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Due to their significant influence on infiltration/runoff partitioning and soil erosion, hydrological soil surface

characteristics (SSC) have to be known in a spatially distributed manner. This paper proposes a new approach

based on radiometric and spatial remotely sensed information, for the mapping of hydrological SSC classes

according to a predefined typology based on infiltration rates. Traditional remote sensing approaches usually

focus on single SSC attributes only, where the latter correspond to key structural properties such as micro

topography, surface crusting and soil cover. The originality of the method proposed here is considering the

composite nature of SSC classes, by combining the aforementioned single attributes. This method makes use

of a multiscale image segmentation that allows extracting image objects at two spatial scales of interest. At

the fine scale, each Homogeneous Unit (HU) is assigned to an SSC attribute. At the coarse scale, SSC classes

are identified by combining HU of SSC attributes assigned at the fine scale. The method was applied on

airborne images collected over a Mediterranean vineyard by a small Pixy drone, and validated using intensive

ground-based observations. The results showed acceptable performances with an overall accuracy ranging

from 63 to 84%, depending on SSC classes and surface conditions. However, unsystematic confusions still

remained between SSC classes which significantly differ in terms of hydrological behaviours. Improvements

are expected considering richer spectral information, and ancillary information about SSC evolution in the

case of intensive temporal monitoring.

1. Introduction

Due to their significant influence on land surface hydrological

processes such as infiltration/runoff partitioning and soil erosion, soil

surface characteristics (SSC) constitute an essential information for

hydrological modelling (Auzet and Boiffin, 1995; Jetten et al., 1996; Le

Bissonnais et al., 1998; Cerdan et al., 2001; Moussa et al., 2002).

Various attempts have been made to define SSC through a compre-

hensive and consistent set of structural properties, by often referring

to the spatial organization of different structural properties. The most

commonly cited structural properties are vegetation type and density

(Snelder and Bryan,1995; Robinson and Phillips, 2001), soil roughness

and stoniness (Poesen and Lavee, 1994; Govers et al., 2000), and

terrain slope (Janeau et al., 2003). Casenave and Valentin (1992) also

defined visual indicators for the surface crust morphology over

Sahelian regions. Finer properties are sometimes considered, such as

the macro porosity that results from biological activity (Dunne et al.,

1991). Although they have been widely used in several studies, the

concepts of SSC and related spatial extent still remain poorly defined.

A hydrologically based typology that relies on infiltration rate was

proposed by Andrieux et al. (2001) for cultivated areas under

Mediterranean conditions. It consists of combining structural proper-

ties, here designated as attributes, associated with micro topography

(i.e. soil roughness which depends on soil treatment), surface crusting,

and soil cover (i.e. density of grass or organic litter).

Due to strong spatial variabilities for most of attributes, field

surveys of SSC are labour intensive and costly. A promising alternative

is using remote sensing for capturing spatial information, as

successfully done for the retrieval of surface roughness (Baghdadi

et al., 2002), humidity (Wang et al., 1997) and soil organic matter

(Wiegand et al., 1992), especially under specific conditions such as

bare soil or sparse vegetation. Similarly, relations between reflectance

and infiltration rates (Goldshleger et al., 2001, 2002) or surface

crusting (Goldshleger et al., 2002; Ben-Dor et al., 2003, 2004;

Goldshleger et al., 2004) were highlighted over bare soils, by following

works fromDe Jong (1992) andMetternicht and Fermont (1998) about

the potential of spectral information over the solar domain. Never-

theless, these studies usually focused on single attributes whereas

infiltration/runoff partitioning is conditioned by a combination of

several attributes (Descroix et al., 2001, 2002). Very few remote

sensing studies considered hydrological SSC classes as combinations
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of attributes. Among them, Wassenaar et al. (2005) investigated the

potential of multiangular information at very high spatial resolution

over Mediterranean vineyards. For each SSC class from the typology of

Andrieux et al. (2001), Bidirectional Reflectance Distribution Function

(BRDF) within green and red wavebands was first characterized from

ground-based goniometric measurements. SSC classes were next

mapped from aerial photographs, by minimizing airborne radiometric

measurements against BRDF-based predictions for specific illumina-

tion and viewing conditions. It was thus shown several SSC classes

could be distinguished (e.g. crusted mineral soil surfaces or surfaces

covered with litter and/or weed by more than half), although some of

them remained difficult to discriminate because of strong dependence

of predictions on illumination and viewing conditions.

SSC classes may also be distinguished from remote sensing by

exploring the radiometric and spatial dimensions of the collected

information. The latter have been utilized for inferring land cover

(Phua et al., 2007), classifying wetlands or vegetation (Harken and

Sugumaran, 2005; Yu et al., 2006), and mapping habitat or forest

(Bock et al., 2005; Van Coillie et al., 2007). For these purposes,

radiometric and spatial dimensions are jointly used through multi-

scale classifications. The latter rely on object-oriented frameworks

and image segmentations, and allow extracting objects of interest by

simultaneously segmenting at various scales. These scales are

preselected using the scale factor that corresponds to a threshold of

heterogeneity criterion between image objects. A multiscale classifi-

cation results in a hierarchical network of image objects, each of them

being related to i) neighbouring objects at the same scale, ii) sub

objects at the finer scales and iii) super objects at the coarser scales

(Baatz and Schape, 2000). Rather than dealing with spectral

behaviours of individual pixels only, a multiscale classification

therefore incorporates radiometric features and spatial arrangements

such as texture, context, shape and relationships between objects

(Laliberte et al., 2004).

