gene. The mRNA
abundance of this gene exhibited a 35-fold increase
between late vitellogenesis and oocyte maturation (Figure
3). The mRNA abundance of coagulation factor V (cf5)
gene exhibited a 177-fold increase between late or post-
vitellogenesis and oocyte maturation while adam22
mRNA abundance exhibited a 6-fold increase between
late or post-vitellogenesis and oocyte maturation (Figure
3). Finally, the mRNA abundance serine protease 23
(sp23) gene monitored during oocyte maturation was
higher than in the late vitellogenic ovary. However, this
difference was not significantly different (p = 0.078).

Control gene
The mRNA abundance of elongation factor 1 alpha
(ef1α), a translation regulatory protein commonly used as
a stable reference, did not exhibit any significant differ-
ence over the preovulatory period (Figure 3).

Discussion
Microarray analysis efficiency and reliability
The hybridization of radiolabeled cDNAs with cDNAs
deposited on nylon membranes has been used for several
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Table 4: Differentially regulated clones belonging to cluster 3.

Clone name # GenBank Sigenae contig swissprot_hit_description Score Unigene

tcav0003.l.01 296 BX087643 tcav0003c.l.01_3.1.s.om.8
tcav0003c.l.01_5.1.s.om.8

PRS23_MOUSE (Q9D6X6) Serine protease 23 
precursor (EC 3.4.21.-)

265 Omy.8589

tcbk0008.n.08 297 BX871436 tcac0002c.a.01_3.1.s.om.8 UNKNOWN Omy.10950
tcad0003.m.13 298 BX075335 tcad0003a.m.13_5.1.s.om.8

tcad0003a.m.13_3.1.s.om.8
PPT1_MACFA (Q8HXW6) Palmitoyl-protein 
thioesterase 1 precursor (EC 3.1.2.22)

1110 Omy.3717

1RT65F10_D_C05 299 CA353171 tcab0001c.m.15_5.1.s.om.8 APOC1_MOUSE (P34928) Apolipoprotein C-I 
precursor (Apo-CI) (ApoC-I)

123 Omy.20585

tcay0008.f.19 300 BX301535 tcay0008b.f.19_3.1.s.om.8
tcay0008b.f.19_5.1.s.om.8

CLD11_MOUSE (Q60771) Claudin-11 
(Oligodendrocyte transmembrane protein)

331 Omy.5138

1RT63M21_A_G11 301 CA357931 tcaa0002c.j.15_3.1.s.om.8 ION3_CARAU (P18520) Intermediate filament 
protein ON3

1331 Omy.40

1RT67D22_D_B11 302 CA360891 CA360891.1.s.om.8 PTPRF_HUMAN (P10586) Receptor-type tyrosine-
protein phosphatase F precursor (EC 3.1.3.48) 
(LAR protein) (Leukocyte antigen related)

1466 Omy.24653

1RT63G21_A_D11 303 CA357905 tcad0003a.m.13_3.1.s.om.8 PPT1_MACFA (Q8HXW6) Palmitoyl-protein 
thioesterase 1 precursor (EC 3.1.2.22)

1110 Omy.5643

1RT35E10_C_C05 304 CA376275 CA376275.1.s.om.8 UNKNOWN
tcbk0056.f.03 305 BX880542 tcbk0056c.f.03_5.1.s.om.8 AQP4_RAT (P47863) Aquaporin-4 (AQP-4) 

(WCH4) (Mercurial-insensitive water channel)
442 Omy.23866

tcbk0036.e.03 306 BX885214 tcbk0036c.e.03_5.1.s.om.8 AQP4_HUMAN (P55087) Aquaporin-4 (AQP-4) 
(WCH4) (Mercurial-insensitive water channel)

1071 Omy.23866

tcay0007.b.05 307 BX300900 tcay0007b.b.05_3.1.s.om.8 HEPH_RAT (Q920H8) Hephaestin precursor 1085 Omy.25044
tcac0006.o.01 308 BX085175 tcac0006c.o.01_3.1.s.om.8

tcac0006c.o.01_5.1.s.om.8
LTBP2_MOUSE (O08999) Latent transforming 
growth factor-beta-binding protein 2 precursor