In the context of mapping hydrological SSC classes from remote

sensing, it is of interest to assess the potentialities of multiscale

classification which uses radiometric and spatial remotely sensed

information. Although such approach has been successfully applied

for specific environmental issues as previously mentioned, its

relevance for the characterization of hydrological SSC classes has to

be proven. Expected difficulties are related to the composite nature of

such SSC classes as compared to single attributes for Homogeneous

Units (HU), including the selection of both segmentation levels and

associated scale factors. Assuming patches of single SSC attributes are

more easily extractable from remote sensing than patches of

composite SSC classes (Corbane, 2006), a potential solution is

segmenting images at two hierarchical spatial scales. First, HU of

SSC attributes are detected at the fine scale. Next, SSC classes are

characterized at the coarse scale using the fine scale classification of

SSC attributes along with the hierarchical network between the

objects at the two scales.

The current study aimed at assessing the potentialities of a two

scale classification which uses radiometric and spatial remotely

sensed information, for the mapping of SSC classes. The proposed

approach was implemented over a dataset of digital airborne

images collected by a Pixy© drone within a Mediterranean vineyard

environment. This enabled a comparison against the BRDF-based

classification proposed by Wassenaar et al. (2005), while intensive

ground-based observations allowed performing validation. The

paper is structured as follows. We focus in Section 2 on the basic

concepts about typology of hydrological SSC. We describe in

Section 3 the study area and the data set that includes ground-

based measurements and remotely sensed data. Section 4 describes

the proposed two scale classification, as well as its implementation

over the collected database. The results are next presented in

Section 5, and discussed in Section 6. Wider issues and conclusions

are reported in Section 7.

2. SSC hydrological typology based on infiltration rates

Among the various definitions suggested in the literature for

characterizing SSC (see Introduction), we focused in the current study

on the hydrologically based typology proposed by Andrieux et al.

(2001). It was devoted to Mediterranean vineyards, and established

according to infiltration rates. Measurements were collected during

several experiments over various types of soil: calcaric regosol,

chromic luvisol, calcaric cambisol, gleyic cambisol. The selected

plots yielded a large variability of characteristics in terms of slope,

grass cover, roughness, soil type, clay percentage, surface stone

content, surface structure and initial soil moisture content (Leonard

and Andrieux, 1998; Andrieux et al., 2001).

Measurements of infiltration rate were made in the field using a

rainfall simulator as described by Asseline and Valentin (1978), with a

rainfall intensity of 35 mm/h. Steady state infiltration rates were

measured within 1 m2 size plots, since this spatial extent allowed

minimizing edge effects and keeping the surface crust unchanged. A

10 m2 size peripheral buffer zone was watered to ensure vertical

infiltration flow over the 1 m2 plot. This experimental setup allowed

simulating rainfall with intensities close to those of natural conditions,

such as the pressure head at the soil surface was realistic.

From these measurements, SSC were classified into several

categories according to different soil infiltration rates (Leonard and

Andrieux, 1998; Andrieux et al., 2001). When selecting the key SCC

attributes for classification, those to be considered because of their

significant influence on infiltration/runoff partitioningwere soil micro

topography, surface crusting, soil cover and stoniness. Soil micro

topography of tilled surfaces was determined by considering four

classes of soil clod size: i) lower than 1 cm, ii) from 1 to 5 cm, iii) from 5

to 10 cm, and larger than 10 cm. Were also distinguished i) clods of

recently tilled soils that could be clearly individualized, ii) clods with a

slightly formed thin structural crust and iii) tilled soil surfaces slightly

sealed by raindrop impacts. The identification of the other SSC

attributes is described in Corbane et al. (2008). Initial soil moisture

and clay content were not considered, since Leonard and Andrieux

(1998) demonstrated they had no significant influence on infiltration

steady state rate, with a coefficient of determination lower than 0.1%

and a significance level larger than 60%.

On the basis of the selected attributes, the in situ identification of

SSC classes was performed using a two step procedure. First,

Homogeneous Units (HU), which included single attributes, were

identified by following the instances reported in Table 1. Second,

composite SSC classes, which contained several HU of different SSC

attributes, were assigned to a given area according to the association

rules presented in Table 2. For example, if more than half of surface

was covered by a HU of “organic litter” and the remaining part was

predominantly occupied by a HU of “surface crust”, then the resulting

SSC class was labelled “LC”, which corresponded to an infiltration rate

of about 18 mm/h. According to the experimental context of the

current study (see Section 3), stoniness attribute and resulting SSC

classes were not considered. This yielded considering six SSC classes,

displayed in Table 2 with their infiltration rates as measured by

Andrieux et al. (2001). In the context of SSC mapping for hydrological

modelling, these classes were gathered into three groups according to

Table 1

Structural properties and their associated instances that strongly influence infiltration

properties at the soil surface

Structural properties

(SSC attributes)

Instances

Soil micro topography Flat surface (untilled)/small clods with a slightly sealed

surface (previously tilled)/large clods (recently tilled)

Surface crusting None/structural crust/sedimentary crust

Soil cover None/grass/litter
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infiltration rates, and corresponded to different surface evolution

stages. Thus, tillage results in T class (recently tilled), which naturally

changes into TC class (priorly tilled and slightly sealed), then into STC

class (structural crust), and finally into SDC class (sedimentary crust).

Additionally, vegetation components are considered through GC

(grass cover) and LC (litter cover) classes.

When dealing with in situ characterization of SSC classes, it is worth

noting that themaindifficulty is related to the lackof a cleardefinition for

the corresponding spatial extent. This induces a strong subjectivitywhen

determining the integration area for a given SSC class. This difficulty is

usually overcome by considering the integration area as circumscribed

within the considered agricultural field. However, withinMediterranean

vineyards, SSC classes exhibit a strong subfield variability that cannot be

easily mapped (Wassenaar et al., 2005; Corbane et al., 2008). Therefore,

producingfineSSCmaps is almost impossible. A potential solution is that

proposed by the current study, i.e. exploiting radiometric and spatial

remotely sensed information collected from very high spatial resolution

sensor, along with an object-oriented two scale classification based on

using HU of SSC attributes for the retrieval of SSC classes.

3. Materials

3.1. Experimental area

The experimentwas carried out in Puisserguier (43°22′N–3°2′E) on a

vineyard site located in Languedoc-Roussillon, a Southern France region

of wine production. The climate is sub humid Mediterranean, with a

long dry season. Annual rainfall has a bimodal distributionwithmaxima

in spring and autumn. The average annual rainfall over the last 20 years

is approximately 650 mm. High intensity storms are common in

summer. The soil is fairly homogeneouswith a sandy loam texture and a

dominant brownish yellow color overlaying sandy clayey molasses.

This experimental sitewas selected because it concentrated themain

soil management practices for Mediterranean vineyards. During the

experiment, the cropping system included bilateral wire trained Syrah

vinestocks coveringanareaof 8000m2. Spacingbetweenandalongrows

were respectively 2.5 and 1.0 m. The agricultural practices implemented

in 2000 included four types of soil management (see Fig. 1 for detailed

Fig. 1. The experimental vineyard site. This site is divided into four fields, each subject to a specific soil management practice.

Table 2

The six SSC classes existing within the considered study area

Label Definition Mean steady

infiltration rates

(mm/h)

SSC

classes

T The surface is mainly composed of

HU of 5–10 cm size clods

31 (SD=4.3; N=5) High

TC More than 50% of the surface is

composed of HU of clods with a

slightly sealed surface

21 (SD=6.5; N=7) Medium

GC More than 50% of the surface is

composed of HU of grass AND the

rest is predominantly composed of

HU of structural crust

20.3 (SD=10.8; N=9)

LC More than 50% of the surface is

composed of HU of litter AND the

rest is predominantly composed of

HU of structural crust

18.2 (SD=6.3; N=20)

STC More than 50% of the surface is

composed of HU of structural crust

10.8 (SD=3.4; N=8) Low

SDC More than 50% of the surface is

composed of HU of sedimentary

crust

7.6 (SD=2.6; N=19)

Each SSC class is defined through its constituting HU of SSC attributes. The associated

infiltration rates measured in situwith a 35mm/h rainfall intensity by rainfall simulator

(Andrieux et al., 2001) are indicated. The six SSC classes are next assembled into the

three groups for high, medium and low infiltration rates. The level of typology

refinement depends on accuracy requirements for hydrological models. SD stands for

standard deviation and N for measurement number.
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dimensionsof eachfield): bare soil controlledbychemicalweeding (Field

1, 2000 m2), natural grassing controlled by chemical weeding (Field 2,

2100 m2), natural grassing controlled by mechanical weeding (Field 3,

2100 m2), and sowed grass controlled by mow (Field 4, 1800 m2).

Ground-based and remote sensingmeasurementswere collected during

4 days in 2004 (March 27,May 18, June 15 and July 23) that corresponded

to dry soil conditions. An Enhanced Observing Period (EOP) for ground-

based datawas setup during one additional day inMay 2004, in order to

analyse the spatial variability of SSC attributes. Data collection and EOP

are presented hereafter.

3.2. Remote sensing data

Following the works of Wassenaar et al. (2005), the use of Very

High spatial Resolution (VHR) imagery was explored for its abilities

to capture the soil surface fraction between the vine rows. The

spectral range was selected according to literature materials. Several

studies previously demonstrated the potential of surface reflectance

over the solar spectral domain (0.3 to 3 µm), for consistently

distinguishing different soil management practices such as tillage,

non-tillage and mow (De Jong, 1992; Clegg et al., 1999). When

focusing on the visible spectrum (0.4 to 0.7 µm), Lee et al. (1988) and

Ben-Dor et al. (1999) reported soil reflectance significantly con-

tributed to classification accuracy, and could therefore be used for

soil interpretation. This spectrum was also successfully used for

differencing crusted and non-crusted soils through color, where the

latter was expressed as a cumulative product of reflectance between

0.4 and 0.7 µm (Ben-Dor et al., 2003; Goldshleger et al., 2004).

When studying crusting processes, a quantitative relationship

between the latter and spectral parameters was observed from

reflectance changes induced by laboratory treatments (Ben-Dor

et al., 2004). Finally, although soil reflectance over the whole solar

spectrum would have provided more information (Eshel et al.,

2004), most of the attributes we considered here were previously

better distinguished by their brightnesses rather than their

reflectance spectra (Escadafal and Bacha, 1996; Lambin, 1999;

Wassenaar, 2001). Regarding these elements, we expected reflec-

tance data over the [0.4–0.7] µm spectrumwould be relevant for the

mapping of hydrological SSC classes.

A series of digital airborne images was collected around solar noon

by using a small low speed remotely controlled unmanned airborne

vehicle called Pixy© (http://www.drone-pixy.com; Asseline et al.,

1999). The digital images were taken at a 150m altitude. This yielded a

0.10 m spatial resolution, and allowed covering the whole study site

from one single image to avoid image mosaicking. The digital camera

was a Minolta Dimage 7Hi, featuring a 2/3 in. type (equivalent to

17mm) CCD sensor with 5mega pixels. It collected images with a near

nadir viewing through filters centred on 450 nm (blue), 550 nm

(green) and 650 nm (red).