328

tcbk0044.e.02 309 BX889077 tcay0040b.e.18_5.1.s.om.8 UNKNOWN Omy.23994

decades. However, the use of nylon cDNA microarrays is
not very common in comparison to glass slide microarray
technology. Nevertheless, this technology has successfully
been used for several years [27,35]. In the present study
we used similar cDNA manufacturing and hybridization
protocols. While most of the 9152 clones used to generate
the microarray putatively correspond to distinct genes, a
small proportion of genes are represented by 2 distinct
clones (e.g clones belonging to the same UniGene clus-
ter). In our data, it is noteworthy that those clones are usu-
ally found in the same gene clusters (e.g clones #196 and
198, #199 and 200, #305 and 306). Since the position of
clones in the clustering analysis is based on the correla-
tion between their profiles, this indicates that they display
very similar expression profiles. In addition, for all genes
selected for real-time PCR analysis, the over or under
expression observed was always consistent with micro-
array data. Furthermore, the expression of ef1α, a widely
used reference gene, was stable over the preovulatory
period. Together, these observations suggest that our over-
all microarray analysis is extremely robust and reliable.

Identities of identified genes and putative involvement in 
preovulatory ovarian functions
In the present study, we identified 310 genes exhibiting a
differential expression during the preovulatory period.
Among them, 220 were down-regulated during oocyte
maturation while 90 exhibited an opposite pattern. How-
ever, because we decided, as a first step, to focus our anal-

ysis on the genes exhibiting the most differential
regulation in the periovulatory period, we only present
the identity of the 90 genes belonging to 3 specific clusters
exhibiting the most remarkable patterns. Among those 90
transcripts we have chosen to discuss the most informa-
tive or novel genes based on their identities and/or puta-
tive involvement in the rainbow trout preovulatory
ovarian functions.

Estrogen synthesis
Among the 32 clones belonging to cluster 1, two clones
correspond to rainbow trout ovarian aromatase
(cyp19a1). The real-time PCR study confirmed that
cyp19a1 was dramatically under expressed during the pre-
ovulatory period. This observation is in total agreement
with existing data on aromatase expression during this
period [19,36]. In addition, a clone putatively encoding
for a NADPH-cytochrome P450 reductase (EC 1.6.2.4)
was also located in cluster 1. The aromatase enzyme com-
plex is formed from 2 principal protein components.
CYP19a1 contains the catalytic domain that binds C19
steroid substrates in the proximity of the heme prosthetic
group critical in the activation of molecular oxygen and
subsequent substrate hydroxylation. The other essential
component is the redox partner flavoprotein, NADPH
cytochrome P450 reductase. Interestingly, present data
show that both transcripts exhibited an under expression
during the rainbow trout preovulatory period, although it
should be confirmed that the identified clone is coding for
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the oxydoreductase protein involved in the aromatase
complex.

Other cytochrome P450 genes
Two other cytochrome P450 genes, exhibiting similar
expression profiles were found in the same cluster. One
clone (# 194) was most similar to rat cytochrome P450
2J3 while the other one (# 202) putatively corresponded
to rainbow trout cytochrome P450 1A3 (cyp1a3). Cyto-
chrome P450 1A proteins are ubiquitous proteins that
have been associated with the detoxification of several
organic compounds such as PCB (polychlorinated biphe-
nyl), PAH (polyaromatic hydrocarbons), and dioxin [37].
In fish, these compounds are able to induce cyp1a gene
expression in a variety of tissues. In the rainbow trout
immature ovary, a constitutive expression of CYP1A pro-
tein was previously reported [38]. Together, previous and
present observations suggest that a CYP1A-related detoxi-
fication activity in the rainbow trout ovary. From the
under expression of cyp1a3 gene observed in the ovary
immediately prior to ovulation we could speculate that a
decrease of the detoxification activity of the ovary is
required before the beginning of the ovulation process. In
addition, it was previously shown in rat C6 glioma cells
that epoxygenases could inhibit prostaglandin E2 produc-
tion [39]. Interestingly, C6 cells express epoxygenase

mRNAs, CYP1A1, CYP2B1 and CYP2J3, which convert
arachidonic acid to epoxyeicosatrienoic acids; those epox-
yeicosatrienoic acid being able to inhibit the activity of
cyclooxygenase [39]. The role of prostaglandins in the
ovulatory process has been thoroughly studied (see [40]
for review). Thus, in rainbow trout, prostaglandin F2α
was able to induce in vitro ovulation [21,41]. Therefore,
the observed down-regulation of cyp1a1 and cyp2j3 genes
in the ovary prior to ovulation is therefore totally consist-
ent with available data on the participation of prostaglan-
dins in the ovulatory process.