3.3. Ground-based measurements

A set of ground truth data was acquired each day the drone

overpassed. For each day of experiment, half a day was necessary to

collect the ground truth data. These reference observations were

collected according to a sampling strategy which accounted for the

geometrical features of the study site (Corbane et al., 2008). The four

fields of the site were split by considering the slope magnitude (Figs. 1

and 2). This yielded partitioning each field into five 20 m length slope

sections that corresponded to 2% slope intervals between 0% (down-

slope) and 10% (upslope). Then, each slope section was sampled

according to the inter row (2.5 m) and inter stock (1 m) distances. This

yielded four to six 1.25 m length transects per slope section, and thus

20 to 30 transects per field (Fig. 2). Along each transect, 25

observations were performed with a 5 cm step, to allocate an SCC

attribute according to the instances reported in Table 1. Next, each

transect was assigned to an SSC class according to i) the fraction covers

of SSC attributes within the transect and ii) the association rules

presented in Table 2. The corresponding SSC class was supposedly

representative of a 0.5 m width area on each side of the transect.

Therefore, each transect provided a ground truth surface of approxi-

mately 1 m2 size, and the whole set of transects covered between 1

and 2% of the whole study area. Finally, the resulting data set (80 to

120 transects assigned to SSC classes for each of the 4 days of

experiment) was randomly split into two parts of equal share: one for

training the remote sensing-based classification, and the other for

assessing the post classification accuracy.

The EOP consisted of collecting ground-based data through 60

transects per field rather than 20 to 30. For each transect, join count

statistics (Cliff and Ord, 1973) were used to test if SSC attributes

produced statistically significant HU, and to estimate the size of these

HU. Joint count statistics were selected since they were suitable for

binary data, in terms of presence or absence of a given SSC attribute.

From this extensive experiment, two main results could be reported

(Corbane et al., 2008). First, the transect was a suitable support for

observing SSC attributes within a row cropped field such as a vineyard.

Further, both the transect length (1.25 m) and sampling (one

observation every 5 cm) were adequate for detecting spatial

heterogeneities of SSC attributes. Second, SSC attributes within

transects exhibited significant positive autocorrelations on the

assumption of a 10% type II error, for 40 to 60% of the considered

Fig. 2. Illustrative example of the configuration of the grid stratified sampling scheme

on Field 1 (Bare Soil controlled by Chemical Weeding). North and east directions are

approximated.
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transects. This demonstrated SSC attributes were spatially clustered,

whereas their spatial arrangement was homogeneous patches with

0.20 m to 0.40 m sizes.

4. Method and implementation

The proposed approach relied on the assumption that HU of SSC

attributes could be more easily identified from remote sensing images

than patches of SSC classes, because of greater homogeneities. This

assumption was previously confirmed in Corbane (2006) from

ground-based radiometric measurements within a similar Mediterra-

nean landscape. The idea was therefore isolating HU of SSC attributes

at a specific fine spatial scale, and then identifying SSC classes at a

coarse scale by using the hierarchical network that linked image

objects at the two scales (Fig. 3). The relevance of considering two

hierarchical scales was previously demonstrated by Corbane et al.

(2008) from ground-based measurements within the same experi-

mental site. The problem of SSC delineationwas tackled assuming SSC

classes depict radiometric homogeneities and can therefore be

extracted using a radiometrically based segmentation. The proposed

method was implemented for each day of data acquisition, through a

three step procedure illustrated in Fig. 4 and detailed below.

After preprocessing raw image data (step 1), an initial multiscale

segmentation outlined radiometrically homogeneous regions at two

nested spatial scales (step 2). Then, a classification was performed at

the two scales (step 3). Individual HU of SSC attributes were identified

at the fine scale, through a supervised classification based on nearest

neighbour and user selected samples. Next, SSC classes at the coarse

scale were assigned using HU of SSC attributes at the fine scale, along

with inter object relations from the hierarchical network. Below is a

detailed description of the above defined methodology, as well as its

implementation over the database collected from March until July

2004 within the Puisserguier vineyard site.

4.1. Remote sensing data preprocessing

Performing SSC classification at several dates previously required

radiometrically and geometrically normalizing the images collected at

these different dates. Therefore, the preprocessing step of the raw

digital airborne images was particularly stressed, including geometric

and radiometric corrections. It was finally completed by spatially and

radiometrically filtering these images.

In order to superimpose SSC classifications performed at different

dates, geometric corrections were compulsory to remove combined

distortions from the camera lens, the camera tilt and the topography

effects. The radial distortion coefficients and the lens focal lengthwere

determined through a camera calibration in laboratory. The camera

tilt at snapshot time was characterized from GPS locations of several

25×25 cm2 white targets installed between vine rows each day of

experiment. Accounting for these lens and tilt effects, as well as for

local topography derived from theodolite measurements, images were

finally orthorectified using the standard procedure proposed by Kraus

and Waldhaüsl (1998).

In order to compare radiometrically based SSC classifications from

one day to another, radiometric corrections were required for

normalizing measurements collected at different dates. Such normal-

ization allowed minimizing radiometric variations that might result

from experimental factors such as instrumental response, illumina-

tion and viewing directions. This was performed to ensure that

differences in day to day classification performances were not driven

Fig. 3. Hierarchical network of image objects resulting from a two scale segmentation (adapted from Definiens, 2003).

Fig. 4. Flow-chart of the SSC classification methodology.
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by changes in experimental conditions. Radiometric corrections

included the removal of sun illumination effects, and an inter

calibration of surface reflectances. In order to account for differences

in sun illumination from one date to another, we applied the

correction proposed by Richter and Schlaepfer (2002). The latter is

based on the sun zenith angle and assumes isotropic reflection

(Shoshany, 1992, 2000). Surface reflectances at the various dates were

inter calibrated using a linear correction derived from two sets of

horizontal and homogeneous objects within the study area. The white

squared targets were used as control set for large surface reflectances,

and the central section of the gutters installed downstream of each

parcel were used as control set for low surface reflectance.

Following Wassenaar et al. (2005), it was necessary removing vine

canopy and corresponding shadow. Indeed, vine canopy was not

related to soil surface characteristics, while shadow could perturb

radiometrically based classification. Removal was performed using

radiometric thresholding on red reflectance, where the threshold was

day dependent according to soil surface conditions and vineyard

temporal evolution.

4.2. Multiscale segmentation

A multiscale segmentation was applied for creating image objects

at two nested spatial scales: a fine scale for characterizing HU of SSC

attributes and a coarse scale for characterizing hydrological SSC

classes. For this, the radiometric information provided within the

three wavebands wasmerged through a linear combination. The latter

assigned a larger weight to red reflectance (0.6) as compared to blue

and green ones (0.2 each), given red reflectance could be considered as

the main source of information for discriminating most of mineral SSC

(Wassenaar et al., 2005).

The multiscale segmentation technique selected for the current

study was the Fractal Net Evolution Approach (Baatz and Schape,

2000; Definiens, 2003; Gamanya et al., 2007). A detailed description of

this segmentation procedure is given in Benz et al. (2004). FNEA

consists of a bottom up merging technique from pixels to objects:

smaller objects are merged into larger ones through a pairwise

clustering process which maximizes the homogeneity of the resulting

objects through a dissimilarity threshold. The latter is calculated as a

linear combination of radiometric heterogeneity (expressed through

the variance over pixels within a given object) and form heterogeneity

(expressed through compactness and smoothness). The definition of

homogeneity is therefore flexible and consists of a trade-off between

radiometric variability and spatial form/shape (Carleer et al., 2005).

The balance at which these two criteria apply depends on the desired

output (Thomas et al., 2003) and enables adjusting segmentation

according to the considered application (Willhauck, 2000). The

control of a segmentation scale, and therefore of the resulting average

size for the generated objects, is operated through the scale factor that

corresponds to a threshold of heterogeneity criterion between image

objects (Thomas et al., 2003). Several segmentations can be performed

by modifying the scale factor. This allows image representations at

different scales, where the objects generated at a given scale inherit

the information of smaller objects at the finer scales and vice versa.

Given the scale factor significantly influences the selection of each

spatial scale for the multiscale segmentation, scale factor values have

to be determined by reducing any potential subjectiveness. For the

current study, two scale factors were targeted, corresponding to

spatial scales for both HU of SSC attributes and patches of SSC classes.

Both HU and patches were supposed structuring the considered

images at their corresponding spatial scales. In order to identify these

spatial scales, segmentations at various scales were performed by

varying scale factor over the whole range of possibilities (from 1 to

100). This yielded a growth curve that characterized the object mean

length as a function of scale factor, where the object mean length was

estimated from those of skeleton main lines. We choose the object

mean length as indicator, since it allowed a straight comparison

between segmentation results and field observations, in terms of

determining specific spatial scales through lengths. Stable periods,

hereafter called stability zones, were next identified on the growth

curve as the scale factor intervals with the lowest variations of object

mean length, corresponding to structuring levels in the image (Mori

et al., 2004). For the fine scale, the scale factor had to correspond to the

object mean length close to the averaged size of HU of SSC attributes.

This correspondence was next verified using the ground-based data

collected during the EOP in may 2004 (see Section 3.3). For the coarse

scale, the scale factor had to correspond to an average length larger

than that obtained at the fine scale. Each of the two targeted scale

factors was finally selected as the minimum value within the

corresponding stability zone. The framework presented here (growth

Fig. 5. Growth curve obtained by characterizing mean length of image objects (log-transformed) versus increasing scale factor, for the image acquired in May 2004. The first stability

zone is observed at scale factors comprised between 10 and 32, the second stability zone at scale factors comprised between 40 and 58.
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curve generation, stability zone identification, scale factor selection)

was applied for each day of airborne data collection, allowing the

selection of the two spatial scales from the multiscale segmentation.

4.3. Two scale classification

Once the multiscale segmentation was performed, the two scale

classification consisted of assigning i) a HU of SSC attribute to a given

object at the fine spatial scale and ii) a SSC class to a given object at the

coarse scale. A detailed description of the object-oriented image

classification paradigm is given in Platt and Rapoza (2008).

Assigning HU of SSC attributes at the fine spatial scale was

performed using a nearest neighbour classifier in an object-oriented

framework along with user selected training sets, similarly to a

supervised classification on a pixel basis. The advantage was the easy

and fast training from a limited number of samples (Hardin and

Thomson, 1992; Matinfar et al., 2007), while incorporating radio-

metric and spatial criteria for discriminating different HU of SSC

attributes. The training was performed using half of the ground-based

observations, while the other half was further used for assessing the

post classification accuracy (see Section 3.3). The best combination

between radiometric (i.e. object averaged reflectance over blue, green

and red wavebands) and spatial (i.e. length, texture) criteria was

automatically quested from the training set (Definiens, 2003). For this,

a multi criteria optimization used the minimum distance as the

measure of dissimilarity among different classes (Solberg and Egeland,

1993). This finally yielded each object at the fine spatial scale to be

classified according to the HU of SSC attributes from Table 1: litter,

grass cover, structural crust, sedimentary crust, large clods for recently

tilled soils or small clods with a slightly sealed surface.