Ion/water transport genes
In the present transcriptomic analysis, two aquaporin 4
(aqp4) clones were found in cluster 3. Real-time PCR data
confirmed that rainbow trout aqp4 gene exhibited a strong
over expression in the preovulatory ovary. In mammals,
AQP4 is also known as mercurial insensitive water chan-
nel (MIWC). It was previously shown that water permea-
bility was strongly increased in African clawed frog
oocytes expressing MIWC [42]. In marine fish, a strong
oocyte hydration occurs during oocyte maturation
[43,44]. In addition, it was recently shown that this oocyte
hydration involves an aquaporin1-like protein in sea-
bream [45]. In freshwater species, data on oocyte hydra-
tion is more controversial. However, a limited but

Ovarian expression profiles of aromatase (cyp19a1), vitamin K dependent protein S (proteinS) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) genes during rainbow trout late oogenesis (mean ± SEM)Figure 2
Ovarian expression profiles of aromatase (cyp19a1), vitamin K dependent protein S (proteinS) and cytidine monophosphate-N-
acetylneuraminic acid hydroxylase (cmah) genes during rainbow trout late oogenesis (mean ± SEM). Ovaries were sampled 
from separate females during late vitellogenesis (LV, N = 6), post-vitellogenesis (PV, N = 6) and oocyte maturation (MAT, N 
= 6). The mRNA abundance of each gene was determined by real-time PCR and normalized to the abundance of 18S. Abun-
dance was arbitrarily set to 1 for LV stage and data are expressed as a percentage of the transcript abundance at this stage. 
Bars sharing the same letter(s) are not significantly different (p < 0.05).
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Ovarian expression profiles of angiotensin-converting enzyme 2 (ace2), coagulation factor V (cf5), CXC chemokine L14 (cxcl14), aquaporin 4 (aqp4), pendrin (slc26), vasotocin (avt), serine protease 23 (sp23), ADAM22 (adam22), and elongation fac-tor 1 alpha (ef1α) genes during rainbow trout late oogenesis (mean ± SEM)Figure 3
Ovarian expression profiles of angiotensin-converting enzyme 2 (ace2), coagulation factor V (cf5), CXC chemokine L14 
(cxcl14), aquaporin 4 (aqp4), pendrin (slc26), vasotocin (avt), serine protease 23 (sp23), ADAM22 (adam22), and elongation fac-
tor 1 alpha (ef1α) genes during rainbow trout late oogenesis (mean ± SEM). Ovaries were sampled from separate females dur-
ing late vitellogenesis (LV, N = 6), post-vitellogenesis (PV, N = 6) and oocyte maturation (MAT, N = 6). The mRNA 
abundance of each gene was determined by real-time PCR and normalized to the abundance of 18S. Abundance was arbitrarily 
set to 1 for LV stage and data are expressed as a percentage of the transcript abundance at this stage. Bars sharing the same 
letter(s) are not significantly different (p < 0.05).
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significant hydration was also observed in several fresh-
water species including rainbow trout [46]. Our data sug-
gest that, similarly to marine species, the oocyte hydration
occurring during oocyte maturation could also be
aquaporin-mediated in freshwater species such as rain-
bow trout. In addition to aqp4 gene, we also observed a
dramatic over expression of slc26 gene at the time of mei-
osis resumption. Solute carrier family 26 member 4
(slc26) is also known as sodium-independent chloride/
iodide transporters or pendrin. The over expression of
slc26 gene at the time of oocyte maturation is dramatic, as
demonstrated by real-time PCR. Together, the strong up-
regulation of aqp4 and slc26 genes at the time of meiosis
resumption stresses the importance of water and ion
transports in the rainbow trout preovulatory ovarian func-
tions. In marine species, the major oocyte hydration
occurring before ovulation is probably important for
adjusting egg buoyancy. In contrast, in freshwater species
laying demersal eggs such as rainbow trout, it has been
hypothesized that the limited (25%) oocyte hydration
occuring before ovulation could be necessary for the com-
pletion of the ovulation process [46]. Thus, the increase of
oocyte volume could facilitate the rupture of the follicular
walls and subsequently, the release of the oocyte from its
follicular layers.

The neurophysial hormones arginine vasotocin (AVT)
and isotocin (IT) are the fish counterparts of arginine-
vasopressin and oxytocin respectively. Vasotocin precur-
sor and isotocin precursor cDNAs were previously cloned
in several fish species including chum salmon [47,48]. In
fish, AVT is involved in several physiological processes
including water conservation and excretion of electrolytes
[49]. However, existing data in fish correspond to the
local effect, in various tissues, of circulating AVT [49]. Sur-
prisingly, we observed that AVT precursor (avt) mRNA is
expressed in the rainbow trout preovulatory ovary. To the
best of our knowledge, there is no evidence of non-neural
expression of avt mRNA in fish. In addition, it is notewor-
thy that we also observed a similar over expression of iso-
tocin mRNA precursor in the ovary at the time of oocyte
maturation. Further investigations are needed to elucidate
the role of AVT and IT in the trout preovulatory ovarian
functions.