The identification of SSC classes was next performed at the coarser

spatial scale. At this scale, an object was a spatial extent containing

several HU of different SSC attributes. Each object was then assigned

to a given SSC class, by using the fine scale classification results, along

with the spatial relations between the two scales within the object

hierarchy. For this purpose, a set of decision rules was implemented,

following those designed when characterizing ground-based esti-

mates of SSC (Table 2). These decision rules referred to the fine scale

classification, as explicit with the following example: if the fraction

cover for HU of litter ranged between 0.5 and 1 and that for HU of

structural crust ranged between 0.1 and 0.5, then the resulting SSC

class was “LC”, which corresponded to an infiltration rate of about

18 mm/h.

5. Results

Fig. 5 displays an example of growth curve obtained when

characterizing the object mean length (log-transformed) as a function

of scale factor, where the latter ranges from 1 to 100. For the

considered day in May 2004, the object mean length grew

exponentially with the scale factor, ascertaining a larger scale factor

results in larger image objects (Benz et al., 2004). Then, two stability

zones could be observed for the [10–32] and [40–58] scale factor

intervals. For the [10–32] interval, the object mean length ranged

between 0.2 m and 0.4 m. This corresponded to the average length of

HU of SSC attributes observedwhen analysing in situ spatial variability

of SSC attributes (Corbane et al., 2008). For the [40–58] scale factor

interval, the object mean length ranged between 1 m and 1.5 m. This

corresponded to the average length set up in the field for assigning

aggregates of SSC attributes to SSC classes. These results corroborated

the suitability of the proposed strategy for selecting the scale factors

through the growth curve concept. For the example displayed in Fig. 5,

selecting the minimum value for each stability zone yielded

considering a scale factor of 10 (respectively 40) for the fine

(respectively coarse) spatial scale. We did not seek other specific

stability zone at larger scales, since the spatial structuring was then

predominantly influenced by vine inter row.

Table 3 displays the selected scale factors and corresponding object

mean lengths for each day the drone overpassed. It is shown image

object mean lengths at both fine and coarse spatial scales were

generally stable, with small variations between May and June for fine

scale, and between June and July for coarse scale. These variations

might be related to changes in grass fraction cover during spring and

summer. Such seasonal changes in object mean length demonstrated

the need for a fine temporal sampling of spatial variability of SSC

attributes, in order to determine changes in patch size.

Table 4 displays an example for themost suitable set of radiometric

and spatial criteria, when classifying HU of SSC attributes from the

image acquired in May 2004. As evidenced by the multi criteria

optimization approach, radiometric and spatial criteria had to be

jointly considered for an effective separability between HU of SSC

attributes. Fig. 6 exhibits the images classified into the main SSC

classes, spanning from March to July 2004 over the Puisserguier

vineyard. We observed significant heterogeneities, both in time

between the four date and in space between fields. Sub field variability

could also be observed. However, a spatial structuring of SSC within

the same field prevailed, and was more or less manifest according to

image acquisition date.

Table 5 displays, for the four classified images, the accuracy

assessments from confusion (classification-error) matrices, Kappa

statistics, overall and producer accuracies. Classification accuracy

means here the level of agreement between SSC classes assigned using

i) remotely sensed images along with the two scale classification, and

ii) the ground-based class allocation from the in situ data subset

devoted to validation (Section 3.3). On March, overall classification

accuracy was 80%. On May, the classification results were slightly

better with an overall accuracy of 84%. On June and July, we observed a

decrease of the overall accuracy that fell down to 69% in June and to

63% in July. When examining the results by SSC class in terms of

producer accuracy, good performances were systematically observed

for STC and T, although T class occurred on May only. Intermediate

performances were observed for TC on the two dates this class

Table 3

Scale factors used for the multiscale segmentation of image data

Image date Fine spatial scale Coarse spatial scale

HU of SSC attributes SSC classes

Scale factor Object mean length Scale factor Object mean length

27 March 2004 10 From 0.2 to 0.3 m 40 From 1 to 1.4 m

18 May 2004 10 From 0.2 to 0.4 m 40 From 1 to 1.5 m

15 June 2004 14 From 0.3 to 0.6 m 42 From 1.1 to 1.4 m

23 July 2004 14 From 0.4 to 0.7 m 46 From 1.1 to 1.8 m

Table 4

Set of best criteria used for the classification of HU of litter, sedimentary crust, structural

crust, large clods and grass on the image acquired in May 2004

Criteria Radiometric Spatial

Red band mean value X

Standard deviation (red band) X

Ratio (red band) X

Mean difference to neighbours X X

Relative boarder to brighter neighbours X X

Brightness X

GLCMa mean (red band) X X

Shape index X

These criteria were obtained using a multi criteria optimization approach, and

computed on image objects rather than on single pixels. Ratio (red band) stands for

the ratio of mean radiometry over an image object within the red band to the sum of

mean radiometries over an image object within all considered bands (here blue, green

and red). For a full description of computation, refer to Definiens manual (2003).
aGLCM: The grey level co-occurrence matrix.
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occurred. Poor performances were systematically observed for SDC.

Variable performances were obtained for GC (respectively LC) with

large producer accuracy values on March, May and June (respectively

March and May). The main confusions were observed between LC and

TC on June, GC and LC on July, and between STC and SDC on all dates.

6. Discussion

The increasing of overall accuracy from March to May could be

explained by a tillage operation between both dates. Indeed, tillage

induced the apparition of the T class, which was easily discriminated

because of specific texture and radiometric behaviour related to

surface roughness. The good performances (overall accuracies larger

than 80%) observed in March and May decreased in June and July

(overall accuracies lower than 70%), because of three factors. First, T

class (recently tilled surfaces) changed into TC class (previously tilled

surfaces slightly sealed). This might induce slight confusions with STC

and SDC classes (completely sealed surfaces with well-formed surface

crusts), assuming the three classes differed more by their sealing

degree than by their mineral composition (Bresson and Boiffin, 1990).

Second, confusions were observed between TC and LC, with over

detection of LC into TC on June and reversely on July. No consistent

explanation could be found for both the confusions and the reverse

trend. Third, confusions between GC and LC classes were more

important in June and especially July, because of closer spectral

behaviour between senescent grass and litter. Indeed, most of the

grass cover became senescent in summer time and thus progressively

changed from green to yellow vegetation, making difficult the

distinction between senescent grass and litter (Jia et al., 2006).

Apart from the confusions reported above, important misclassifi-

cations were observed for SDC class. This was linked to confusions

between STC and SDC classes, because of similarmineral compositions

that induced small differences between both classes in terms of

textures and radiometric behaviours. Regardless of considered date,

these confusions had negligible impacts on STC classification

performances, but significant consequences on SDC classification

performances. This resulted from large differences between class

occurrences, given STC class occurrence was always significantly

larger than that of SDC class over the considered study area. Thus, for

the June imagery, a similar number of confused pixels (613 versus 667)

yielded producer accuracies of 84% for STC and 14% for SDC.

As compared to the BRDF-based classification proposed by

Wassenaar et al. (2005), we globally observed similar performances

in terms of class discrimination between TC, GC, SDC and STC. We

observed with our method slightly better differentiations between T

and LC classes. Indeed, these classes were separable from multi-

angular information under specific illumination conditions only,

which might alter the identification of the other SSC classes. Similarly

to the method proposed by Wassenaar et al. (2005), important

confusions unfortunately remained between SDC and STC classes.

Fig. 6. SSC classification outputs for the images acquired between March and July 2004.
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Given the significant differences in infiltration rates for SDC and STC

classes, it seems necessary distinguishing these classes, which

remains a critical issue. Conclusively, our expectations about poten-

tials of adjoining radiometric and spatial remotely sensed information

were not satisfied, in terms of differentiating these two specific

hydrological SSC classes.

In spite of similar performances, the radiometry-spatial-based

approach proposed here remains more promising in terms of

improvement and portability than the BRDF-based method proposed

by Wassenaar et al. (2005). Potential improvements include the

extension of the spectral range to the whole solar spectrum, and the

consideration of multispectral or hyperspectral observations. In terms

of portability, it is technically easier collecting and using observations

from multispectral sensors than from goniometric systems or multi-

angular imagers, especially for data processing such as image

superimposition. This makes the approach proposed here more

suitable for mapping and monitoring SSC classes, since it can be

more easily transposed in time and space.

Thanks to a large flexibility, two ways may be investigated for

improving the method we proposed here. The first way of improve-

ment is using richer spectral information to better differentiate the

ambiguously classified SSC classes. For example, the SWIR region over

the [1.2–2.5] µm range has been proven to be useful for determining

changes in the structural crust formation (Goldshleger et al., 2001).

Using this spectrum could probably help distinguishing between

structural and sedimentary crusts, althoughmeasuring at a fine spatial

resolution is technically not obvious (Heiden et al., 2007). Also,

observations across the NIR and SWIR regions are valuable for

detecting spectral changes of crusted soils, for discriminating tilled

surfaces, and for differentiating crusted and non-crusted surfaces

(Cierniewski, 1989; Chappell et al., 2005). Finally, high spectral

resolution across SWIR region can be useful for characterizing

structural, sedimentary and biological crusts (Weber et al., 2008;

Anderson and Kuhn, 2008; Goldshleger et al., 2002). The second way

of improvement is overcoming the problem of classification refine-

ment by using ancillary knowledge about changes in SSC related to

precipitations. This may be found in field studies about SSC under

natural or simulated rainfall (Andrieux et al., 2001). The proposed

procedure, in its current stand structure, is sufficiently versatile to

allow incorporating this type of temporal information in a expert

multi-date classification, in the context of SSC temporal monitoring.

Though we tested the method on four different fields at four dates

in order tomaximize its representativeness, some SSC classes from the

typology of Andrieux et al. (2001) were not included within the study

area. It is therefore recommended to extend themethod to other fields

with a stony soil texture subject to different soil management

practices, to confirm its applicability and performance. Similarly, the

method was successfully applied since the growth curve provided

object dimension values very similar to those observed from ground-

based data. However, such conclusive investigations have to be

confirmed over different landscapes that can induce other influences

when isolating object dimensions from the growth curve. Finally, the

method was applied within a Mediterranean semiarid context after

drying periods, making the impact of soil moisture negligible. When

considering neither arid nor semiarid contexts, lower occurrences of

drying periods significantly constrain the method implementation. A

possible solution is then considering soil moisture effects through

SWIR wavebands that are sensitive to water absorption.