Inflammation- or ovulation-related genes
Ovulation is a complex process resulting in the release of
the oocyte from surrounding follicular layers. Since the
early eighties, the similarities between ovulatory and
inflammatory processes have been thoroughly discussed
[50-52] and it is now well accepted that mammalian ovu-
lation is an inflammatory-like reaction. In fish, despite
numerous studies on the hormonal control of spawning,
the ovulatory process has been far less documented.

In mammals, ovulation is accompanied by broad-spec-
trum proteolysis and the implication of several classes of
proteases is well documented (see [53] for review). In sal-
monid fish, several proteases have been identified in the
periovulatory ovary [54]. In mammals, there is evidence
that mature ovarian follicles contain proteolytic enzymes,
including serine proteases. Indeed, serine proteases have
been implicated in both ovulatory and inflammatory
reactions (see [50] for review). In the present study, serine
protease 23 (sp23) gene appears progressively up-regu-
lated during the preovulatory period. To our knowledge,
sp23 gene expression was never reported in the periovula-
tory ovary of any vertebrate species. However, we could
speculate that this protease participates in the rainbow
trout ovulatory process. Interestingly, our data showed
that adam22 metalloprotease-disintegrin gene was sharply
up-regulated at the time of oocyte maturation. The metal-
loprotease-disintegrin protein family (also known as
ADAMs: A Disintegrin And Metalloproteinases) is
thought to function in cell-cell interactions and in the
proteolysis of luminal or extracellular protein domains. In
mammals, several ADAMs family members are involved
in the ovulatory process. In brook trout (Salvelinus fontina-
lis), metalloprotease activity increases in the ovary prior to
ovulation [8,9]. Together, these observations also suggest
that adam22 also participates in the rainbow trout ovula-
tory process.

Mammalian CXC chemokines, named after a conserved
pattern of conserved cysteine residues, have been initially
identified as potent mediators of neutrophil chemotaxis
[55,56] and are also involved in chemotaxis of monocytes
and lymphocytes. They have also been implicated in ang-
iogenesis and, later, in a large variety of functions[57,58].
In mammals, 16 CXC have been described. In Fish, how-
ever, several CXC have been identified but only CXCL12
and CXCL14 exhibit unambiguous orthologues [59]. In
the present study, we showed that cxcl14 gene expression
strongly increases during the preovulatory period. In cat-
fish, RT-PCR data showed that cxcl14 gene was expressed
in a wide variety of tissues, including the ovary [60]. In
carp, quantitative PCR data showed that cxcl14 was pre-
dominantly expressed in the brain [61]. Despite its good
conservation throughout vertebrate evolution [59], the
number of studies addressing the in vivo role(s) of
CXCL14 is limited. As a consequence, a lot of information
is still unavailable in fish. In a murine model used to
study Crohn's disease, cxcl14 expression is induced during
inflammation [62]. Together, these observations suggest
that cxcl14 gene expression induction contributes to the
inflammatory-like events occurring in the rainbow trout
at the time of ovulation. To date the participation of this
gene in preovulatory ovarian functions was unsuspected.
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In mammals, coagulation factor V participates in the coag-
ulation process. In zebrafish, a coagulation factor V (cf5)
cDNA was previously characterized [63]. According to
these authors, several lines of evidences including bio-
chemical and phylogenetic analyses suggest that the mod-
ern coagulation pathways found in mammals could also
be functional in fish. Furthermore, it was previously
shown that cultured rabbit macrophages were able to gen-
erate factor V procoagulant activity [64]. In the present
study, we observed a dramatic increase of cf5 gene expres-
sion in the ovary during oocyte maturation. However, no
significant difference was observed between late and post-
vitellogenesis. From these observations we could specu-
late that, immediately prior to ovulation, the trout ovary
secretes coagulation factors in order to prevent bleeding
from ruptured ovarian follicles at the time of ovulation.
Interestingly, the transcriptomic analysis showed that a
transcript exhibiting sequence similarity with clotting fac-
tor C (Clone # 251, Table 3) was also over expressed
immediately prior to ovulation.