Finally, a fine spatial resolutionwas mandatory for the detection of

SSC in the vineyard inter row. However, the mapping approach is not

only limited to fine resolutions. It can also be applied to lower spatial

resolutions such as those offered by satellite images. The latter are

probably more adequate for the detection of SSC in agricultural

environments with annual crops and with a continuous vegetation

cover. Applied on Very High spatial Resolution (VHR) satellite images

such as those collected by IKONOS or QuickBird, the approach may

then be easily used for monitoring SSC on larger areas and under

different soil management and cultivation conditions. This was

already tested with the 2.5 m spatial resolution SPOT 5 imagery

over a small Tunisian catchment characterized by different soil

management and cultivation conditions (Corbane, 2006).

7. Conclusion

The current study aimed at using very high spatial resolution solar

remote sensing for the mapping of hydrological soil surface

characteristics (SSC) over Mediterranean vineyards. According to

previous works that investigated the potential of multiangular

information, the originality of the approach proposed here consisted

of using radiometric and spatial information. This was performed

through a multiscale segmentation followed by a two scale classifica-

tion. The fine scale was related to Homogeneous Units (HU) of

attributes that composed hydrological SSC (soil micro topography,

surface crust types and soil cover). The coarse scale was related to

hydrological SSC classes that included patchworks of attributes. Both

fine and coarse scales were derived by analysing the growth curve

which resulted from the multiscale segmentation.

Table 5

Error matrices for the four days of experiment

Reference data

STC SDC GC LC T TC

a — March

Classified data STC 3601 788 0 44 N/A N/A

SDC 539 138 0 0 N/A N/A

GC 66 0 9741 27 N/A N/A

LC 963 98 1379 2777 N/A N/A

T N/A N/A N/A N/A N/A N/A

TC N/A N/A N/A N/A N/A N/A

Producer accuracy 0.70 0.13 0.88 0.98 N/A N/A

Overall accuracy: 0.80 Kappa coefficient: 0.69

b — May

Classified data STC 8169 485 127 56 258 N/A

SDC 2119 816 8 95 0 N/A

GC 0 0 3087 11 100 N/A

LC 50 0 140 9297 283 N/A

T 36 0 94 430 5194 N/A

TC N/A N/A N/A N/A N/A N/A

Unclassified 142 0 0 0 0 N/A

Producer accuracy 0.77 0.62 0.89 0.91 0.89 N/A

Overall accuracy: 0.84 Kappa coefficient: 0.74

c — June

Classified data STC 5394 667 0 472 N/A 509

SDC 613 110 0 0 N/A 39

GC 0 0 1967 236 N/A 0

LC 0 0 159 1691 N/A 303

T N/A N/A N/A N/A N/A N/A

TC 143 0 49 1361 N/A 1858

Unclassified 294 0 0 74 N/A 0

Producer accuracy 0.84 0.14 0.90 0.44 N/A 0.69

Overall Accuracy: 0.69 Kappa coefficient: 0.58

d — July

Classified data STC 3651 621 0 54 N/A 660

SDC 0 293 0 0 N/A 0

GC 300 0 1867 706 N/A 56

LC 38 196 1466 1157 N/A 843

T N/A N/A N/A N/A N/A N/A

TC 51 102 0 58 N/A 2331

Unclassified 0 0 159 17 N/A 0

Producer accuracy 0.90 0.24 0.53 0.58 N/A 0.60

Overall accuracy: 0.63 Kappa coefficient: 0.53

N/A means the considered class was not included within the study area for the day of

data acquisition. The pixel numbers for the ground truth data refer to “Reference data”,

and the pixel numbers for the remotely sensing-based estimates refer to “Classified

data”.
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The proposed method was assessed over a wide range of manage-

ment practices for Mediterranean vineyards. The results showed

acceptable performanceswith overall accuracy ranging from63 to 84%,

depending on SSC classes and surface conditions that changed with

day of experiment. However, these performances were not signifi-

cantly better than those reported by Wassenaar et al. (2005) when

investigating the potential of multiangular observations over similar

vineyards. Given important hydrological SSC classes still remained

undifferentiated, our expectationswere thereforemoderately satisfied

when using spatial and radiometric information in place of multi-

angular observations. Nevertheless, the combined use of radiometric

and spatial information provide a wider range of improvement

possibilities as compared to the use of multiangular data.

The main advantages of using radiometric and spatial data in place

of multiangular observations are twofold, in terms of improvement

and portability. Possible improvement involved spectral and temporal

information. Using spectral information can be easily strengthened by

broadening the considered spectral range. Thus, future investigations

should focus on benefiting from the near infrared (around 0.8 µm) and

the shortwave infrared (from 1.2 to 2.5 µm) spectral ranges, including

multispectral or hyperspectral observations. Another possible

improvement relies on incorporating ancillary knowledge about SSC

evolution derived from in situ information. In terms of portability,

avoiding complex observation systems such as goniometers or

multiangular imagery allows easier transpositions in time and space.

The proposed framework can therefore be considered as an initial step

towards building a semi-automated procedure, in order to obtain

information on SSC at very high spatial and temporal resolutions as

required by the distributed hydrological models.

Finally, multiscale approaches alternative to Fractal Net Evolution

Approach were developed during the last decade, such as Linear Scale

Space (Lindeberg,1994) and Size Constrained RegionMerging (Castilla

et al., 2008). Though these approaches differ from a theoretical point

of view, they focus on the analysis of intrinsic patterns within a single

image and on the multiscale exploration of image objects. New

operational segmentation methods based on these alternative

approaches are now available, such as the Multiscale Object-Specific

Segmentation (Hay et al., 2005). These methods have to be assessed

and compared, since they can potentially reduce the exploratory

works needed to define the appropriate segmentation levels. This is

especially truewhen conducting baseline analysis without any a priori

information about SSC characteristic scales (Hay et al., 2003).
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