Angiotensin-converting enzyme (ACE) cleaves Angi-
otensin I (Ang I) to form Angiotensin II (Ang II). Angi-
otensin-converting enzyme 2 (ACE2) is a recently
described ACE homolog [65]. Both ACE and ACE2 are
zinc-dependent peptidases of the M2-metalloprotease
family. Within the renin-angiotensin system (RAS), ACE2
competes with ACE because it is capable of hydrolyzing
Ang I into the nonapeptide Ang(1–9) [65]. In humans,
ace2 gene expression was predominantly detected by
Northern blot analysis in kidney, heart and testis [65,66].
In addition, a moderate expression was also observed in
several other tissues including the ovary [66]. Using semi-
quantitative RT PCR, a wide distribution was observed in
rat tissues [67]. In mammals, previous observations sug-
gested that the renin-angiotensin system was functional in
the ovary. In cattle, a greater expression of Ang II was
observed in large follicles. In addition, several lines of evi-
dence supported the idea of Ang II in blocking the inhib-
itory effect of theca cells on meiosis resumption of bovine
oocytes [68]. In brook trout (Salvelinus fontinalis) salmon
Ang I and human Ang II were both able to increase the
level of in vitro spontaneous ovulation [69]. In the present
transcriptomic study, we observed a dramatic increase of
ace2 gene expression during the preovulatory period. This
observation was confirmed by real-time PCR data.
Together, these observations suggest that the dramatic up-
regulation of ace2 gene immediately prior to ovulation is
important for the ovulatory process. In mammals, little is
know about the role of ACE2 in the ovary. However, it is
known in mammals that ACE2 can function as an Ang II
degrading enzyme, forming the vasodilatator peptide
Ang(1–7) [70,71]. Interestingly, a local vasodilatation is a
key characteristics of the inflammatory response that is
also observed during the mammalian ovulatory process

(see [50] for review). Therefore, it can be hypothesized
that the observed increase of ace2 gene expression in the
trout preovulatory participates in the vascular dynamics
changes that are putatively occurring during the ovulatory
process.

Genes involved in the synthesis of egg components
Cytidine monophosphate-N-acetylneuraminic acid
hydroxylase (CMAH) is the key enzyme for the synthesis
of N-glycolylneuraminic acid. In salmonid eggs, cortical
alveoli contain polysialoglycoproteins (PSGP). In rain-
bow trout, it was previously shown that those PSGP con-
tain N-glycolylneuraminic acid residues [72]. In the
present study we observed a significant decrease of cmah
gene expression at the time of oocyte maturation. While
the presence of cmah gene expression in the ovary is totally
consistent with the presence of N-glycolylneuraminic acid
in rainbow trout cortical alveoli content, it seems however
difficult to speculate on the dynamics of PSGP accumula-
tion in the oocytes.

Conclusion
Our observations further confirmed that a progressive
shut down of estrogen synthesis genes expression occurs
in the ovary prior to meiosis resumption. In addition to
already well studied genes such as aromatase, the present
work shows that other genes exhibit a similar down-regu-
lation, thus suggesting their participation in the preovula-
tory decrease of circulating estrogen levels.

In addition, we observed a strong up-regulation of ion/
water transport genes in the preovulatory ovary. The iden-
tity of those genes is consistent with the recent identifica-
tion of aquaporin mediated mechanisms in the fish
oocyte hydration process and further supports the recent
description of a limited but significant oocyte hydration
occurring in the rainbow trout preovulatory ovary.

Finally, in addition to oocyte hydration-related genes, we
also observed a strong over expression of several genes
such proinflammatory factors, coagulation/clotting fac-
tors, vasodilatation factors and proteases in the ovary
immediately prior to ovulation. Together, these observa-
tions suggest that, similarly to the theory developed in
mammals, fish ovulation could also be compared ton an
inflammatory-like reaction. In addition, the identification
of those genes will allow specific studies leading to a bet-
ter understanding of the ovulatory process in fish.

In the future, a global analysis of differentially regulated
genes, based on their ontologies, is needed to satisfyingly
describe preovulatory ovarian mechanisms. In addition, a
cellular localization of gene expression will contribute in
the understanding of their respective roles in the preovu-
laory ovarian physiology. Nevertheless, the present study
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clearly demonstrates that distinct (i.e. steroidogenic, pro-
teolytic, proinflammatory) but concomitant events occur
in the preovulatory ovary. Together, all those events con-
cur to achieve the same goal which is the release, at the
time of ovulation, of a fully competent oocyte, ready to be
fertilized.
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